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Abstract

In this work, we propose a simple yet effective module

called DynAmic MEan (DAME) which allows a neural net-

work to dynamically learn to aggregate feature maps at the

pooling stage based on the input image, in order to gener-

ate global descriptors suitable for landmark retrieval. In

contrast to Generalized Mean (GeM), which uses a prede-

fined and static norm for pooling features into descriptors,

we use a dynamic p-norm, with the p value being generated

online by the model for each image. In addition, we uti-

lize the introduced dynamic pooling method, to propose a

novel feature whitening technique, Whitening Ensemble Bi-

narization (WEB), to discover complementary information

through multiple statistical projections. The memory cost

of the proposed global binary descriptor is 8× smaller than

the state-of-the-art, while exhibiting similar or improved

performance. To further demonstrate the power of DAME,

we use it with features extracted from a fixed, pretrained

classification network, and illustrate that our dynamic p-

norm is capable of learning to pool the classification fea-

tures into global descriptors suitable for retrieval. Finally,

by combining DAME with WEB, we achieve state-of-the-

art results on challenging large-scale landmark retrieval

benchmarks.

1. Introduction

Landmark retrieval is an important component in many

computer vision applications, since learning the similarity

between images in a global manner is of great importance

in filtering out a significant amount of unrelated data, and

capable of reducing the computational cost of brute force

search methods, especially in city-scale [1, 37, 42] or even

global-scale applications [45].

Traditionally, global descriptors were built by aggregat-

ing hand-craft features [4, 25] into a global representation

[21, 27, 44]. The use of local features, also allowed addi-

tional geometric verification by incorporating two view ge-

Figure 1. Comparison between performance and memory cost per

global descriptor. The baseline output descriptor is a 2048 dimen-

sional float vector from GeM [33] with whitening which costs 8
KB per descriptor. Our binary descriptor with DAME+WEB only

costs 1 KB which is 8× smaller while getting the comparable per-

formance. The red nodes represent the real-valued dimensionality

reduction results.

ometry estimation and methods such as RANSAC [10] into

the global description pipeline as a post-processing step. In

order to improve the quality of the global descriptors, Tolias

et al. introduced methods, SMK and ASMK, to solely focus

on aggregating high quality local features [41]. However,

using aggregated information from local patches might not

capture all the global information and can, therefore, lead

to sub-optimal results.

With the advent of deep learning, a significant amount of

works focused on training end-to-end global descriptors, by

utilizing large-scale datasets and metric learning techniques

[31, 2, 28, 8, 24]. Based on the database annotations that

are utilized for training the global descriptors, we can cat-

egorize the relevant methods into two main categories, the

landmark based ones [39, 2, 31] and the landmark free ones

[33, 32, 1, 46, 47].

For the landmark based methods, annotated landmark

names (e.g. Eiffel Tower) or box annotations [2, 28, 39] are



required for simultaneous landmark classification in con-

junction with retrieval. For example, DELF [28] focuses

on learning deep local features by a fully convolutional net-

work, and uses the attention mask for filtering out the un-

necessary parts. Teichmann et al. [39] adopts an additional

landmark detection network (e.g. Fast-RCNN [11]) for im-

proving regional proposal selection, and uses kernel aggre-

gation to generate global description. However, knowing

the landmark class annotation or the bounding box annota-

tion is cumbersome and requires significant human labour.

On the other hand, landmark free methods do not re-

quire class labels. Some methods focus on unsupervised

methods such as creating corresponding pairs of images us-

ing Structure-from-Motion, and discovering images that are

spatially connected as pairs, and exhibiting distinct view

perspectives [33, 32]. Gordo et al. [12, 13] utilizes the land-

mark pair annotation only instead of class label, and used

regional sampling technique to capture region candidates

for more information. NetVLAD [1] introduces a way to

aggregate local features with CNN features by learning the

feature cluster centers, and used image pairs from Google’s

Street view [42] to generate the view pairs used for training.

Nevertheless, the global descriptors still tend to exhibit

very high memory consumption for large scale image re-

trieval problems. Datasets in the orders of billions of float-

ing point descriptors lead to substantial memory require-

ments for city or global scale applications. Thus, several

works focused on binarizing the descriptors [50, 3, 48, 40]

in a local or global manner, in order to gain both memory

and computational improvements. Yang et al. [48] incor-

porate the hashing techniques into the training of binary

descriptors along with the classification. Song et al. [38]

utilized the idea of regional proposal network into binary

descriptors to improve the accuracy.

