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Abstract

One of the ways to improve the performance of a target

task is to learn the transfer of abundant knowledge of a pre-

trained network. However, learning of the pre-trained net-

work requires high computation capability and large-scale

labeled datasets. To mitigate the burden of large-scale la-

beling, learning in un/self-supervised manner can be a so-

lution. In addition, using un-supervised multi-task learn-

ing, a generalized feature representation can be learned.

However, un-supervised multi-task learning can be biased

to a specific task. To overcome this problem, we propose

the metric-based regularization term and temporal task en-

semble (TTE) for multi-task learning. Since these two tech-

niques prevent the entire network from learning in a state

deviated to a specific task, it is possible to learn a gener-

alized feature representation that appropriately reflects the

characteristics of each task without biasing. Experimen-

tal results for three target tasks such as classification, ob-

ject detection and embedding clustering prove that the TTE-

based multi-task framework is more effective than the state-

of-the-art (SOTA) method in improving the performance of

a target task.

1. Introduction

Unsupervised learning (USL) has been used to generate

pre-trained models for improving the performance of vari-

ous computer vision tasks [16, 34, 10]. USL not only con-

sumes less human resources because it does not need label

information in learning, but also it has a merit that overfit-

ting phenomenon is relatively less than supervised learning.

In [4], Erhan et al. analyzed in detail how the pre-trained

models affect the performance of the target tasks. Their

finding has recently inspired the study of deep neural net-

works (DNNs) based on pre-trained models.

On the other hand, self-supervised learning (SSL) refers

to learning a feature without data annotation by introducing

Figure 1. The main concept of the proposed method. Unbalanced

multi-task learning (a) can be learned evenly by using the proposed

technique (b). Here, the vertical axis of the graphs indicates the

degree to which task k affects CNNs in epoch t.

a pretext task [41, 27, 25, 28]. SSL can be included in the

USL category in a wide sense because it inherently learns

without label information. Note that SSL has been also used

to obtain pre-trained models for various target tasks such as

classification and object detection [3, 27, 25].

Recently, multi-task learning (MTL), which learns a gen-

eralized feature representation using several different tasks,

has been attracting attention [42]. A lot of studies have re-

ported that learning various supervised tasks for a source

dataset outperforms learning a single task [20, 24, 7, 13].

However, supervised tasks fundamentally require labeled

datasets, and as the size of the dataset increases, the label-

ing cost becomes significantly burdensome. To solve this

problem, some MTLs composed of unsupervised tasks have



been developed [29, 39], but they have a limitation in ob-

taining synergy between different tasks because the unsu-

pervised tasks have similar characteristics. Recently, Do-

ersch and Zisserman proposed a new MTL using heteroge-

neous unsupervised tasks [3]. However, since this method

employs a simple ensemble based on a linear combination at

the end of the network, it rarely derives a synergy between

heterogeneous tasks either.

In order to learn more generalized feature representa-

tion than [3], this paper proposes a metric-based regular-

ization term and a temporal task ensemble (TTE) for MTL

using heterogeneous unsupervised tasks. The proposed reg-

ularization term is defined based on Kullback-Leibler di-

vergence (KLD) [21] and plays a role in stabilizing latent

feature maps during the learning process of heterogeneous

tasks. TTE defines the difference in the degree of learning

of tasks as L1 norm and adaptively ensembles them.

If the two techniques are applied to MTL, each task can

be learned to affect the whole network uniformly as shown

in Fig. 1 (b). The proposed MTL framework consists of

three stages as in Fig. 2. 1) MTL using an encoder-header

network, 2) transferring the knowledge of an encoder net-

work to a target network, 3) performing the target task based

on the transferred knowledge.

This paper adopts four types of un-supervised tasks suit-

able for USL purposes: reconstruction, image segmenta-

tion, image colorization, and context-based methods. We

experimentally selected the above tasks that demonstrate

synergy during the TTE process [26, 36, 41, 27, 25, 28].

