
Dynamic Block Sparse Reparameterization of Convolutional Neural Networks

Dharma Teja Vooturi, Girish Varma, Kishore Kothapalli

Center for Security Theory and Algorithmic Research

International Institute of Information Technology Hyderabad, India

dharmateja.vooturi@research.iiit.ac.in, girish.varma@iiit.ac.in, kkishore@iiit.ac.in

Abstract

Sparse neural networks are efficient in both memory and

compute when compared to dense neural networks. But on

parallel hardware such as GPU, sparse neural networks re-

sult in small or no runtime performance gains. On the other

hand, structured sparsity patterns like filter, channel and

block sparsity result in large performance gains due to reg-

ularity induced by structure. Among structured sparsities,

block sparsity is a generic structured sparsity pattern with

filter and channel sparsity being sub cases of block spar-

sity. In this work, we focus on block sparsity and generate

efficient block sparse convolutional neural networks using

our approach DBSR (Dynamic block sparse reparameteri-

zation). Our DBSR approach, when applied on image clas-

sification task over Imagenet dataset, decreases parameters

and FLOPS of ResneXt50 by a factor of 2x with only in-

crease of 0.48 in Top-1 error. And when extended to the task

of semantic segmentation, our approach reduces parame-

ters and FLOPS by 30% and 20% respectively with only

1% decrease in mIoU for ERFNet over Cityscapes dataset.

To ease developments in this line of work, we open sourced

our code on github (https://github.com/idharmateja/bsnn).

1. Introduction

The overall performance of a neural network can be char-

acterized by three factors mainly: memory (number of pa-

rameters/weights), compute (number of FLOPS) and accu-

racy. An optimal neural network is the one which achieves

maximum accuracy by using minimum amount of memory

and compute. But there is no definite way of arriving at

such a neural network and in practice there are trade offs

between memory, compute, and accuracy. Sparsification of

neural networks is an effective way to reduce memory and

compute requirements with minimal tradeoff in accuracy.

Pruning technique [11] is one of the most widely used

technique to generate sparse neural networks. In pruning,

unimportant connections from a pre-trained dense neural

network are removed and then the resultant sparse neural

network is fine-tuned to maintain accuracy. Early works by

Hassibi and Stork [6], and Le Cun et al. [11], have shown

the effectiveness of pruning and in recent times, Han et al.

[5], has used pruning technique to generate sparse convolu-

tional neural networks that have significant gains in memory

and compute. Apart from pruning technique, sparse neural

networks can also be generated either by training them di-

rectly from scratch [24, 15] or during the training process

[30, 16].

Sparse models have reduced number of FLOPS when

compared to dense models. Ideally, this reduction in

FLOPS should translate into equivalent reduction in run-

time of the model. But on parallel hardware like GPU,

sparse models have poor or no runtime performance gains

due to the irregularity in computation of sparse neural net-

works. The only way to realize the fruits of reduced num-

ber of FLOPS is to design specialized hardware like EIE,

SCNN [3, 22] for accelerating sparse neural networks. But

this requires a lot of work in terms of developing hardware,

middleware and software stack. On top of that, the utility

of such specialized hardware is limited to only sparse work-

loads. Whereas that is not the case with parallel hardware

like GPU, where varied type of computationally intensive

workloads can be accelerated. So the question one should

ask is, “Can we generate sparse neural networks whose

compute is amenable to parallel hardware like GPU?”

Computation in sparse operations is highly irregular in

nature. Parallel hardware can be efficiently used only when

the computation is regular in nature. So, one simple way

to bring regularity in computation of a sparse neural net-

work is by inducing structure in to sparsity. Several types of

structured sparsity patterns (see Figure 1) like filter sparsity

[17], channel sparsity [9] and block sparsity [29] were pro-

posed. In filter/channel sparsity, the unit is a row/column

which is either completely zero or non-zero. Whereas in

block sparsity, the unit is a block of parameters with dimen-

sions (bh, bw), where the parameters in a given block are

either all zero or non-zero. Both filter and channel sparsity

are special cases of block sparsity and it has been shown in

[27], that the computation of block sparse operations can be

efficiently processed on parallel hardware like GPU. This

(a) Block sparsity with block size (bh, bw),
where bh is block height and bw is block width.

