
Differential-Evolution-Based Generative Adversarial Networks

for Edge Detection

Wenbo Zheng 1,3, Chao Gou 2, Lan Yan 3,4, Fei-Yue Wang 3,4

1 School of Software Engineering, Xi’an Jiaotong University
2 School of Intelligent Systems Engineering, Sun Yat-sen University

3 The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation,

Chinese Academy of Sciences
4 School of Artificial Intelligence, University of Chinese Academy of Sciences

zwb2017@stu.xjtu.edu.cn;gouchao@mail.sysu.edu.cn;yanlan2017@ia.ac.cn;feiyue.wang@ia.ac.cn

Abstract

Since objects in natural scenarios possess various scales

and aspect ratios, learning the rich edge information is very

critical for vision-based tasks. Conventional generative ad-

versarial networks (GANs) based methods for edge detec-

tion don’t perform so well due to model collapse. In order

to capture rich edge information and avoid model collapse

as much as possible, we consider the learning of GANs as

an evolutionary optimization and propose a novel method

termed as differential-evolution-based generative adversar-

ial networks (DEGAN) for richer edge detection. In partic-

ular, built upon GANs structure, we introduce an improved

differential evolutionary algorithm to refine the input of

generator, with fitness function evaluated by the discrim-

inator. Experimental results on the well-known BSDS500

and NYUD benchmarks indicate our proposed DEGAN can

achieve state-of-the-art performance while retaining a fast

speed and validate its simplicity, effectiveness, and effi-

ciency. The high quality of our results on edge detection

with proposed DEGAN may promise to make other vision-

based tasks work better.

1. Introduction

Edge detection, which aims to extract visually salient

edges and object boundaries from natural images, has re-

mained as one of the main challenges in computer vision for

several decades [1]. Edge detection is one of the most im-

portant steps in vision systems. Its importance arises from

the fact that edge often indicates the physical extent of the
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Figure 1. Some results of our model. The first three columns show

example test results in the BSD500 dataset; the next three columns

show example test results in the NYUD dataset.

object within the image. It is considered a low-level tech-

nique, but this step determines the accuracy of the tasks of

image processing, image analysis, and pattern recognition.



The history of computational edge detection is extremely

rich. We now highlight a few representative works that have

proven to be of great practical importance. These existing

works fall into three categories. The first kind is the early

pioneering methods, such as the widely Canny detector [6],

zero-crossing [34], and the Sobel detector [24]. The second

kind of methods is driven by information theory, such as the

Statistical Edges [25], Pb [32], and gPb [1]. Third kind are

based on machine learning, such as the BEL [11], Multi-

scale [37], Sketch Tokens [27], and Structured Edges [13].

Also, there has been a recent wave of development using

convolutional neural networks (CNN) that emphasize the

importance of automatic hierarchical feature learning, in-

cluding N4-Fields [15], Deep-Contour [41], DeepEdge [4],

and CSCNN [22].

The first kind of methods mainly focuses on the utiliza-

tion of low-level representative features such as intensity

and color gradients [29, 53]. These methods always do not

perform so well and are difficult to satisfy today’s applica-

tions, such as salient object detection [48] and mobile vi-

sion [26]. The second type of methods mainly focus on fea-

tures arrived at through careful manual designed using in-

formation theory. However, it is developed based on hand-

crafted features, which has limited ability to represent high-

level information for semantically meaningful edge detec-

tion. The third one can overcome this problem and prin-

cipally uses CNN to get edge detection. But this learning

algorithm is that the final training result depends on the ini-

tial inputs and thresholds to a large extent.

In 2014, Goodfellow et al. introduced a powerful class of

generative models named generative adversarial networks

(GANs) [16,46]. Over the years, generative adversarial net-

works have been successfully applied in the computer vi-

sion field [46,51]. Generative adversarial networks are pow-

erful in image and vision computing [9, 20, 44, 47]. How-

ever, GANs are looking for Nash equilibrium, and there is

no theoretical proof that balance and convergence can al-

ways be achieved [30]. Hence, there are two main chal-

lenges for edge detection using GANs:

(1) The training result easily falls into the local minimum

point rather than into the global optimum [23].

(2) GANs may fall into mode collapse [33].