Note that the purpose of this paper is not to suggest a new

un/self-supervised task but to propose a new MTL frame-

work to improve the performance of target tasks such as

classification and object detection as in [3]. So, this paper

chooses multi-task self-supervised visual learning (MSVL)

[3], which is the most recent MTL framework developed for

the same purpose, as SOTA. Based on MSVL and the pro-

posed framework, we derived an optimal combination of

un-supervised tasks to produce an effective pre-trained net-

work, and verified the performance of the proposed MTL

for various target tasks. Our contributions are as follows:

• To learn multiple heterogeneous tasks without biasing,

a distribution metric-based regularization loss and TTE

are proposed. This enables to learn a generalized fea-

ture representation without labeled dataset.

• This study is valuable in that it analyzes the rela-

tionships and synergies among various un-supervised

tasks. This paper is the first to analyze the synergy

between latest un/self-supervised tasks to our knowl-

edge.

• This paper proposes a framework to improve the per-

formance of a target task based on unlabeled dataset as

in [3]. It is expected to play an important role in the fu-

ture works such as meta-learning and online learning.

2. Previous Works

2.1. Unsupervised Taks

Reconstruction [26]: The reconstruction task is the

most basic unsupervised task and is the key method used

in the recent studies [8, 14]. Basically, the reconstruction

task is used to obtain pre-trained models for learning a tar-

get task. In addition, the reconstruction task uses images of

the same size as the input and output of the network, and

sometimes uses noise and inputs synthetic images [35].

Image segmentation [36]: Image segmentation is a task

that separates objects into meaningful regions by perform-

ing pixel-based prediction. Segmentation tasks are used

for applications such as retinal and brain image analysis

[22, 18]. Basically, we need a mask label for segmenta-

tion task. However, we can utilize existing studies that per-

form segmentation without labels [36, 12]. In this paper,

the basic network structure used for the segmentation task

is U-Net [32].

Colorization [41]: Image colorization is a task of pre-

dicting ab channels using L channel on Lab color space.

Like the reconstruction and segmentation tasks, the col-

orization task also forms the network based on the encoder-

decoder manner. Colorization task is used in various vision

applications such as automatic colorization [30, 17].

Context-based [27, 25, 28]: Jigsaw puzzle [27] is a task

to divide an image into patches and to predict the position of

each patch after random mixing. Jigsaw puzzle does not use

encoder-decoder structure unlike the previous three tasks.

Instead, it obtains the relative position information of the

image patches as output values through softmax function.

The jigsaw puzzle task is characterized by its superior per-

formance as an unsupervised task despite the absence of

label information. Recently, context-based learning meth-

ods based on jigsaw puzzle have been developed. Jigsaw++

[28] improved learning performance by replacing up to two

patches in the original puzzle with patches in a completely

different image. Rotation with classification (RWC) [25]

task used 2x2 patch as well as 3x3 patch and also employed

patch overlapping to maximize the context information of

an image. It is noteworthy that the images chroma blurring

and yoked jitter were adopted before patch generation for

improving the context learning. As a result, we construct a

MTL network based on the four types of unsupervised tasks

described above.

2.2. Multi-task Learning

MTL studies for computer vision are divided into two

categories: fusion of loss functions of several tasks [13, 39]



Figure 2. Overall framework of the proposed method. The target network solves the target tasks by transferring the knowledge of the source

encoder learned without a label.

and fusion of information derived from CNN layers [20, 24,

29, 3]. First, we take a look at some approaches to integrate

loss functions. In [39], a joint framework, where the loss

function of a supervised 3D task such as pose estimation

and that of an unsupervised 3D task tightly coupled to the

supervised 3D task are merged, was presented. And a syn-

ergy among two heterogeneous tasks was demonstrated to

some extent. In [13], the loss function that maximizes the

Gaussian probability based on task-dependent uncertainty

was defined, and the weighting of each task was adjusted

based on the defined loss function.

Second, a few ways to fuse information from CNN layers

are described as follows. In [20], the learning ability of task-

specific layers improved by designing the fully-connected

(FC) layers of the network as the prior matrix. In [24], infor-

mation of convolutional layers was fused based on so-called

cross-stitch units which were learned to find an optimal task

combination using the activation function values of several

tasks.

On the other hand, information of CNN layers was fused

based on unsupervised tasks [29, 3]. In [29], a simple

multi-task framework for fusing the information of CNN

layers was proposed for robot grasping control purpose.