(b) Filter sparsity. Sub case of block sparsity

with block size (1,columns)

(c) Channel sparsity.Subcase of block sparsity

with block size (rows,1)

Figure 1. Block sparsity and it’s subcases. For convolutional layer in a CNN, sparsity pattern in 4D parameter tensor W can be visualized

as a matrix M , where M[i,j] is zero if all entries in 2D kernel W[i,j,:,:] are zeros.

is because the algorithms for processing block sparse oper-

ations heavily piggyback on the algorithms used for dense

operations. Block sparsity is important also because, newer

processor architectures has components like systolic array

(TPU) and tensor core (V100 GPU), which process ma-

trices in blocks. Hence block sparsity could be better ex-

ploited by these processor architectures. In this work, due

to the generic nature of block sparsity pattern and it’s good

runtime performance benefits, we developed techniques to

generate efficient block sparse networks. Following are our

main contributions:

• Developed a simple, easy to use, and effective ap-

proach (DBSR) for generating structured sparse neu-

ral networks with most generic block sparsity pattern.

When compared to dense training, our DBSR approach

requires only one extra hyper parameter ζ, which con-

trols the amount of sparsity.

• As part of DBSR approach, a block scaling opera-

tion and a block scaled convolution layer are pro-

posed, which forms the basis for quickly exploring

new techniques for generating structured sparse neu-

ral networks.

• We show the effectiveness of DBSR approach on

important vision tasks like image classification and

semantic segmentation over varied networks(VGG,

Resnet20, Resnet50, ResneXt50, ERFNet) and

datasets (CIFAR, Imagenet, Cityscapes).

In section 2, we go through the related work. Our ap-

proach and performance aspects of block sparsity are dis-

cussed in section 3. In section 4, we got through our exper-

iments and finally in section 5, we conclude the paper and

provide future work.

2. Related Work

Sparsification of neural networks [5, 4, 13, 23] is used

as an effective technique to reduce number of parameters

and FLOPS. But despite being an effective technique, it

has been noted in [30, 20], that the sparse neural networks

have poor runtime performance when compared to that of

dense networks. In order to address the issue of runtime

performance, the focus has shifted to structured sparsifica-

tion [19, 12, 18, 33, 8].

Generation of structured sparse neural networks can be

classified into two paradigms: invitro and invivo. In invitro

paradigm, sparse model is generated from a pre-trained

dense model. Where as in invivo paradigm, sparse model

is learned during the training process. Common methodol-

ogy underlying approaches based on invitro paradigm has

two main steps. They are: 1) Prune structural units from

a pre-trained model based on some criterion 2) Fine tune

the pruned model to recover accuracy. Invitro approaches

differ only in the chosen pruning criterion, and sparsity pat-

tern. L1 norm of the weights of a unit structure is chosen as

the pruning criterion in [12, 18] and [29] for pruning filters

and blocks respectively. In [17], filters of a current layer are

pruned based on the channel weights of next layer. In [8],

channel pruning is performed based on LASSO regression

based channel selection method. In [33], filters are pruned

across layers in a joint fashion by back propagating scores

corresponding to the filters. In [19], filters are pruned us-

ing Taylor expansion based pruning criterion. Even though

invitro approaches are less computationally intensive than

a full training, there are many challenges like determining

pruning percentages for layers, choice of hyper parameters

for fine-tuning etc, which make it difficult to use invitro ap-

proaches in practice.

Our approach falls under invivo paradigm, where spar-

sity generation is tightly coupled with the training process.