Evolutionary computation is a kind of methods for global

optimization inspired by biological evolution. To ad-

dress the aforementioned challenges in edge detection us-

ing GANs, we explore the use of evolutionary computa-

tion ( differential evolution algorithm in particular) for op-

timization of GANs. In this work, by regarding adversar-

ial training procedure in GANs as an evolutionary prob-

lem, we propose to incorporate evolutionary computation in

GANs architecture for efficient and effective edge detection.

Some qualitative results produced by our proposed method

are shown in Figure 1. The key idea is to build a gen-

erative adversarial network based on differential evolution

and treat the adversarial training process as an evolutionary

problem. According to the differential evolution algorithm

theory [43], the discriminator acts as an environment with

a fitness function (i.e., provides an adaptive loss function),

and the generator evolves as the environment changes. In

each adversarial (or evolutionary) iteration, the discrimina-

tor is still trained to recognize both real and false samples.

However, in our approach, as parents, the generator under-

goes different mutations to produce offspring to adapt to

the environment. Different objective functions are intended

to minimize the different distances between the generated

distribution and the data distribution, resulting in different

mutations. At the same time, in view of the current optimal

discriminator, we measure the quality and diversity of the

samples produced by the updated offspring. Finally, accord-

ing to the principle of ”survival of the fittest”, the poorly

performing offspring are removed, and the remaining well-

behaved offspring (i.e., the generator’s best weights) are

saved and used for further training. It is worth mentioning

that, our algorithm is to initialize the edge image (which

can be thought of as the result of initializing a generator)

and use evolutionary algorithms to optimize the results of

a generator network, different from EGAN [45] which is to

initialize several generator networks and use evolutionary

algorithms to select generators. We conduct experiments

on the BSDS500 dataset [1] and NYUD dataset [36], which

are two of most widely used for edge detection datasets.

These experiments show that the proposed algorithm per-

forms better than similar works.

In general, we propose to incorporate differential evolu-

tionary methodology into the adversarial learning of GANs.

It is worthy of highlighting the contributions of our work as

follows:

(1) We propose an improved differential evolution algo-

rithm to generate the best potential edges as initialization of

input of generator that makes it more easily to converge to

global optimization.

(2) We propose to jointly optimize the learning of differ-

ential evolution and GANs by further introducing the loss

of discriminator as the fitness function of differential evolu-

tion.

(3) Our proposed DEGAN is simple but effective and

efficient, and can achieve state-of-the-art results.

2. Proposed Method

The overall proposed architecture of differential-

evolution-based generative adversarial networks is shown in

Figure 2. In the following, we first introduce an improved

differential evolution algorithm controlling the input of the

generator network. Then we described our proposed DE-

GAN on the basis by the theory of Wasserstein generative

adversarial network and introduced the differential evolu-



tion algorithm.

2.1. Differential Evolution Algorithm

The differential evolution (DE) algorithm [40] is a

population-based and direct-search algorithm for optimiz-

ing the model globally. The main working steps of the DE

algorithm are consistent with other evolutionary algorithms,

including mutation, crossover and selection. By the DE al-

gorithm, our algorithm has the main differences, namely

selection based on the specific fitness named fitnessGAN

that loss value of GANs.

In order to provide a better input sample to the genera-

tive network and promote evolutionary computational pro-

cesses based on feedback from the network, we combine the

value called fitnessGAN of the discriminative network’s

loss function with the fitness function of the DE algorithm.

We use half-meanfit selection operator [49], which modified

from meanfit selection [55], to substitute greedy selection

of traditional DE to make up losing diversity in using pbest
strategy [52]. Note that the initial value of fitnessGAN is

0. It is described as:

if Xi(g) �= Xpmin
(g) and |f(Vi(g))| � fitnessGAN and

cri � 0.5 then

Xi(g + 1) = f(Vi(g))
else

Xi(g+1) =

{

f(Vi(g)), |f(Vi(g))| < |f (Xi(g)) |
Xi(g), else

end if

where g is the number of current iterations, Xi(g) means

is the i-th individual in the current population, Xpmin
(g)

means lower limits of the solution, Vi(g) is i-th mutant in-

dividuals in the current population, cri is crossover rate cor-

responding to the individual Xi(g) , f is the objective func-

tion, and |ξ| is the value of the matrix ξ.

As the input of the image, we use the gray processing
to get gray image as the corresponding matrix to subtract
adjacent columns or adjacent rows. Let Input be the image
matrix to be processed, xij is the gray value of the element
(i, j). In this paper, matrix adjacent row subtraction is used
to obtain the objective function f , which is the gray gradient
matrix of the image.