Recently, an effective method for aggregating features

into global descriptors called Generalized Mean (GeM) was

proposed by Radenović et al. [33]. By using the ℓp-norm

over the spatial domain of the feature maps as a pooling

process, the authors illustrate that the aggregation of im-

portant parts of the landmark feature maps could be greatly

enhanced without requiring any additional labels or anno-

tations. In addition, they illustrate that increasing the value

p of the ℓp-norm leads to a smaller region of the image be-

ing pooled, while lower p values tend to aggregate across a

larger area. GeM adopts a manually assigned global and

constant value of p for the ℓp-norm in the pooling stage

across all images.

However, using a constant norm power for pooling fea-

tures across every image in the dataset might be too restric-

tive given the complex nuisances of the real-world data. For

example, depending on the conditions, the target landmark

could either occupy a significant area of the image or be

barely visible between a highly noisy background. In addi-

tion, GeM is based on high dimensional floating point de-

scriptors which can be problematic for large-scale system.

To address these issues, in this paper we introduce a

novel module called DynAmic MEan (DAME) with a learn-

able layer for determining the power value p of the ℓp-norm

used in the pooling operation in contrast to the fixed power

operation used in GeM.

Our contributions are: (a) We propose a learnable ℓp(x)-

norm module (DAME) for pooling feature maps into global

descriptors, that is dynamically computed for each input im-

age x individually (b) We use our learnable DAME module,

to propose a novel whitening method called Whitening En-

semble Binarization (WEB) for discovering multiple projec-

tion possibilities along with descriptor binarization (c) By

combining DAME with WEB, we construct a binary global

descriptor which is 8× smaller than the state-of-the-art and

is able to outperform real-valued descriptors (d) We observe

that features trained for a classification task, can be directly

used in a retrieval problem by optimizing channel-wise dy-

namic ℓp(x)-norm pooling only, without the need to re-learn

direct feature mapping by fine-tuning.

2. Method

In this section, we firstly introduce the motivation and

our goal while our dynamic mean based pooling (DAME)

and subsequently are addressed afterward. We discuss a

method of utilising the learned ℓp-norm to create a novel

whitening method for global binary descriptors (WEB).

2.1. Motivation and problem definition

For large-scale retrieval system, people usually com-

pare binarization/hashing methods with compression meth-

ods such as Product Quantization (PQ) [20, 23] in terms of

compactness. Maintaining PQ-based methods usually re-

quires to construct multiple tables for symmetric or asym-

metric distance computation. Sometimes even more com-

plex lookup pipeline [18] or GPU support [22] are required

for speedup the searching. However, in practical landmark

retrieval system, we usually have GPS-prior and the candi-

date images can be constrained within a certain range (e.g.

100 ∼ 500 meters). Such setting is especially useful for

long-term localization [36, 35]. The bottleneck of storage

and query time for a city-scale system can be easily resolved

by a compact binary descriptor with fast bitwise operations

(e.g. XOR, bitcount). Therefore, we focus on designing a

global binary descriptor instead of building complex PQ-

based pipeline at different geo-locations. Our method is

suitable for efficient storage, query, and simplifies the whole

system flow.

2.2. Generalized mean

For an input image I ∈ R
H×W a global descriptor is

generated by pooling features extracted from a fully convo-
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Figure 2. Overview of (a) the proposed DAME module and the training process, and (b) the whitening comparison between the Lw

whitening with GeM using a single projection P and our whitening ensemble with DAME and multiple projections P (rk).

lutional network, into a vector f(I) ∈ R
D, which is sub-

sequently compared against a dataset using Euclidean dis-

tance and nearest neighbour matching.

In order to enhance the discriminative ability of the

global descriptor, Radenović et al. proposed Generalized

Mean (GeM) [33] pooling, which focuses on suppressing

the features that are irrelevant to landmark retrieval and en-

couraging the aggregation of the relevant ones. By denoting

{xc} as the feature maps (H ×W × C) inside the network

with xc as the (H ×W ) matrix corresponding to channel c,

GeM can be formulated as

�fc =

(

1

HW

∑

i∈HW

x
p
c,i

)
1
p

. (1)

In [33], the value of p can either be assigned manually or

learned as a single global parameter during the optimisation

of the global descriptors. After training on the large-scale

SfM-120k dataset, Radenović et al. obtained the learned

value which is p∗ = 3 (or 2.90) and achieved state-of-

the-art results by a very simple form of ℓp-norm along the

channel dimensions. However, since both the manually as-

signed p or learned p are fixed for each image, it follows that

GeM only focuses on a single globally consistent p instead

of adaptively changing based on the individual characteris-

tics of the input image.