In our approach, we associate a scaling parameter for each

structure, thus allowing our method to generate varied type

of structured sparsity patterns. We focus on block sparsity

pattern, which is the most generic structured sparsity pat-

tern with filter and channel sparsity patterns being sub cases

of block sparsity. Many of the previous approaches in in-

vivo paradigm, focus only on filter or channel sparsity. In

[14], filter sparsity is generated by regularizing scaling pa-

rameters already present in batch norm layers. To also sup-

port filter sparsity generation for layers with out batch norm,

[9] introduced additional scaling parameter for each output

activation channel. Both [9, 14] differ from our approach

as they scale output activation channels rather than weights

thus limiting to generation of only filter sparsity pattern. In

[30], weights of a chosen structure are regularized by us-

ing group LASSO regularization. This differs from our ap-

proach, as we regularize scaling factors associated with the

block of weights rather than weights themselves. The idea

of using group LASSO regularization was adapted for re-

current neural networks to generate structured sparse RNNs

with block sparsity pattern [21]. In [16], a binary variable

is associated with each structure, and the binary value is

stochastically learned during training. Our method is a non

stochastic approach, where scaling variable is a real valued

number that is trained along with weight parameters.

3. Approach

Our approach DBSR (Dynamic Block Sparse Reparame-

terization) generates block sparsity through the training pro-

cess in a dynamic fashion. The main idea in DBSR ap-

proach is to use trainable scaling parameters for the blocks

and generate block sparsity by pushing the values of scaling

parameters to zero using L1 regularization. DBSR approach

makes use of two building blocks, namely block scaling

operation and block scaled convolution layer. We first de-

scribe them in detail and later use them to formulate our

approach. We also discuss about the performance aspects

of block sparse networks.

Block Scaling Operation. Block scaling operation

denoted by ∗b, takes two input tensors S and W , and

produces a single output tensor WS . Input tensor S is a

2D tensor with dimensions (s1, s2) and W is at least a

2D tensor with dimensions (w1, w2, ..wn) . Blocking is

performed on outer two dimensions of W , with dimensions

(bh, bw), where bh = w1/s1 and bw = w2/s2. In forward

(resp backward) pass, each element in W (dWS) is scaled

by the scaling factor associated with it’s block to generate

WS(dW). In backward pass each entry in dS is calculated

by taking dot product of the associated blocks in W and

dWS . Algorithms 1 and 2, details the computation in

forward and backward pass of block scaling operation.

Algorithm 1 Forward pass for block scaling operation

WS = S ∗b W .

1: s1, s2 = S.shape
2: w1, w2.., wn = W.shape
3: bh = w1/s1 ⊲ Block height

4: bw = w2/s2 ⊲ Block width

5: for i = 0 : w1 − 1 do

6: for j = 0 : w2 − 1 do

7: WS [i, j] = S[i/bh, j/bw] ∗W [i, j]
8: end for

9: end for

10: return WS

Algorithm 2 Backward pass for block scaling operation

WS = S ∗b W .

1: for i = 0 : s1 − 1 do

2: for j = 0 : s2 − 1 do

3: hr = i ∗ bh : (i+ 1) ∗ bh− 1
4: wr = j ∗ bw : (j + 1) ∗ bw − 1
5: W bij = W [hr, wr]

6: dW bij
S = dWS [hr, wr]

7: dS[i, j] = Sum(W bij . ∗ dW bij
S)

8: dW [hr, wr] = S[i, j] ∗ dW bij
S

9: end for

10: end for

11: return dW, dS

Block scaled convolution layer. Convolution operation

in a convolutional layer consists of producing an output ac-

tivation tensor O, by applying convolution on an input ac-

tivation tensor I . O = conv(W, I), where W is a 4D pa-

rameter/filter tensor. Block scaled convolution layer is built

on top of regular convolution layer with additional param-

eters and computation. In block scaled convolution layer,

we store an additional 2D parameter tensor S along with

W . Computation in a block scaled convolution layer is pro-

cessed in two steps: 1) A block scaling operation is per-

formed on S and W to generate WS (WS = S ∗b W). 2)

Using WS , convolution operation is performed on input I
to produce output O (O = conv(WS , I)).