Input =









x11 x12 · · · x1n

x21 x22 · · · x2n

· · · · · · · · · · · ·

xn1 xn2 · · · xnn









f =









x11 x12 · · · x1n

x21−x11 x22−x12 · · · x2n−x1n

· · · · · · · · · · · ·

xn1−xn−1,1 xn2−xn−1,2 · · · xnn−xn−1,n









(1)

2.2. Differential-Evolutionary-Based Generative
Adversarial Networks

We propose differential-evolution-based generative ad-

versarial networks (DEGAN) to achieve edge detection. We

view the edge detection problem as the the classification

problem of image pixels. It means that we consider one bi-

nary classification problem about edge and background [7].

We aim to make our result be similar to the ground-truth as

far as possible. We use the Wasserstein generative adver-

sarial network (WGAN) to build our model. This genera-

tive network minimizes the Wasserstein distance, that is, the

generative network minimizes L. Considering that the first

item of L has nothing to do with the generative network, it

gets two losses of WGAN:

• The loss function of the generative network:

−Ex∼pg
[fw(x)]

• The loss function of the discriminative network:

fitnessGAN = Ex∼pg
[fw(x)]− Ex∼pdata

[fw(x)]

In our each iteration process shown in Figure 2 of edge

detection, we use the original image as the input of the

DE process and get the best individual image by DE pro-

cess firstly. Then, we use the best individual image and

Gaussian noise as the input of the generator network. The

generator network generates an image called the generated

image which is one of the inputs of the discriminator net-

work. Finally, we use the generated image and ground-truth

as the input of the discriminator network, and the discrim-

inator network determines whether or not one based on the

bias of ground-truth and the generated image, which is also

fitnessGAN . If the decision is true, the label that gener-

ated the image is one which is the result of our work, oth-

erwise 0. The discriminator network feedback the labels

to the generator network and feedback fitnessGAN to the

DE process. The DE process, the generator network, and

the discriminator network update. The above process is

repeated until the generator networks parameters have not

converged. In order to increase the diversity of distribu-

tion of the generator network, we update the DE process

once, and then generative network parameters for ten times.

For training the networks, we alternatively update the dis-

criminative network parameters ten times, then update of

the generative network parameters once.

3. Experimental Results

Implementation Details We set the learning rate as

0.00005, the clipping parameter as 0.01, the number of iter-

ations of the critic per generator iteration as 5 and the size

of batch images as 64. In the test phase, the best individual

image by DE process once are used as input to the gener-

ative network to generate edge detection image results and



Figure 2. The architecture of differential-evolution-based generative adversarial networks

output. Besides, for the DE process, we set the number of

iterations to 3000 per process. All experiments were con-

ducted using a 4-core PC with an NVIDIA GTX 970 GPU,

16GB of RAM, and Ubuntu 16.

Quantitative Evaluation Criteria We evaluated the per-

formance of our algorithm both on in terms of its accu-

racy and runtime. Edge detection accuracy is evaluated us-

ing four standard measures: fixed contour threshold (ODS),

a per-image best threshold (OIS), average precision (AP),

frames per second (FPS) in the test phase.

Datasets We design Ablation experiments on the

BSDS500 dataset [1]. And we also design two compari-

son experiments on the BSDS500 dataset [1] and NYUD

dataset [36], which are the large scale datasets. The infor-

mation on these two databases is as follows:

• BSDS500 [1] is a widely used dataset in edge detec-

tion. It is composed of 200 training, 100 validation

and 200 test images, and each image is labeled by 4

to 9 annotators. We utilize the training and validation

sets for finetuning, and test set for evaluation. Data

augmentation is the same as HED [53]. In particular,

we rotate the images to 16 different angles and crop the

largest rectangle in the rotated image. We also flip the

image at each angle, leading to an augmented training

set that is a factor of 32 larger than the unaugmented

set. During testing, we operate on an input image at

its original size. According to the work of HED [53]

and RCF [29], we mix augmentation data of BSDS500

with flipped PASCAL VOC Context dataset [35] as

training data.

• NYUD dataset [36] is composed of 1449 densely la-

beled pairs of aligned RGB and depth images. Re-

cently many works have conducted edge evaluation on

it, such as Structured Edges [13]. Gupta et al. [17]

Figure 3. The Illustration of the qualitative results of the ablation

study

split NYUD dataset into 381 training, 414 validation

and 654 testing images. We follow their settings and

train our network using training and validation sets in

full resolution as in HED [53] and RCF [29]. In other

words, we rotate the images and corresponding annota-

tions to 4 different angles (0, 90, 180 and 270 degrees)

and flip them at each angle and we increase the max-

imum tolerance allowed for correct matches of edge

predictions to ground truth from 0.0075 to 0.011 dur-

ing evaluation.