2.3. Dynamic mean

Considering that higher p value focuses on a very spe-

cific part of the image as it was illustrated in [33], while the

object of interest size is not fixed across all the images in

the database, we hypothesize that using different ℓp-norm

for different input images is a more reasonable assumption

for image retrieval. It is similar to learning the saliency re-

gion in many different problems. [49, 15, 7, 6, 43, 16, 17, 9]

Thus, we introduce a new method, DynAmic MEan

(DAME), to dynamically adapt the size of the focus region

of the feature maps, by allowing p to be a function of the

input feature maps {xc}. We formulate DAME as

�fc ({xc}) =

(

1

HW

∑

i∈HW

x
p({xc})
c,i

)
1

p({xc})

, (2)

p ({xc}) = max [(p0 + δ · △p) , 1] (3)

with p0 = 1 and a learnable network G (.) which con-

tains one fully connected layer with one output and a Sig-

moid activation function to determine the residual change

△p = G (var ({xc})). Output p is one dyanmic value

for the whole feature map. The overview of our DAME

training pipeline is shown in Figure 2 (a). The variances

of the feature maps are computed on the spatial dimensions

(H ×W ), and the inputs of the G network are the variance

values vector with dim (1 × C). The δ is controlled by the

relation between the globally learned p∗ = 3 in GeM and

the normal state p = 1. It defines the possible range of val-

ues p which is defined as δ = 2 · (p∗ − 1) which makes sure

the final dynamic value p ∈ [3− 2, 3 + 2].

2.4. Training loss

Similar to the previous work, we use contrastive loss for

the positive and the negative pairs along with a siamese net-

work architecture [33]:

Jcon =

{

1
2 ‖f (a)− f (i)‖

2
if y = 1

1
2 (max [0, τ − ‖f (a)− f (j)‖])

2
if y = 0

(4)



with a as the anchor image index and y as the paired ground

truth label for (a, i). y = 1 represents the positive pair while

(a, j) with y = 0 is the negative pair. f is the ℓ2-normalized

global descriptor.

Since larger p corresponds to a more local region [33],

we hypothesise that small p indicates that most of the fea-

tures across different positions of the feature maps, are rel-

evant for landmark retrieval, and thus there is no need to

suppress the noise. This indicates that such an input image

is more likely to represent a landmark. On the other hand,

the samples j in negative pair might exhibit higher p val-

ues, since the network cannot locate the landmark, and thus

needs to focus on a more local region to find discriminative

parts. However, the landmark being very clear and easily

distinguishable represents and ideal scenario, which is not

usually seen in the training data. Thus, by optimizing the ra-

tio of p values, we allow some positive pair samples to have

high p due to challenging factors such as noisy background.

Based on this intuition, we develop a new loss called p

ratio loss (Jpr) for encouraging the above behavior.

Jpr =
E [p ({xc})]a,i with y=1

E [p ({xc})]j with y=0

(5)

E [.] represents the mean value over a batch. Considering

we only care about landmark retrieval, the positive pair

samples always belong to the same hyper-class which is the

building while the sample j in negative pair may or may not

be building. The ratio loss encourages sample j in negative

images to have relatively larger p than the positive pair sam-

ples, and it prevents us from defining the absolute value of

the p in the loss. More details about this, will be addressed

in our analysis 3.4 and visualization 3.5 sections.

Our final loss is computed by combining the standard

Siamese contrastive loss (Equation 4) and our p-ratio loss

(Equation 5) with a hyper-parameter γ as

J = Jcon + γJpr (6)

for optimizing the global descriptor for image retrieval.

2.5. Whitening ensemble binarization

Considering the significant improvement that can be ob-

tained by whitening the descriptors in the post-processing

stage [33], we examine how the whitening method [5, 26]

can be improved by generating projection variants by utiliz-

ing dynamic p. The comparison is shown in Figure 2 (b).