Formulation. Learning block sparsity in a neural network

is jointly modelled with primary learning task as an opti-

mization problem according to Equation 1, where (xi, yi)
is an instance in dataset, M is a model, and L is a loss

function. W and S correspond to weight and block scaling

parameters respectively. Rw(.) and RS(.) are regularizers

used for W and S respectively.

min
W,S

N∑

i=1

L (M(S,W, xi), yi) /N+Rw(W)+Rs(S) (1)

Given the choice of block size, all convolutional layers in

model M are converted into block scaled convolution lay-

ers. Before training, all parameters in S are given equal

importance by initializing them to a value of 1. As train-

ing progresses, the values of parameters in S change dy-

namically due to the error propagation from loss function

and regularizers. In order to generate sparsity, we push the

values of scaling parameters S to zero by using L1 regular-

ization (ζ ∗ |S|) for Rs(.). Hyper parameter ζ controls the

amount of sparsity in the model. Zero clipping is performed

on S (where S = max(0, S)) after every training iteration

to ensure that the values in S remains positive. Once the

model is trained, S can be discarded after updating blocks

in W using a block scaling operation (W = S ∗b W).
In our approach, there is a small memory and compute

overhead when compared to dense model training. Mem-

ory overhead is due to the need for storage of block scal-

ing parameters S along with weight parameters W . Com-

pute overhead comes from additional block scaling opera-

tion performed before convolution operation. These mem-

ory and compute overheads are limited only to training, and

are not present in inference.

Performance of block sparse CNNs. In popular deep

learning libraries like cuDNN [1], convolution operation is

performed by posing it as a matrix multiplication operation

(GEMM) (O = W ∗ Imat), where each row in W matrix

corresponds to a flattened 3D filter and Imat is a lowered

matrix of 3D input I . So in order to accelerate convolu-

tion operation, an efficient GEMM operation is required. In

case of block sparse convolution, we need an efficient block

sparse matrix matrix multiplication (BSMM) operation.

Efficient algorithms for BSMM operation can be adapted

from fast dense matrix multiplication (GEMM) algorithms

that are based on cache friendly blocking schemes. In

blocking scheme, C matrix is divided into blocks, and a

block in C is computed by iteratively loading correspond-

ing blocks in A and B into a cache and then multiplying

them. By keeping the blocks in the cache, memory accesses

become more efficient and thus increases runtime perfor-

mance. For BSMM, we can use the same blocking scheme

based algorithms used for GEMM, except that computation

corresponding to zero blocks are skipped. For example in

Figure 2, we can see that a block C11 is computed in only

two steps as there are only two nonzero blocks correspond-

ing to C11 in A. Using the blocking scheme, efficient block

sparse kernels for GPU are successfully developed in [27]

to deliver ideal speedups.

4. Experiments

We evaluate our approach on Imagenet [26] and

cityscapes [2] datasets for the task of image classification

and semantic segmentation respectively. For image classifi-

cation, we choose two state of the art networks Resnet50

[7], and ResneXt50 [31]. And for semantic segmenta-

tion, we choose realtime semantic segmentation network

ERFNet [25]. In all our experiments, we use the same ex-

perimental setting used for dense model training

4.1. Effectiveness of DBSR on classification net-
works

Resnet50/Imagenet. In Resnet50, we chose 32x32 as the

block size and trained multiple networks by varying ζ
which controls the sparsity. From Table 1, we can see