In [3], Doersch and Zisserman presented the most suc-

cessful example of combining heterogeneous unsupervised

tasks. They designed the last block of the network as task-

specific layers and made each layer in the block learn an

unsupervised task based on the lasso (L1) penalty. Also,

they proposed a so-called harmonizing method for con-

sistency of single feature representation. However, the

above-mentioned method is limited to learning a general-

ized feature representation that uniformly reflects the mul-

tiple tasks. In order to overcome such a limitation, we

propose a novel method which gets the effect of each task

evenly.

3. Approach

3.1. Overall Architecture

The overall architecture of the proposed method con-

sists of two networks based on the source and target parts

as shown in Fig. 2. The source dataset is one for learn-

ing the pre-trained model in the source part, and the target

dataset is the other for learning the target task in the target

part. The source network is composed of various unsuper-

vised tasks and has an encoder-task header structure. Each

task header has an independent loss function, and the task is

learned based on this loss function. The multi-task knowl-

edge is produced by the weights of all the tasks trained in

the encoder network. Finally, the multi-task knowledge is

transferred to the target network. Here a target task can be

classification, object detection, and embedding clustering.

Next, take a look at the learning process of the source

network in detail. Let {(x,yk)}
N

i=1
denote a dataset con-

sisting of N samples pairs. x and yk in a sample pair in-

dicate an input image and the corresponding pretext of un-

supervised task k, i.e., k ∈ {r, s, c, j}. ’r’, ’s’, ’c’, and ’j’

stand for reconstruction, semantic segmentation, coloriza-

tion, and jigsaw puzzle, respectively. The entire operation

of the proposed MTL is defined as follows.

min
W

∑

k∈{r,s,c,j}

N∑

i=1

[Lk {fk(xi;φ,θk),yi,k}+Ω(xi;φ)]

(1)

where

fk(y|x;φ,θk) = fenc(z|x;φ) + fhk
(y|z;θk) (2)

Ω(x;φ) = DKL(v||vp) =
∑

i

v(i)log
v(i)

vp(i)
(3)



Figure 3. The operation of TTE at epoch t. The order of the tasks used in this TTE process can be changed at every epoch.

fk indicates the network corresponding to task k, and con-

sists of a common encoder network (fenc) and a header net-

work (fhk
) as in Eq. (2). fk is learned based on x and

weights set W = {φ,θ1, ...,θk}. φ in W stands for train-

able weights of the encoder network, e.g., AlexNet, VGG,

and ResNet [16, 34, 10]. θk is the trainable weights of fhk
,

and is configured in a manner suitable for task k. Also, Lk

of Eq. (1) indicates the loss function of task k, which de-

pends on fk and the corresponding pretext yk.

The overall operation process is as follows. First, when

x is input, the feed-forward process is performed to calcu-

late fk. Task k is learned based on Lk. Then, an addi-

tional constraint Ω is given to the learning process of Lk.

Because the dimension of z is not same as that of vp, dis-

tribution metric cannot be calculated directly (see Fig. 2).

So a transformation filter F , i.e., the weighted average is

applied to convert a two-dimensional feature maps z into

a one-dimensional feature vectors v. Finally, learning pro-

ceeds towards reducing the metric distance between v and

vp. Here, v ∼ F (v|fenc(z|x;φ)).
Regularization term using distribution metric: A regu-

larization term for the encoder network can be one of distri-

bution metrics such as f -divergence family [6]. The purpose

of the regularization term is to stabilize latent feature maps

z during the learning process of heterogeneous tasks. We

used KLD [21] as a metric for the regularization term as

in Eq. (3). Verification experiments and ablation studies

regarding the regularization term can be found in Section 4.

3.2. Multi-task Headers

This section provides a detailed look at the tasks used in

learning. The total loss function consists of four indepen-

dent loss functions, as in Eq. (4).