The whitening projection P is defined as P =
[

C
− 1

2

S eig
(

C
− 1

2

S CDC
− 1

2

S

)]T

and the whitened descriptor

as fw (i) = P (f (i)− μ) with μ = 1
N

∑

i f (i). Note

that CS is the intraclass covariance matrix of the positive

pair while CD is the interclass covariance matrix. The

eig term is responsible for the feature space rotation, and

wht. extra KB Oxford5k Paris6k

Real-valued descriptor (2048 dim)

GeM
-

- 8

81.18 87.82

Lw 88.17 92.6

DAME

- 80.79 87.72

Lw 88.24 93.00

Lw,r 87.88 93.42

Dimension reduction

GeM
Lw

PCA
2 82.03 86.79

Lw 1 77.34 83.98

Binary descriptor

SSDH - SS 0.06 63.79 83.87

gDRH -
- 0.13 74.8 77.3

- 0.5 78.3 81.5

DRH all - QE 0.5 85.1 84.9

DAME
Lb2 - 0.5 86.21 91.79

Lb4 - 1 87.05 92.27

Table 1. Real-valued and binary descriptors comparison. The bit

numbers are transformed into kilobytes for clear comparison. For

example, (2048 · 4) bits = 1 KB. Red: The new state-of-the-art

results for the binary ones. Note that our method doesn’t use any

extra search such as spatial search (SS) or query expansion (QE).

dimension reduction can be achieved by choosing the D

largest eigenvalues for the projection, with the descriptors

being subsequently ℓ2-normalized. Radenović et al. refer to

this projection as Lw or supervised whitening. The score

(inverse of distance) between images with indices a and

i is computed with function s (a, i) = fw (a)
T
fw (i) =

[Pf (a)]
T
[Pf (i)], with μ being ignored for brevity.

Since our method is optimized based on the p-ratio loss,

we can exploit this for building a novel whitening method

based on this. For each positive pair of images (a, i) we

compute their cumulative p value, pai = p (a) + p (i). Sub-

sequently, we sort all the available pairs according to their

pai values, and we remove pairs with large pai which are

considered to be more noisy than the ones with smaller pai.

Given a percentage ratio r , a new intra-class CS,r covari-

ance matrix can be computed, which is built using only

items at the top r % of the ranked pairs, according to their

pai. Using CS,r, we can generate a new projection matrix,

P (r) =
[

C
− 1

2

S,r eig
(

C
− 1

2

S,r CDC
− 1

2

S,r

)]T

.

By using different ratio factors rk, several whitening

projection matrices can be generated, and several descrip-

tors from the different P (rk) projections can be computed.

However, concatenating several high-dimensional floating

point descriptors, would result in impractical memory and

computational requirements. Inspired by ASV [51] and HE

[19], we binarize the descriptors before concatenation, us-

ing a median based binarization function B (.). That is, ev-

ery element which is smaller than median value becomes

1, and −1 otherwise. Given n ratios rk with k ∈ [1, n]



Method white. K

ROxf5k(M) ROxf5k(M)+1M RPar6k(M) RPar6k(M)+1M ROxf5k(H) ROxf5k(H)+1M RPar6k(H) RPar6k(H)+1M

mAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10

Backbone: VGG16 (real-valued dim: 512)

NetVLAD -

2

37.1 56.5 20.7 37.1 59.8 94.0 31.8 85.7 13.8 23.3 6.0 8.4 35.0 73.7 11.5 46.6

MAC V 58.4 81.1 39.7 68.6 66.8 97.7 42.4 92.6 30.5 48.0 17.9 27.9 42.0 82.9 17.7 63.7

R-MAC - 42.5 62.8 21.7 40.3 66.2 95.4 39.9 88.9 12.0 26.1 1.7 5.8 40.9 77.1 14.8 54.0

GeM Lw 61.9 82.7 42.6 68.1 69.3 97.9 45.4 94.1 33.7 51.0 19.0 29.4 44.3 83.7 19.1 64.9

Backbone: Resnet101 (real-valued dim: 2048)

MAC -

8

41.7 65.0 24.2 43.7 66.2 96.4 40.8 93.0 18.0 32.9 5.7 14.4 44.1 86.3 18.2 67.7

R-MAC - 60.09 78.1 39.3 62.1 78.9 96.9 54.8 93.9 32.4 50.0 12.5 24.9 59.4 86.1 28.0 70.0

GeM Lw 64.7 84.7 45.2 71.7 77.2 98.1 52.3 95.3 38.5 53.0 19.9 34.9 56.3 89.1 24.7 73.3