3.1. Ablation Study

We conduct a series of ablation studies to evaluate the

importance of each component in the proposed method on

the BSDS500 dataset. Figure 3 is the result of our ablation
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Figure 4. Precision/recall curves of Ablation study on BSDS500

dataset

experiment. The quantitative evaluations of our ablation ex-

periment are shown in Figure 4 and Table 1. As shown in

Figure 3, Figure 4, and Table 1, it is obvious that the results

of our framework are better than others.

Notation “DE” means we only use the traditional DE

process to achieve edge detection. “WGAN” means we only

use the WGAN to achieve edge detection. “DE+WGAN”

means we use a two-stage algorithm. In the first phase, we

use traditional DE process, and get the result of the first

phase as the input to WGAN. Then, we train WGAN to

achieve edge detection. “DEGAN-T” means we use tra-

ditional DE process to optimize WGAN to achieve edge

detection. In other words, we cannot use the process of

our proposed selection based fitnessGAN in “DEGAN”.

“ DEGAN-λ ” where λ means we set the number of itera-

tions. Note that other settings remain unchanged during the

Ablation study.

Qualitative Evaluation on Ablation Study From Fig-

ure 3, we find it that the results of DEGAN are better and

has a richer edge than others. For the “grassland” image

(the first row), we can see that the result of the DEGAN

algorithm is clear and smooth. Compare with “DE” and

“WGAN”, the result of “DE+WGAN” has the edges of the

piles in the distant woods and adjacent grasslands. The re-

sults of “DE+WGAN” and “DEGAN-T” are similar. These

show that our DE process DE has a significant optimization

on effect training together with traditional DE and WGAN

for edge detection. Therefore, the design of training WGAN

with DE process has a significant influence on WGAN for

edge extraction. As increasing the number of iterations, the

edges of the piles in the distant woods and near grasslands

is gradually clear using the DEGAN algorithm.Therefore,

the design of our DE process has a significant improvement

for edge extraction.

Quantitative Evaluation on Ablation Study To further

clarify the contribution of the design of our DE process,

Table 1. Results of Ablation study on BSDS500 dataset

ODS OIS AP

DE 0.463 0.433 0.373

WGAN 0.536 0.578 0.588

DE+WGAN 0.674 0.678 0.681

DEGAN-T 0.675 0.677 0.681

DEGAN-500 0.743 0.778 0.758

DEGAN-1000 0.782 0.782 0.782

DEGAN 0.856 0.873 0.889

we analyze the following two aspects: comparison of tasks

whether there is our DE process and comparison of tasks

where the influence of the DE process:

Comparison of Tasks Whether There Is Our DE Pro-

cess Figure 4 and Table 1 show the evaluation results. The

performance of the human eye in edge detection is known

as 0.803 ODS F-measure. When compared with “DE” and

“WGAN”, ODS F-measures of “DE+WGAN” is 21.1%

and 13.8% higher than it, respectively. It is clear that DE

has a significant optimization effect on WGAN for edge ex-

traction. When compared with “DE+WGAN”, ODS F-

measures of “DEGAN-T” is 0.1% higher than it. This

shows the effect of training together with traditional DE

and WGAN is similar to the effect of two-stage training sep-

arately. Compared “DEGAN-T” and “DE+WGAN”, ODS

F-measures of “DEGAN” is 18.3% and 18.2% higher than

it, respectively. It is obvious that our DE process DE has

a significant optimization on the effect of training together

with traditional DE and WGAN for edge detection. There-

fore, the design of training WGAN with DE process has a

significant influence on WGAN for edge extraction. In OIS

and AP, we can get a similar conclusion.

Comparison of Tasks Where the Influence of Our DE

Process According to Figure 4 and Table 1, when com-

pared with “DEGAN-500” and “DEGAN-1000”, ODS F-

measures of “DEGAN” is 11.3% and 7.4% higher than it,

respectively. This shows that as the number of iterations

increases, the effect of our algorithm is getting better and

better. Therefore, the design of our DE process has a signif-

icant improvement for edge extraction. In ODS and AP, we

can get a similar conclusion.