L := Lr + Ls + Lc + Lj (4)

Here, all the loss functions except the reconstruction loss Lr

are used as in [36], [41], and [27], respectively. So we de-

scribe only Lr as follows. The first term of Lr, i.e., Lrecon

comes from [26]. Since the reconstruction task generally

uses weak supervision than other tasks, it seldom influences

the learning of the encoder network. So, in order to amplify

the influence of the reconstruction task on the encoder net-

work, a regularization term Lreg is added to Lrecon as in

Eq. (5).

Lr = Lrecon + Lreg (5)

Lreg is defined as follows.

Lreg = DKL(fhr
(y|z)||yr)− λfhr

(y|z) logfhr
(y|z)

(6)

where yr and fhr
indicate the label image and header of

the reconstruction task, respectively. A balance factor λ is

set to 10−3. The first term of Eq. (6) is the KLD between

the label image and the reconstructed image for the basic

regularization effect. To design the reconstruction task to

facilitate more influence on the learning of the encoder net-

work, we employ the conditional entropy loss introduced in

[9] as the second term in Eq. (6). On the other hand, in-

dependent learning of the four tasks may have a limitation

in causing the synergy between heterogeneous tasks, so the

entire network can be learned to be biased to a specific task.

Therefore, the following section provides a solution to this

critical problem.

3.3. Temporal Task Ensemble

The core concept of TTE is to fuse the weights so that

all unsupervised tasks affect evenly. In other words, TTE is

targeting to suppress the entire network from being biased

towards a specific task. Note that TTE does not apply to



Table 1. The properties of the benchmark datasets. In the domain row, S and T indicate source and target, respectively.

C10 [15] C100 [15] C10s STL10 [2] ILSVRC2012 [33] Places365 [43] VOC0712 [5]

No. of classes 10 100 10 10 1000 365 20

Task image classification object detection

Domain S/T S/T T T S S T

Samples 60000 60000 12000 13000 1.3M 1.8M ∼20000

Image size 32×32 32×32 32×32 96×96 224×224 224×224 (various)

all layers of the encoder network but only to the convolu-

tion layer prior to the pooling layer. Figure 3 describes the

detailed operation of the proposed TTE. Assume that the

current training epoch is t. First, prepare for a set of T -1

encoder weights (Φ) which are previously learned (see in

Fig. 3). Second, extract the fenc weights of task k, i.e., φt
k

(see black arrows in Fig. 3). Next, calculate the temporal

gradient ∆φt
k between φt

k and φt−1 that are the encoder

weights at epoch t-1 (see blue arrows in Fig. 3).

∆φt
k = ||φt

k − φt−1||1 (7)

where || · ||1 stands for the element-wise L1 distance. Note

that ∆φt
k can be interpreted as the impact of task k on the

encoder network at epoch t. Also, we used the average of

temporal gradients µ∆φt

k

as a measure of the impact of task

k (see Fig. 1). Then, calculate the task gradient ∆φt
o be-

tween the encoder weights of the first task (φt
r in Fig. 3)

and the encoder weights of the last task at epoch t (φt
j in

Fig. 3). This corresponds to a green arrow in Fig. 3.

∆φt
o = ||φt

r − φt
j ||CAD (8)

where || · ||CAD stands for the element-wise Canberra dis-

tance. The reason why Canberra distance is adopted here is

to limit ∆φt
o to a certain range. As a result, ∆φt

o can be

interpreted as a dynamic range of the weights of all tasks.

Note that because the tasks are learned in an asynchronous

manner during the training process, two tasks used to com-

pute ∆φt
o in Eq. (8) may change at every training epoch.

Next, based on Eqs. (7) to (8), the temporal ensemble is

performed as in Eq. (9) (see a yellow arrow in Fig. 3).

φt = φt−1 +
∑

k∈{r,s,c,j}

αt
k∆φt

k + βt∆φt
o (9)

where αt
k and βt indicate the adaptive coefficients at epoch

t. The coefficients are determined adaptively by using the

loss values of the current and previous epochs. Refer to sup-

plementary material for the detailed calculation procedure

of the coefficients. Through the ensemble process of Eq.

(9), a single feature representation in which total informa-

tion of all tasks is reflected can be obtained. In this process,

the temporal gradient and the task gradient are tuned so that

the influence of a particular task becomes not too large due

to the coefficients adjusted adaptively to the loss value. In

particular, the task gradient represents the dynamic range

of different tasks, so coordinating this value has the same

effect as allowing all tasks to be learned evenly. Finally,

by taking the moving average during T time units as in Eq.