DAME

-

8

55.95 76.24 33.75 58.00 69.89 96.43 40.61 92.29 28.27 39.29 12.01 17.86 44.39 81.86 14.42 53.43

Lw 65.32 85.00 44.74 70.14 77.13 98.43 50.52 94.57 40.35 56.29 22.82 35.57 56.04 88.00 21.95 69.00

L90
w 64.94 84.71 44.37 70.00 77.61 98.57 51.44 94.57 40.24 56.00 22.42 35.71 56.76 88.86 22.83 71.00

L80
w 64.80 84.29 44.26 70.00 77.61 98.57 51.42 94.57 40.19 56.00 22.34 35.57 56.70 88.86 22.83 71.00

L50
w 64.74 84.43 43.37 68.81 77.38 98.57 51.16 94.71 39.98 56.57 21.13 33.71 56.08 88.57 22.56 70.43

Backbone: Resnet101 (binary descriptor)

DAME

Lb2 0.5 61.57 85.00 42.54 68.38 74.64 98.57 50.74 94.71 36.55 53.86 21.83 35.00 52.74 89.29 21.94 69.71

Lb4 1 62.93 85.86 44.33 69.43 75.62 98.71 51.53 95.00 38.17 55.29 22.58 36.14 54.30 89.57 22.84 71.71

Table 2. Overall comparison of the landmark free methods. Red: The new state-of-the-art results for the landmark free ones. Landmark

free methods do not use human annotation at all while landmark based methods (DELF) [28] need annotated landmark class dataset [2] for

the training. Our methods are the most compact one (0.5 ∼ 1 KB) and outperform most of the landmark free real-valued methods under

the mP@10 metric.

we define the final concatenated binary descriptor fb =
cat [B (fw,r1) , B (fw,r2) , . . . , B (fw,rn)]. The similarity

between two binary descriptors is computed using the Ham-

ming inner product [41]. We call the whole procedure as

Whitening Ensemble Binarization (WEB).

3. Experimental Evaluation

In this section, we describe the parameters and proto-

cols used in our experiments, and we analyze the proposed

DAME & WEB modules under different scenarios.

3.1. Setting and details

For training and validation, we follow the same setting

as Radenović et al. [33]. Training is done on SfM-120K

dataset which contains 7.4 million images collected from

Flickr with popular places around the world. Exponen-

tial decay schedule with 30 epochs and Adam optimizer

(lr = 5 × 10−7) are used. The batchsize is 5 and 5 neg-

ative samples are chosen by the online hard negative selec-

tion. The training of DAME is based on a two stage process.

First, we train the backbone model (e.g. Resnet101 [14]) by

GeM pipeline for finding the optimal static p∗. Secondly,

we fix the weights on the backbone and replace the GeM

module with DAME module with δ = 2 (p∗ − 1), and train

the DAME individually with γ = 1. The margin τ is set to

0.85. We also examined the possibility of training the back-

bone network along with the DAME module. We observed

that simultaneously learning the features and the dynamic

norm operation, resulted in unstable learning in both parts.

However, since our objective is to explore the effect of the

dynamic pooling on retrieval, investigation of end-to-end

training is out of the scope of this work. The resolution

during training is 362 × 362, and the testing resolution is

1024×1024. Note that using an unbounded activation such

as ReLU in G (.) is an intuitive choice for learning the dy-

namic p (Section 2.3). However, we found that using the

unbounded ReLU or setting δ too high led to unstable train-

ing with the loss going into nan. Therefore using a Sigmoid

function with a proper δ is a more suitable choice.

The results are tested on Oxford5k [29] and Paris6k

datasets [30] which consist of 55 query images. Note that

post whitening on SfM-120K dataset and multi-scale re-

sults fusion by GeM are used by default unless otherwise

indicated. Mean-Average-Precision (mAP) is adopted as

our evaluation metric, similarly to previous works. Both

datasets have recently been revisited and corrected since

the original annotation was not consistently of good qual-

ity. This revisit led to the ROxford5k and RParis6k datasets,

which are characterized by expansion of the number of

queries to 70, new evaluation protocols [31] and removal

of false positives and false negatives. In addition, three dif-

ferent types of positive samples are included in the dataset

(Easy, Unclear, Hard), while the images with the Junk label

[29] are ignored. We choose the Medium and Hard cases

in our evaluation similarly to [39].