Stability Analysis To further analyze the stability of our

algorithm, we calculated the ODS, OIS and AP values of

our model for each iteration (5000 times in total) and ob-

tained Figure 5. As shown in Figure 5, we find that the

overall trend is that the values of the ODS, OIS and AP is

getting larger, and the trend of the three values is generally

consistent. This shows that the performance of our algo-

rithm is steadily improved. Therefore, our algorithm has

better stability.
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Figure 6. Qualitative comparison among different edge detection

algorithms on BSDS500 dataset

3.2. Comparison with State-of-the-Art Methods

We design two experiments on the BSDS500 dataset

[1] and NYUD dataset [36]. On the BSDS500 dataset,

our algorithm compared with the some methods which are

Roberts [39], Sobel [24], MShift [8], Canny [6], EGB [14],

NCut [42], BEL [11], Pb [32], ISCRA [38], gPb-UCM [2]

, SE [12], MCG [3], OEF [19], DeepEdge [4], DeepCon-

tour [41], HFL [5], HED [53], COB [31], RCF [29], RCF-

MS [28,29], IRHED-MultiScale [50], LPCB [10], Contour-

GAN [54], and BDCN [21]. On NYUD dataset, our al-

gorithm compared with the some methods which are gPb-

UCM [2], OEF [19], gPb+NG [17], SE [12], SE+NG+ [18],

HED [53], LPCB [10], RCF [29], ContourGAN [54], and

BDCN [21].

3.2.1 BSDS500 Dataset

Qualitative Comparison Evaluation on BSDS500

Dataset From Figure 6, we find it that the results of DE-

GAN are better and has a richer edge than others. For the

“aircraft” image (the second row), we can see that the result

of the DEGAN algorithm is clear and smooth. The result

of the RCF algorithm also gets the edge of clouds, but the

noise of the edge of clouds is larger. For the “starfish” im-

age (the sixth row), we can see that the DEGAN algorithm

can achieve preferable results and the edge of the reef next

to the starfish and the spine, tumor or scorpion of the starfish

itself is clearer than results produced by other algorithms.

Quantitative Comparison Evaluation on BSDS500

Dataset Figure 7(a) shows the evaluation results. The per-

formance of the human eye in edge detection is known as

0.803 ODS F-measure. When compared with RCF [29] and

RCF-MS [28, 29], ODS F-measures of DEGAN increase

5.0% and 4.5%, respectively. Moreover, the precision-recall

curves of our methods are also higher than RCF’s and RCF-

MS’s. These results demonstrate the effectiveness of our

richer edge features significantly. This shows that the im-

proved method of using the DE algorithm to improve gener-

ative adversarial networks is effective and robust.

We show statistic comparison in Table 2. In ODS F-

measure, DEGAN algorithm ranks first in all algorithms.

The ODS F-measure of DEGAN is 4.5%, 5.0%, 5.0%

higher than RCF-MS, RCF and BDCN, respectively. In OIS

and AP, we can get a similar conclusion. For FPS in the test

phase, DEGAN algorithm ranks third in all algorithms and

has only 20 FPS. According to the experimental statistic re-

sults, our algorithm performs better over other algorithms,

and in terms of efficiency, it meets the requirements of real-

time processing.

All in all, through the results of the experiment on

BSD500 dataset, we can see that our algorithm is robust

and effective. From this point, it can be proved that the way

using the DE algorithm to improve the robustness of gen-

erative adversarial networks are effective. Therefore, our

strategy is successful in edge extraction issues.
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Figure 7. Precision/recall curves on two datasets

Figure 8. Qualitative comparison among different edge detection algorithms on NYUD dataset

3.2.2 NYUD Dataset

To further validate the effectiveness of our proposed DE-

GAN, we conduct comparisons with other state-of-the-art

on NYUD dataset.

Qualitative Comparison Evaluation on NYUD

Dataset From Figure 8, we can find it that the results of

DEGAN are better and has a richer edge than others. For

the “conference room” image (the second column from

the left), we see that the edges of the seats and projectors

generated by our DEGAN algorithm are clear, while the

edges extracted by other algorithms have different noise

or blur. For the “shadow wall” image (the third column

from the right), we find that with the DEGAN algorithm

the edges of the TV and the bookshelf are clear, while

the edges extracted by other algorithms are more blurred

than the DEGAN algorithm for the bookshelf. From other

images, we can get a similar conclusion.