(10) to prevent outliers on the time axis, we obtain the final

encoder weights.

φ =
1

T

T−1∑

i=0

φt−i (10)

T is set to 5 in this paper. Thus, the encoder weights of Eq.

(10) become the multi-task knowledge for transfer to the

target network. Here, we employ conventional knowledge

transfer methods [11, 38] as mentioned in Section 3.4.

3.4. Knowledge Transfer Methods

There are various studies related to transfer learning

[1, 11, 38, 40]. We make use of two conventional methods

for delivering source knowledge to the target network. The

first method is soft-targets [11] to transfer knowledge of the

network output distribution. Second, we use FSP DNN [38]

to transfer the flow information of the network. Note that

because soft-targets do not consider the middle layer infor-

mation of the network, FSP DNN may provide better per-

formance than soft-targets. Please refer to supplementary

material for a more detailed description of those knowledge

transfer methods.

4. Experiments

4.1. Training Configurations

This section describes the dataset, source/target network,

and learning details used in each experiment.

Dataset: Table 1 summarizes the datasets used in all exper-

iments. Here, C10s represents a dataset where only 20%
of the CIFAR10 dataset is randomly sampled. The purpose

of C10s is to verify the differentiated performance of a net-

work by increasing the difficulty of the CIFAR10 dataset.

For the evaluation of the multi-task ensemble in Section

4.2, we used ILSVRC2012 and Places365 datasets as source

datasets, and C10s and STL10 as target datasets. Each im-

age in the C10s and STL10 datasets is resized to 224×224



Table 2. The result of classification task [%]. The experimental setting of the green performance was used in the ablation study in Section

4.5. Here, Rcn, Seg, Col, jig, jig++, and RWC refer to reconstruction, segmentation, colorization, jigsaw puzzle, jigsaw++, and rotation

with classification, respectively. In case of MSVL, we implemented ourselves.

Source dataset Source task Transfer method TTE (C10s/STL10) MSVL [3] (C10s/STL10)

Target only 61.05 / 61.19

ILSVRC 2012

Jig+Col

Soft-targets

65.43/63.83 61.05/56.20

Jig+Col+Seg+Rcn 65.47/64.08 61.21/56.43

(Jig++)+Col+Seg+Rcn 65.72/64.19 64.18/56.79

RWC+Col+Seg+Rcn 66.00/64.78 63.11/56.03

(Jig++)+RWC+Col+Seg+Rcn 65.26/64.07 63.51/57.30

Jig+Col

FSP DNN

69.86/66.46 68.97/66.23

Jig+Col+Seg+Rcn 71.38/68.06 70.78/66.42

(Jig++)+Col+Seg+Rcn 70.45/66.11 70.65/67.75

RWC+Col+Seg+Rcn 71.61/68.21 70.98/67.43

(Jig++)+RWC+Col+Seg+Rcn 71.31/67.42 71.08/67.40

Places 365

Jig+Col

Soft-targets

62.87/63.12 61.01/62.78

Jig+Col+Seg+Rcn 63.47/63.53 61.41/62.91

(Jig++)+Col+Seg+Rcn 66.00/64.22 65.21/63.98

RWC+Col+Seg+Rcn 67.41/64.52 66.74/63.74

(Jig++)+RWC+Col+Seg+Rcn 65.20/64.03 65.53/63.38

Jig+Col

FSP DNN

67.04/63.10 65.38/65.21

Jig+Col+Seg+Rcn 67.72/63.68 65.60/65.53

(Jig++)+Col+Seg+Rcn 67.85/64.22 68.67/64.57

RWC+Col+Seg+Rcn 69.15/66.46 68.83/66.40

(Jig++)+RWC+Col+Seg+Rcn 69.02/65.30 68.52/64.32

Table 3. The result of object detection task [mAP]. In case of MSVL, we implemented ourselves.