With respect to the whitening configurations, we define

L90
w as the whitening done using r = 0.9, and real de-



(a) Mean p comparison (b) Oxford5k dataset (c) Paris6k dataset
Figure 3. Dynamic p analysis with γ = 0. Training is fully based on contrastive loss for the results presented in this figure.

scriptors i.e. without binarization. For the Whitening En-

semble Binarization (Section 2.5), we examining two pos-

sible configurations, Lb2 with {rk} = {1, 0.9} and Lb4 with

{rk} = {1, 0.9, 0.8, 0.5}.

3.2. Competing methods

Here we briefly introduce the baselines used for the ex-

periments below. Generalized Mean (GeM)[33] is the

most related method, and it uses a single p with simple ℓp-

norm over channels as pooling to suppress the false spa-

tial regions. MAC [32] constructs the global descriptor

by global max-pooling. R-MAC [12] uniformly samples

the windows for the regional max-pooling. NetVLAD [1]

introduced a trainable aggregation module by learning the

feature centers. annotations for fine-tuning. SSDH [48]

optimizes a classification and retrieval binary code jointly

to unify classification and retrieval problem together. DRH

[38] is based on an end-to-end deep neural network which

is jointly optimized for object proposal, feature extraction,

and hashing.

3.3. Landmark retrieval comparison

In Table 1, we can observe that the real-valued DAME

slightly improves GeM when using the standard Oxf5k

and Par5k datasets. However, the significant result is that

DAME with WEB (Lb2, Lb4) binary descriptor outperforms

others binary descriptors by a huge margin. The state-of-

the-art DRH pipline (DRH all) includes three steps, Global

Region Hashing (gDRH) search, and Local Region Hashing

(lDRH) for the re-ranking. Finally, Query Expansions (QE)

are done based on regional hashing. SSDH also performs

additional spatial search for the verification. Note that we

do not apply any additional search techniques such as query

expansion, re-ranking, or any geometric verfication. Not

only our method is 8× smaller than the real-valued GeM,

our performance is comparable to the strongest real-valued

one and outperforms the best binary ones.

It is interesting to point out that while our training pro-

cess does not include any binarization, our binary descrip-

tor still outperforms other state-of-the-art methods, which

Figure 4. Analysis over number of variants inside the whitening

ensemble. The performance increases dramatically when the vari-

ants number increases.

include a binarization step during training. We attribute this

property to thresholding the descriptors after the whitening

process, leading to preservation of the improvement from

the whitening stage.

It is clear that using additional annotations will bene-

fit the retrieval problem. However, it is surprising to see

that our DAME with WEB binary descriptors outperform

most of the landmark free real-valued ones under the stan-

dard mP@10 evaluation metric. This indicates that our

method is more robust than the others when considering the

top ranked retrieved results, something that is important for

high-accuracy scenarios. We can also observe that the dif-

ferent ratio r of whitening data could be beneficial, such in

the hard case in RParis6k(H). The mP@10 improves from

88.00 to 88.86 when r = 0.9. Our methods achieve best

results in eight cases, despite the minimal memory require-

ments.

3.4. Analysis

To verify our assumption on the relation between the im-

age samples and p (Section 2.4), we perform a quantitative

analysis. Our goal is to observe the distributions of dynamic

p values over the dataset and query images, and to analyse

the differences between them and a global value of p = 3
which GeM uses. In addition, we examine the effect of im-

age size on the results, by downscaling the images several



times from scale 1 (1024 × 1024) to the minimum scale of

0.3 times the original.

In Figure 3(a), the mean values of p across all the dataset

images are shown. The red line corresponds to GeM which

uses a static p across all images. The blue lines represent the

database and query images from Oxford5k, and the green

lines from Paris6k. An interesting observation is that p is

smaller in the query set than the database. This can be ex-

plained by the fact that in both Oxford5k and Paris6k, the

query image is always bounded by a manual bounding box

which correctly eliminates the background noise.

In Figure 3 (b)(c), we plot the distribution of p values for

different scales. The boxes extend from the lower to upper

quartile values of the samples, and the orange lines are the

median values. Paris6k clearly has closer distribution be-

tween the query and the retrieved database, and it also has

higher mAP than Oxford5k in our experiments. This sug-

gests that there is a correlation between high p values and

high image noise. On the other hand, the wide uncertainty

ranges in both query and database images also suggest that

only a relative relation can be observed. Note that for all

experiments in Figure 3, we use contrastive loss only (i.e.

γ = 0) in order to show the nature of our DAME module.