that with only an increase of 0.47 in Top-1 error, our

model Resnet50-32x32-A decreases both parameters and

FLOPS of Resnet50 by ∼30%. More compact models

can be generated by increasing the value of ζ. For in-

stance, Renset50-32x32-C decreases parameters by a fac-

tor of 2.5x, and FLOPS by a factor of 2x, with an increase

of 2.66 in Top-1 error when compared with Resnet50. In

[7], two small dense networks Resnet18 and Renset34 are

carefully designed to have less memory and computational

footprint. When compared with them, our models have

more efficiency. Our model Resnet50-32x32-D has 1.47

less Top-1 error, and takes 30% less parameters and 20%

less FLOPS when compared to Resnet18. Similarly when

compared with Resnet34, our model Resnet50-32x32-B has

0.34 less Top-1 error, and takes ∼38% less parameters and

FLOPS. From comparisons with small dense models such

as Resnet18 and Resnet34, we can observe that big sparse

models are more efficient in terms of both memory and

FLOPS. This observation was also made by [20] in case

of recurrent neural networks.

Model Top-1 Error #Params #FLOPS

Resnet18 30.24 11.67M 1.8B

Resnet34 26.70 21.77M 3.6B

Resnet-50 24.61 25.5M 3.85B

Resnet50-32x32-A 25.08 17.89M 2.74B

Resnet50-32x32-B 26.36 13.36M 2.19B

Resnet50-32x32-C 27.27 10.81M 1.85B

Resnet50-32x32-D 28.77 8.41M 1.42B

ResneXt-50 23.35 24.96M 4.23B

ResneX50-32x32-A 23.83 12.72M 2.32B

ResneXt50-32x32-B 24.69 9.39M 1.83B

ResneXt50-32x32-C 25.36 8.03M 1.65B

ResneXt50-32x32-D 26.20 6.60M 1.59B

Table 1. Block sparse models generated using DBSR approach for

the task of image classification on Imagenet ILSVRC2012 dataset.

Centre crop is used for calculating error.

Figure 2. Cache friendly blocking scheme for efficiently processing BSMM (block sparse matrix multiplication) operation.

ResneXt50/Imagenet. In ResneXt50, grouped convolu-

tions are introduced to improve accuracy and reduce mem-

ory and computational requirements. While applying

DBSR, we do not replace grouped convolutional layers with

block scaled convolution layers. The reason for that is a

grouped convolution layer has inherent block sparsity pat-

tern with blocks strictly lying on the main diagonal. From

Table 1, we can see that with only an increase of 0.48 in

Top1-error, our model ResneXt50-32x32-A decreases pa-

rameters and FLOPS of ResneXt50 by 49% and 45% re-

spectively. While model ResneXt50-32x32-C with higher

ζ values decreases parameters by a factor of ∼3.1x and

FLOPS by a factor of ∼2.6x with only 2.01 increase in Top-

1 error.

Comparison with SSS [9]. SSS(sparse structure selction)

is a recent work, where structured sparse neural networks

are generated from dense networks (Resnet50, ResneXt50)

through the training process. Similar to SSS, our DBSR

approach generates structured sparse networks with block

sparsity pattern through the training process. From Fig-

ure 3, we can see that when compared to models generated

using SSS, DBSR models are more efficient in memory,

compute, and error. For both Resnet50 and ResneXt50, we

can see from Figures 3(a) & 3(c), that DBSR approach be-

comes even more effective as the number of parameters in

the model decreases. This is especially useful for effectively

running low capacity models on resource limited embedded

GPUs like Jetson TK2.

Comparison with structured pruning methods. We

compare our DBSR approach with other structured pruning

based methods like filter pruning [12], channel pruning [8]

and ThinNet [17]. From Table 2, we can see that our model

Resnet50-32x32-A has 0.75-1.6 less Top-1 error when com-

pared to other pruning based approaches while still taking

less number of parameters/FLOPS. When compared with

pruned Resnet-101 from [32], our model has 0.36 less Top-1

error and has 26% less FLOPS for similar number of param-

eters. It should be noted that pruning approach is orthogonal

(a) Resnet50 parameters (b) Resnet50 FLOPS

(c) ResneXt50 parameters (d) ResneXt50 FLOPS

Figure 3. Comparison of block sparse models from DBSR ap-

proach with structured sparse models from (SSS)[9] for the task

of image classification on Imagenet dataset.

to DBSR approach and can be applied on DBSR models to

further decrease memory and computational requirements.