Source dataset Source task Transfer method TTE (VOC0712) MSVL [3] (VOC0712)

ILSVRC 2012

Jig+Col

Fine-tune

61.38 60.41

Jig+Col+Seg+Rcn 65.83 63.79

(Jig++)+Col+Seg+Rcn 66.80 66.78

RWC+Col+Seg+Rcn 68.71 67.40

(Jig++)+RWC+Col+Seg+Rcn 69.35 68.75

Supervised 74.7

and then input to the target task. In the knowledge distilla-

tion experiment in Section 4.3, CIFAR10/100 datasets are

used as source and target datasets without any modification.

Encoder/target network: In the classification experiment

in Section 4.2, ResNet50 was used as an encoder network

and the reduced AlexNet was used as a target network. The

reduced AlexNet which consists of five convolutional layers

and three FC layers, but the number of kernels in each layer

are all reduced to about 1/2 to 1/4 of the ones in AlexNet

[16]. Here the size of convolutional kernels is set to 3×3.

Then, in the object detection experiment, VGG16 was used

as an encoder network and SSD300 [19] was used as a tar-

get network. In the knowledge distillation experiment in

Section 4.3, ResNet26 was used as an encoder network and

the reduced AlexNet was used as a target network.

Training details: Each numerical value in all experimental

results is the average value of three trials. Each iteration is

2,000 based on the batch size of 64, and it performs up to

50 epochs. Especially, in the case of the object detection,

120 epochs. We employ stochastic gradient descent (SGD)

[31] with momentum 0.9 as an optimizer. Also we used the

TensorFlow library for model construction as well as train-

ing.

4.2. Evaluation of Multi-task Methods

This section examines how the pre-trained models gen-

erated by the proposed TTE and multi-task self-supervised

visual learning (MSVL) [3] affect the performance of the

target task, respectively.

First, the experimental result for the classification task

is given in Table 2. As the number of tasks increases, the

target task performance improves. Above all, TTE showed

overall higher performance than MSVL. For example, us-

ing the FSP DNN method with four tasks such as RWC,

Col, Seg, and Rcn, TTE improved 0.6% at C10s and 0.8%
at STL10 over MSVL (see the 9-th row of Table 2). How-

ever, the performance improvement was relatively small

when using five tasks. This implies that the source en-



Table 4. Experimental result based on various source tasks.

Source dataset Source task Transfer method Target accuracy (C10/C100)

C10 / C100

Source only 91.55/65.37

Target only (baseline) 87.77/60.77

Classification (supervised)

Soft-targets [11] 88.45/61.03

FSP DNN [38] 88.70/63.33

CETL [1] 89.11/64.83

Jig+Col+Seg+Rcn (MSVL [3])
Soft-targets 88.45/62.56

FSP DNN 90.12/66.23

Jig+Col+Seg+Rcn (TTE)
Soft-targets 88.73/63.07

FSP DNN 90.43/66.83

Table 5. Performance comparison for different metrics and task

difference.

Metric [6] Task gradient TTE (C10s/STL10)

(not used) � 65.40/64.33

KLD 68.79/65.98

KLD � 71.38/68.06

Reverse KLD � 69.90/66.90

JSD � 68.40/65.11

Hellinger � 71.48/66.78

Jeffrey � 64.48/66.22

χ2 � 67.60/63.34

Wasserstein � 70.39/68.74

Table 6. Performance analysis according to encoder network type.

Source dataset Encoder network Target accuracy (C10/C100)

ILSVRC 2012

AlexNet [16] 67.18/64.62

VGG16 [34] 69.37/66.85

ResNet50 [10] 71.38/68.06

Places 365

AlexNet 66.63/63.79

VGG16 68.70/65.87

ResNet50 67.72/63.68

coder is biased towards context-based tasks as Jig++ and

RWC are learning together. On the other hand, the results

for Places 365 show overall lower target accuracy than the

results for ILSVRC2012. We are interpreting that the per-

formance gap according to the source dataset can be due

to the correlation of the dataset. Places365 consists of

background/object-oriented images, while ILSVRC2012 is

composed of animal/plant-oriented images. However, the

target datasets CIFAR and STL10 have data characteristics

more similar to ILSVRC2012 than Places365.