Whitening ensemble analysis. After choosing different

variant projections by filtering out a subset positive pairs as

indicated in Section 2.5, descriptors are combined with me-

dian binarization and concatenation. In Figure 4, we can

observe that the performance improves dramatically when

the number of variants inside the ensemble increases. Con-

sidering that the required memory grows linearly with the

total number of ratios, we examine configurations up to 5

projections in the ensemble, to represent a reasonable com-

promise between memory requirements and performance.

Filtering choices. To verify that higher p values are

more likely to be associated with noisier samples, we per-

form a simple experiment by building the whitening projec-

tion matrix using two strategies. In the first case, the subset

of images with high p, defined by the ratio r, are filtered

before the computation of the whitening projection P (r)
(Section 2.5), while in the second case, the subset of images

with low p are filtered. Observing the results in Figure 5, it

is clear that building the whitening projection matrix using

the subset of images with low p values (filtering high p val-

ues), always outperforms a whitening method built with im-

ages with high p. Note that for this experiment, we plot the

results using dimensions corresponding to the largest 128
eigenvalues, since they are able to capture the majority of

the information available.

3.5. Visualization

In Figure 6, we crop three parts of Big Ben to exam-

ine the difference between the DAME and GeM. For the

first 2 rows that include discriminative parts such as the roof

Backbone Method white. Oxford5k Paris6k

ImageNet

Res50

(fixed)

ℓ3-norm - 47.15 67.33

DAME

- 58.04 79.02

Lw 75.02 90.01

Lb4 71.07 87.06
Table 3. Fixed ImageNet classification backbone network without

fine-tuning it, and train DAME module with channelwise dynamic

p only for mAP comparison.

Figure 5. Building the whitening projection matrix using subsets

of images with high and low p values.

Figure 6. Visualisation of different parts of Big Ben, together with

the heatmaps extracted from the summation over channels of the

feature maps after DAME (column 2) or GeM (column 3).

and the clock, our method generates relative low p such as

p (x) = 1.76 and p (x) = 1.51. Contrary, since GeM uses

a static value (p = 3) it misses some areas which contain

useful information. In the last row of Figure 6, the patch

contains more vague information and leads our method to

generate higher p (2.34), to force the network to focus on

more specific local areas.

In Figure 7, sample images from Oxford5k and Paris6k



Figure 7. Visualization of the input image and the corresponding dynamic p (DynP ).

are shown with their corresponding dynamic p generated by

DAME. For the database images, we can observe that large

p indicates either a negative sample, or an image where the

landmark occupies a small area inside a noisy background.

The query images in both datasets were manually cropped,

thus a cleaner view of the landmark can be usually ob-

served, leading to generally lower p values. However, we

also discover some cases without noisy background which

exhibit high p values (cases in Figure 7 annotated by red la-

bels). This might be due to the fact that the images are not

distinguishable enough due to repetitive structures (i.e. win-

dows and columns) or the angle of view is oblique. Thus,

the most discriminative features can only be found by fo-

cusing on sufficiently small regions.

3.6. Feature generalization

In order to show the effectiveness of our DAME mod-

ule, we perform an experiment of optimizing a channelwise

version of DAME which we build by replacing the output

dimension of the fully connected layer from 1 to C and gen-

erating different �pc values for each channel c.

No learnable mapping. Normally, to fine-tune a network

for a new task, additional fully connected or convolutional

layers are added on networks pre-trained on large scale clas-

sification datasets (e.g. ImageNet [34]),

To illustrate the power of DAME, we fix the classifica-

tion backbone networks as feature extractors, and we only

train the power operation with p (x) from network G (.).
Using the fixed extracted features x, we apply our dynamic

ℓp(x)-norm as

�fc =
1

HW
(|xc,1|

p
+ |xc,2|

p
+ ...+ |xc,HW |

p
)

1
p

Note that the global descriptor is still based on the static

classification based features x without any complex re-

mapping of the features to a new task.

We show the results in Table 3 for networks pre-trained

on the popular object classification dataset, ImageNet [34].

We can observe that there is a significant improvement over

using a ℓ3-norm that aggregates the original classification

features. To the best of our knowledge, it is the first time to

observe that a high retrieval performance can be achieved

with fixed pre-trained features from a classification net-

work, by solely using a learnable dynamic ℓp(x)-norm in

the pooling stage.