Varying block size. In this experiment, we would like

to see the effect of block size on model efficiency. We

train multiple block sparse models with block sizes 8,16

and 32. From Figure 4, we can see that the models with

smaller block sizes are more effective when the model ca-

pacity(number of parameters/FLOPS) is less. This might be

because when number of parameters are less, flexibility of-

fered by smaller block sizes helps in improving connectiv-

ity. But as the model capacity increases, the effectiveness

gap among block sizes decreases. From Figure 4, we can

see that the block size 16 has more efficiency than block size

8 for models with higher capacity. This might be because

blocking may have a regularization effect and is higher for

larger block sizes.

Model Top-1 Error Top-5 Error Params #FLOPs

ResNet-34-pruned [12] 27.44 - 19.9M 3.08B

Resnet-50-pruned [12] (From [9]) 27.12 8.95 - 3.07B

Resnet-50-pruned(2x) [8] 27.70 9.20 - 2.73B

Resnet50-pruned (ThinNet-30) [17] 27.96 9.33 16.94M 2.44B

Resnet-50-32x32-B (Ours) 26.36 8.23 13.36M 2.19B

Resnet-101-pruned [32] 25.44 - 17.30M 3.69B

Resnet50-32x32-A (Ours) 25.08 7.73 17.89M 2.74B
Table 2. Comparison of block sparse models from DBSR approach with models from other structured pruning methods for the task of

image classification over Imagenet dataset. We can see that DBSR models are more efficient in parameters and FLOPS when compared to

SSS models.

(a) Resnet-50 parameters (b) Resnet-50 FLOPS

(c) ResneXt-50 parameters (d) ResneXt-50 FLOPS

Figure 4. Effect of varying block size on model efficiency.

4.2. Comparison with block pruning

Our DBSR approach generates structured sparse neural

networks with block sparsity pattern. Block sparse neural

networks can also be generated by adapting pruning ap-

proach [7] to prune blocks instead of individual elements.

We compare our DBSR approach with block pruning ap-

proach on CIFAR datasets CIFAR10 & CIFAR100 [10] over

VGG and ResNet-20 [7] networks. Our VGG network for

CIFAR is adapted from VGG16 network [28], with fc6 and

fc7 replaced by a single fc layer of size 512, and batch nor-

malization layer is added to all convolution and fc layers.

In DBSR, we train the model for 240 epochs with base

learning rate set to 0.1. Where as for block pruning, we fine-

tune the pruned model for 24 epochs with base learning rate

set to 0.01. For both DBSR and block pruning, the learn-

ing rate is decreased by a factor of 10 at 3/6, 4/6 and 5/6 th

of the training/finetuning cycle. We use SGD with nestrov

momentum optimization with momentum and weight decay

values set to 0.9 and 1e-4 respectively

VGG/CIFAR. For VGG, we set block size to 32x32 and

generate block sparse models with different model capaci-

ties. From Figure 5, we can see that models generated from

our DBSR approach are more efficient that of block prun-

ing approach. Block pruning has an effect on error even

for small amount of pruning. Where as that is not the case

for DBSR models. For CIFAR10, upto 90% parameter re-

duction and 50% FLOPS reduction can be achieved while

maintaining accuracy comparable to that of dense. Sim-

ilarly for CIFAR100, upto 80% parameter reduction and

40% FLOPS reduction can be achieved with comparable ac-

curacies to that of dense.

(a) CIFAR10 parameters (b) CIFAR10 FLOPS

(c) CIFAR100 parameters (d) CIFAR100 FLOPS

Figure 5. Comparison of DBSR approach with block pruning ap-

proach on image classification task over CIFAR datasets for VGG

network with block size 32x32

Resnet20/CIFAR. In Resnet20, number of channels in

convolutional layers are less and range only from 16 to 64.