Second, the experimental result for the object detection

task is described in Table 3. We started with two tasks of

jigsaw puzzle and colorization, which are the most repre-

sentative tasks, and increased the number of tasks to five.

Table 3 shows that the performance of both TTE and MSVL

increases with the number of tasks. On average, we can ob-

serve the performance improvement of up to 8% for TTE

and up to 8.3% for MSVL.

4.3. Performance Analysis via Knowledge Distilla-
tion

This section analyzes the performance of a target task

through knowledge distillation where source and target

datasets are equivalent. We experimented not only with un-

supervised learning but also with supervised learning such

as classification as a source task. The classification task was

learned while adding the three FC layers (512-256-class

dim.) after the encoder network. Soft-targets, FSP DNN,

and CETL [1] were used as transfer methods.

The first two rows of Table 4 are the results obtained

from a single network without knowledge transfer. From

the third row, we show the performance of the target tasks

when transferring knowledge acquired from various source

tasks to the target networks.

For the transfer method of FSP DNN and the target

dataset of C10, the target accuracies of the supervised task,

MSVL, and TTE are 88.7%, 90.1%, and 90.4%, respec-

tively. The proposed method shows 0.3% better perfor-

mance than MSVL. It is notable that seeing the fifth row

of the last column of Table 4, CETL, which is known to

outperform FSP DNN, shows lower performance than unsu-

pervised methods such as MSVL and TTE. Although TTE

takes about twice as long learning time and requires addi-

tional network resources than the supervised task, the fact

that TTE is an unsupervised task without labeling cost and

is able to provide higher performance than the supervised

task can be enough to overcome the shortcomings. In ad-

dition, through this experiment, we were able to obtain an

insight that the learning method of knowledge has a greater

impact on performance than the transfer way of domain

knowledge.

4.4. Deep Embedding Clustering

This section qualitatively compares the performance of

TTE and MSVL through a well-known deep embedding

clustering (DEC) [37] to evaluate the learning ability of the

generalized feature representation. In DEC, a pre-trained

encoder network and a latent distribution corresponding to



Figure 4. Example retrieval results on STL10 dataset. (Upper) us-

ing encoder network trained TTE. (Below) using encoder network

trained MSVL.

the next layer, i.e., z in Fig. 2, were used.

The overall procedure is as follows. First, we con-

structed a cluster layer after encoder network. The clus-

ter layer converted the output features of the encoder net-

work into cluster label probabilities, in which a student’s

t-distribution was used. Next, we adjusted the cluster cen-

ter based on conventional k-means clustering. Finally, the

same learning process as [37] was performed using STL10

as the target dataset. We performed this experiment based

on the encoder network of TTE and MSVL. The results are

shown in Fig. 4 in the form of query and retrieval. TTE

showed higher recall rate, normalized mutual information

(NMI), and adjusted rand score (ARI) than MSVL [23]. In

addition, we can observe that more meaningful retrieval re-

sult was obtained by the proposed method.

4.5. Ablation Study

This section deals with the ablation study on the pro-

posed method. All of the experiments in this section were

based on the experimental setting of the green performance

of Table 2. We analyzed the proposed method in terms of

the distribution metric Ω in Section 3.1, the application of

task gradient ∆φt
o in Section 3.3, and source encoder type,

respectively.

First, we analyzed performance when replacing exist-

ing KLD with other metrics [6]. As shown in Table 5,

Hellinger and Wasserstein showed higher target task per-

formance than KLD, which we used basically. This implies

that other distribution metrics with similar constraint char-

acteristics to KLD can be candidates. However, in case of

Jeffrey and χ2 which are known as learning methods based

on stronger constraints than KLD, their strong constraints

adversely affect learning performance.

Second, Table 5 shows the performance change accord-

ing to the task gradient of Fig. 3. Obviously, when the task

gradient was excluded from the TTE process, the perfor-

mance decreased, but this was less than when the distribu-

tion metric was not used at all.

Third, we analyze the target accuracy according to the

type of encoder network. Seeing Table 6, ResNet50 has

the highest target accuracy in the ILSVRC2012 and VGG16

has the best in the Places365. Unlike our expectation that

more complex encoder network would be more beneficial

for MTL, we can observe that performance were not signif-

icantly affected by the type of encoder network. As a result,

all options used in the experiment are directly related to the

performance of the target task, and the distribution metric

has the greatest effect on performance.