Quantitative Comparison Evaluation on NYUD

Dataset Figure 7(b) shows the evaluation results. The per-

formance of the human eye in edge detection is known as

0.803 ODS F-measure. When compared with RCF [29]

and HED [53], ODS F-measures of DEGAN are 5.0% and

7.4% higher than it, respectively. Moreover, the precision-

recall curves of our methods are also higher than RCF’s and

HED’s. These results demonstrate the effectiveness of our

richer edge features significantly. This shows that the im-

proved method of using the DE algorithm to improve gener-

ative adversarial networks is effective and robust.

We show statistic comparison in Table 3. In ODS F-

measure, DEGAN algorithm ranks first in all algorithms.

The ODS F-measure of DEGAN is 5.0%, 6.7% higher than

RCF and BDCN respectively. In OIS and AP, we can get

a similar conclusion. For FPS in the test phase, DEGAN

algorithm ranks second in all algorithms and has only 25
FPS. It means DEGAN is not better than RCF. Therefore,

according to the statistic experimental results, our algo-



Table 2. The statistic comparison on BSDS500 dataset

Method

Evaluation
ODS OIS AP FPS

Roberts [39] 0.483 0.513 0.413 1/5

Sobel [24] 0.539 0.575 0.498 1/5

MShift [8] 0.598 0.645 0.497 1/5

Canny [6] 0.611 0.676 0.52 28

EGB [14] 0.614 0.658 0.564 10

NCut [42] 0.634 0.664 0.422 1/4

BEL [11] 0.651 0.674 0.701 1/3

Pb [32] 0.672 0.695 0.652 1

ISCRA [38] 0.717 0.752 0.77 1/18

gPb-UCM [2] 0.729 0.755 0.745 1/240

SE [12] 0.743 0.764 0.8 2.5

MCG [3] 0.744 0.777 0.76 1/18

OEF [19] 0.746 0.77 0.815 2/3

DeepEdge [4] 0.753 0.772 0.807 1/30

DeepContour [41] 0.757 0.776 0.79 1/1000

HFL [5] 0.767 0.788 0.795 5/6

HED [53] 0.788 0.808 0.84 1/6

COB [31] 0.793 0.819 0.849 30

RCF [29] 0.806 0.823 0.839 30

RCF-MS [28] 0.811 0.83 0.846 8

IRHED-MultiScale [50] 0.804 0.824 0.869 -

LPCB [10] 0.8 0.816 - 30

ContourGAN [54] 0.802 0.831 - 18

BDCN [21] 0.806 0.826 0.847 -

DEGAN 0.856 0.873 0.889 20

Table 3. The comparison with some competitors on NYUD dataset

Method

Evaluation
ODS OIS AP FPS

gPb-UCM [2] 0.631 0.661 0.562 1/360

OEF [19] 0.651 0.667 0.653 1/3

gPb+NG [17] 0.687 0.716 0.629 1/375

SE [12] 0.695 0.708 0.719 5

SE+NG+ [18] 0.706 0.734 0.549 1/15

HED [53] 0.741 0.757 0.749 20

RCF [29] 0.765 0.78 0.76 30

LPCB [10] 0.739 0.754 - 30

ContourGAN [54] 0.715 0.731 - -

BDCN [21] 0.748 0.763 0.77 -

DEGAN 0.815 0.83 0.81 25

rithm is more excellent than other algorithms, and in terms

of time, it meets the requirements of real-time processing

applications.

Through the results of the experiments on two datasets,

we can see that our algorithm is robust and effective. From

this point, it can be proved that the way using the DE algo-

rithm to improve the robustness and effectiveness of gener-

ative adversarial networks.

4. Conclusion

In this paper, we propose Differential-Evolution-Based

Generative Adversarial Networks for richer edge detec-

tion. The key idea of proposed DEGAN is to incorpo-

rate evolutionary computation into the adversarial learning

for edge detection. With the introduced differential evolu-

tion algorithm with fitness function of loss from discrimi-

nator, we can leverage the power of differential evolution

to effectively avoid local optimization and employ adver-

sarial learning with limited mode collapse to learn a better

edge generator. Experimental results show that the method

achieves good edge detection performance. Moreover, our

proposed DEGAN makes it promising to be applied in vi-

sion tasks. In future research, we would like to apply our

DEGAN to the other applications of computer vision and

study how to implement our algorithm in a parallel platform

for more complex calculations such as supercomputing.
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