Hence we chose 8x8 as the block size for Resnet20. From

Figure 6, we can see that our approach performs better than

block pruning. Effectiveness of DBSR for Resnet20 is less

when compared with that of VGG. This might be due to

the residual connections in Resnet20, which make it more

robust to block pruning approach. With little loss in accu-

racy, upto 50% parameters and 30% FLOPS can be reduced

for CIFAR10, and upto 30% parameters and FLOPS can be

reduced for CIFAR100.

(a) CIFAR10 parameters (b) CIFAR10 FLOPS

(c) CIFAR100 parameters (d) CIFAR100 FLOPS

Figure 6. Comparison of DBSR approach with block pruning

approach on image classification task over CIFAR datasets for

Resnet20 network with block size 8x8

4.3. Semantic Segmentation

We extend our DBSR approach on to the task of semantic

segmentation and evaluate on cityscapes dataset [2] using

ERFNet [25] network. The choice of ERFNet is due to its

low capacity and ability to do real time semantic segmen-

tation, which is critical for many applications. ERFNet fol-

lows an encoder-decoder architecture with factorized con-

volutions. In our experiments, we choose 16x16 as the

block size and convert all convolution layers into block

scaled convolution layers. For training, we use the same

setup used for dense training. Table 3, shows our results on

ERFNet over cityscapes dataset. With only a loss of 1% in

mIoU, our model ERFNet-16x16-A decreases parameters

by 30% and FLOPS by 20% when compared with dense

ERFNet. More compact models can be found in Table 3 by

increasing the value of ζ.

5. Conclusion

In this work, we developed a simple and effective tech-

nique called DBSR (Dynamic Block Sparse Reparameter-

ization) for generating efficient block sparse neural net-

Model mIoU #Params #FLOPS

ERFNet 67.75 2.05M 29.83B

ERFNet-16x16-A 66.74 1.47M 23.82B

ERFNet-16x16-B 66.30 1.23M 21.92B

ERFNet-16x16-C 65.37 1.02M 19.47B

ERFNet-16x16-D 63.61 0.75M 15.87B
Table 3. Block sparse ERFNet models with 16x16 block size for

the task of semantic segmentation over cityscapes dataset.

works. In DBSR, block sparsity is generated by using a set

of trainable scaling parameters for the blocks and pushing

them to zero during training using L1 regularization. Un-

like structured pruning methods, where sparsity and struc-

ture are induced post training, our DBSR approach tightly

integrates structured sparsity generation with the training

process and thus produces more efficient models. We have

shown the effectiveness of our approach on standard vision

tasks like image classification and semantic segmentation,

and have obtained efficient models when compared to state

of the art structured sparsity approaches.

For future work, we would like to extend our DBSR ap-

proach to other vision tasks like object detection and in-

stance segmentation. And also to further increase model ef-

ficiencies, we would like to explore layer specific schemes.

References

[1] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,

B. Catanzaro, and E. Shelhamer. cudnn: Efficient primitives

for deep learning. arXiv preprint arXiv:1410.0759, 2014. 4

[2] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

cityscapes dataset for semantic urban scene understanding.

In Proc. of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016. 4, 7

[3] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,

and W. J. Dally. Eie: Efficient inference engine on com-

pressed deep neural network. SIGARCH Comput. Archit.

News, 44(3):243–254, June 2016. 1

[4] S. Han, H. Mao, and W. J. Dally. Deep compres-

sion: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015. 2

[5] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights

and connections for efficient neural network. In Advances

in neural information processing systems, pages 1135–1143,

2015. 1, 2

[6] B. Hassibi and D. G. Stork. Second order derivatives for net-

work pruning: Optimal brain surgeon. In Advances in neural

information processing systems, pages 164–171, 1993. 1

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016. 4, 6

[8] Y. He, X. Zhang, and J. Sun. Channel pruning for acceler-

ating very deep neural networks. In The IEEE International

Conference on Computer Vision (ICCV), Oct 2017. 2, 5, 6

[9] Z. Huang and N. Wang. Data-driven sparse structure selec-

tion for deep neural networks. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 304–

320, 2018. 1, 3, 5, 6

[10] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. Technical report, Citeseer, 2009.