5. Conclusion

In this paper, we proposed two methods that are metric-

based regularization and TTE for obtaining generalized fea-

ture representation using unsupervised tasks. As a result,

metric-based regularization loss and TTE make it possible

to learn a pre-trained model that accurately reflects data

characteristics even for large datasets such as ILSVRC2012.

However, the proposed method uses the basic weighted sum

form to fuse task information. Therefore, our future study

will suggest a new type of task ensemble technique that can

show better synergy between tasks.

Acknowledgements

This work was supported by National Research Foun-

dation of Korea Grant funded by the Korean Government

(2016R1A2B4007353) and the Industrial Technology Inno-

vation Program funded By the Ministry of Trade, industry

& Energy (MI, Korea) [10073154, Development of human-

friendly human-robot interaction technologies using human

internal emotional states].



References

[1] S. Chen, C. Zhang, and M. Dong. Coupled end-to-end trans-

fer learning with generalized fisher information. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4329–4338, 2018. 5, 7

[2] A. Coates, A. Ng, and H. Lee. An analysis of single-layer

networks in unsupervised feature learning. In Proceedings

of the fourteenth international conference on artificial intel-

ligence and statistics, pages 215–223, 2011. 5

[3] C. Doersch and A. Zisserman. Multi-task self-supervised

visual learning. In Proceedings of the IEEE International

Conference on Computer Vision, pages 2051–2060, 2017. 1,

2, 3, 6, 7

[4] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vin-

cent, and S. Bengio. Why does unsupervised pre-training

help deep learning? Journal of Machine Learning Research,

11(Feb):625–660, 2010. 1

[5] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes (voc) chal-

lenge. International journal of computer vision, 88(2):303–

338, 2010. 5

[6] A. L. Gibbs and F. E. Su. On choosing and bounding prob-

ability metrics. International statistical review, 70(3):419–

435, 2002. 4, 7, 8

[7] G. Gkioxari, R. Girshick, and J. Malik. Contextual action

recognition with r* cnn. In Proceedings of the IEEE inter-

national conference on computer vision, pages 1080–1088,

2015. 1

[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in neural information

processing systems, pages 2672–2680, 2014. 2

[9] Y. Grandvalet and Y. Bengio. Semi-supervised learning by

entropy minimization. In Advances in neural information

processing systems, pages 529–536, 2005. 4

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016. 1, 4, 7

[11] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge

in a neural network. arXiv preprint arXiv:1503.02531, 2015.

5, 7

[12] A. Kanezaki. Unsupervised image segmentation by back-

propagation. In 2018 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages

1543–1547. IEEE, 2018. 2

[13] A. Kendall, Y. Gal, and R. Cipolla. Multi-task learning using

uncertainty to weigh losses for scene geometry and seman-

tics. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 7482–7491, 2018. 1,

2, 3

[14] D. P. Kingma and M. Welling. Auto-encoding variational

bayes. arXiv preprint arXiv:1312.6114, 2013. 2

[15] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. Technical report, Citeseer, 2009.

5

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012. 1, 4, 6, 7

[17] G. Larsson, M. Maire, and G. Shakhnarovich. Learning rep-

resentations for automatic colorization. In European Con-

ference on Computer Vision, pages 577–593. Springer, 2016.

2

[18] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,

M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and

C. I. Sánchez. A survey on deep learning in medical image

analysis. Medical image analysis, 42:60–88, 2017. 2

[19] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-

Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector.

In European conference on computer vision, pages 21–37.

Springer, 2016. 6

[20] M. Long and J. Wang. Learning multiple tasks with deep

relationship networks. arXiv preprint arXiv:1506.02117, 2,

2015. 1, 3

[21] D. J. MacKay and D. J. Mac Kay. Information theory, infer-

ence and learning algorithms. Cambridge university press,

2003. 2, 4

[22] K.-K. Maninis, J. Pont-Tuset, P. Arbeláez, and L. Van Gool.
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