4. Conclusion

In this paper, we introduce a new way to dynamically

determine ℓp(x)-norm in the pooling stage based on the

input image. Based on a DynAmic MEan based pooling

(DAME), a whitening ensemble method can be built by fil-

tering out different ratios of the available data according to

their p values. Our method is able to achieve comparable or

outperform the state-of-the-art real-valued global descrip-

tors while costing 8× less memory. Finally, we show that

by using DAME, feature generalization can be achieved be-

tween classification and retrieval tasks by learning how to

aggregate fixed feature maps.
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[33] F. Radenović, G. Tolias, and O. Chum. Fine-tuning CNN

Image Retrieval with No Human Annotation. PAMI, 2018.

1, 2.2, 2.2, 2.3, 2.4, 2.4, 2.5, 3.1, 3.2

[34] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein,

A. C. Berg, and F. Li. Imagenet large scale visual recognition

challenge. IJCV, 2015. 3.6

[35] P.-E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk. From

coarse to fine: Robust hierarchical localization at large scale.

2019. 2.1

[36] T. Sattler, W. Maddern, C. Toft, A. Torii, L. Hammarstrand,

E. Stenborg, D. Safari, M. Okutomi, M. Pollefeys, J. Sivic,

et al. Benchmarking 6dof outdoor visual localization in

changing conditions. In CVPR, 2018. 2.1

[37] T. Sattler, A. Torii, J. Sivic, M. Pollefeys, H. Taira, M. Oku-

tomi, and T. Pajdla. Are large-scale 3d models really neces-

sary for accurate visual localization? In CVPR, 2017. 1

[38] J. Song, T. He, L. Gao, X. Xu, and H. T. Shen. Deep Region

Hashing for Generic Instance Search from Images. In AAAI,

2018. 1, 3.2

[39] M. Teichmann and J. Sim. Detect-to-Retrieve: Efficient Re-

gional Aggregation for Image Search. In CVPR, 2019. 1,

3.1

[40] Y. Tian, B. Fan, and F. Wu. L2-net: Deep learning of dis-

criminative patch descriptor in euclidean space. In CVPR,

2017. 1



[41] G. Tolias, Y. Avrithis, H. Jégou, G. Tolias, Y. Avrithis,

H. Jégou, G. Tolias, and Y. Avrithis. Image search with selec-

tive match kernels : aggregation across single and multiple

images. IJCV, 2015. 1, 2.5

[42] A. Torii, R. Arandjelovic, J. Sivic, M. Okutomi, and T. Pa-

jdla. 24/7 place recognition by view synthesis. In CVPR,

2015. 1, 1

[43] C.-C. Tsai, W. Li, K.-J. Hsu, X. Qian, and Y.-Y. Lin. Im-

age co-saliency detection and co-segmentation via progres-

sive joint optimization. TIP, 2018. 2.3

[44] T. Uricchio, M. Bertini, L. Seidenari, and A. D. Bimbo.

Fisher encoded convolutional bag-of-windows for efficient

image retrieval and social image tagging. In ICCV, 2015. 1

[45] T. Weyand, I. Kostrikov, and J. Philbin. Planet - photo geolo-

cation with convolutional neural networks. In ECCV, 2016.

1

[46] J. Xu, C. Shi, C. Qi, C. Wang, and B. Xiao. Unsupervised

Part-based Weighting Aggregation of Deep Convolutional

Features for Image Retrieval. In AAAI, 2018. 1

[47] J. Xu, C. Wang, C. Qi, C. Shi, and B. Xiao. Unsuper-

vised Semantic-based Aggregation of Deep Convolutional

Features. TIP, 2019. 1

[48] H.-f. Yang, K. Lin, and C.-s. Chen. Supervised Learning of

Semantics-Preserving Hash via Deep Convolutional Neural

Networks. PAMI, 2018. 1, 3.2

[49] T.-Y. Yang, Y.-T. Chen, Y.-Y. Lin, and Y.-Y. Chuang. Fsa-net:

Learning fine-grained structure aggregation for head pose es-

timation from a single image. In CVPR, 2019. 2.3

[50] T.-Y. Yang, J.-H. Hsu, Y.-Y. Lin, and Y.-Y. Chuang. Deepcd:

Learning deep complementary descriptors for patch repre-

sentations. In ICCV, 2017. 1

[51] T.-Y. Yang, Y.-Y. Lin, and Y.-Y. Chuang. Accumulated sta-

bility voting: A robust descriptor from descriptors of multi-

ple scales. In CVPR, 2016. 2.5