6

[11] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain dam-

age. In Advances in neural information processing systems,

pages 598–605, 1990. 1

[12] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf.

Pruning filters for efficient convnets. ICLR, 2016. 2, 5, 6

[13] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky.

Sparse convolutional neural networks. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2015. 2

[14] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang.

Learning efficient convolutional networks through network

slimming. In The IEEE International Conference on Com-

puter Vision (ICCV), Oct 2017. 3

[15] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. Re-

thinking the value of network pruning. arXiv preprint

arXiv:1810.05270, 2018. 1

[16] C. Louizos, M. Welling, and D. P. Kingma. Learning sparse

neural networks through l 0 regularization. arXiv preprint

arXiv:1712.01312, 2017. 1, 3

[17] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning

method for deep neural network compression. In The IEEE

International Conference on Computer Vision (ICCV), Oct

2017. 1, 2, 5, 6

[18] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. J.

Dally. Exploring the regularity of sparse structure in convo-

lutional neural networks. arXiv preprint arXiv:1705.08922,

2017. 2

[19] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz.

Pruning convolutional neural networks for resource efficient

inference. ICLR, 2016. 2

[20] S. Narang, E. Elsen, G. Diamos, and S. Sengupta. Explor-

ing sparsity in recurrent neural networks. arXiv preprint

arXiv:1704.05119, 2017. 2, 4

[21] S. Narang, E. Undersander, and G. Diamos. Block-sparse

recurrent neural networks. arXiv preprint arXiv:1711.02782,

2017. 3

[22] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkate-

san, B. Khailany, J. S. Emer, S. W. Keckler, and W. J. Dally.

SCNN: an accelerator for compressed-sparse convolutional

neural networks. CoRR, abs/1708.04485, 2017. 1

[23] J. Park, S. Li, W. Wen, P. T. P. Tang, H. Li, Y. Chen, and

P. Dubey. Faster cnns with direct sparse convolutions and

guided pruning. arXiv preprint arXiv:1608.01409, 2016. 2

[24] A. Prabhu, G. Varma, and A. Namboodiri. Deep expander

networks: Efficient deep networks from graph theory. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 20–35, 2018. 1

[25] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo.

Erfnet: Efficient residual factorized convnet for real-time

semantic segmentation. IEEE Transactions on Intelligent

Transportation Systems, 19(1):263–272, 2018. 4, 7

[26] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer

Vision (IJCV), 115(3):211–252, 2015. 4

[27] A. R. Scott Gray and D. P. Kingma. Gpu kernels for block-

sparse weights. 2017. 1, 4

[28] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In International

Conference on Learning Representations, 2015. 6

[29] D. T. Vooturi, D. Mudigree, and S. Avancha. Hier-

archical block sparse neural networks. arXiv preprint

arXiv:1808.03420, 2018. 1, 2

[30] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning

structured sparsity in deep neural networks. In Advances

in neural information processing systems, pages 2074–2082,

2016. 1, 2, 3

[31] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated

residual transformations for deep neural networks. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 1492–1500, 2017. 4

[32] J. Ye, X. Lu, Z. Lin, and J. Z. Wang. Rethinking the

smaller-norm-less-informative assumption in channel prun-

ing of convolution layers. arXiv preprint arXiv:1802.00124,

2018. 5, 6

[33] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han,

M. Gao, C.-Y. Lin, and L. S. Davis. Nisp: Pruning net-

works using neuron importance score propagation. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2018. 2

