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Abstract

We introduce a new dataset, SUN-Spot, for localizing

objects using spatial referring expressions (REs). SUN-Spot

is the only RE dataset which uses RGB-D images. It also

contains a greater average number of spatial prepositions

and more cluttered scenes than previous RE datasets. Using

a simple baseline, we show that including a depth channel

in RE models can improve performance on both generation

and comprehension.

1. Introduction

Spatial information can clarify ambiguous instructions

and identify unknown objects. Humans prefer to use spatial

information to differentiate objects even when they could

choose other object descriptions such as color, shape, or

size [22]. Therefore to develop more effective human-

computer interaction, we need models of grounded spatial

language. In this work, we focus on phrases which uniquely

identify objects using spatial information, or spatial referring

expressions (REs).

Spatial REs are challenging to model because they require

understanding additional context. Appearance-based descrip-

tions like color, shape, or object class, require detecting the

attributes of the target object alone. In contrast, spatial

descriptions require understanding the relationship between

the landmark object and the target object. Additionally,

spatial REs are often perspective-dependent.

To address these challenges, we introduce a new dataset,

SUN-Spot, which combines RGB-D images with spatial

REs. Depth is an increasingly ubiquitous sensing modality.

Robots are typically equipped with depth sensors to support

grasping, manipulation, and navigation. Mobile phones and

personal computers are using depth sensing for facial recog-

nition and augmented reality. Depth is also an important

dimension for spatial language with “behind” and “in front”

being among the top prepositions occurring in SUN-Spot.

We hypothesize that including depth in spatial RE models

will improve performance.

SUN-Spot contains 1948 images and 7987 REs, with

an average of 2.6 spatial prepositions per expression. An

example from our dataset is shown in Figure 1. Compared

to existing REs datasets, this dataset has longer descrip-

tions, more spatial prepositions, and is the only dataset

including a depth channel. The full dataset is available at

arpg.colorado.edu/sunspot.

2. Related Work

RE datasets with synthetic images have been used in NLP

for the past decade to study the generation of REs [12]. More

recently, interest in expanding the scope of Visual Question

Answering (VQA) has produced several large scale data

sets, both synthetic, such as CLEVR-Ref+ [15], and realistic,

such as ReferIt [8] and Google RefExp (RefExp) [18]. Other

closely related data sets include visual dialog systems [3, 4],

where the goal is to generate a series of REs which zero in

on one target object, and navigation data sets [1] which use

REs to direct a robot to a goal.

SUN-Spot most resembles the RefExp and ReferIt

datasets. It differs in three important ways: (1) the focus on

spatial relationships between objects, (2) the composition of

the images, and (3) the use of RGB-D images. SUN-Spot

contains the highest mean location prepositions per RE (See

Table 1). Furthermore, SUN-Spot images are keyframes

from a video stream and are therefore more closely resemble

the visual input of a mobile robot. Characteristics of the

keyframes include bad lighting conditions, non-level camera

frames, and a large amount of clutter. In contrast, the

photos used by RefExp and ReferIt are gathered from photo

collections on the web. RefExp and ReferIt image are usually

well lit and have a small number of highly salient objects.

However, the most important difference is that the SUN-Spot

RGB-D images include a depth channel, while RefExp and

ReferIt are RGB only. Depth has been shown to improve

accuracy for scene understanding [16] and manipulation [2].

To our knowledge, our dataset is the only dataset which

combines RE annotations for RGB-D images.



Figure 1: An example RGB image from the SUN-Spot

dataset including three object bounding boxes with referring

expressions superimposed

3. Data Set

The SUN-Spot dataset extends the scene understanding

dataset SUN RGB-D [21]. SUN RGB-D contains 2D object

segmentation and 3D object bounding boxes with orientation

for over 10,000 RGB-D images of indoor scenes. A subset

of 1449 images, originally the NYUv2 dataset [19], has been

previously annotated with captions [11] and visual questions

[17].

We annotated 1948 images with REs. The images

were selected with a focus on images containing two or

more objects from the same object class, similar to the

methodology of RefExp [18]. The need to discriminate

between objects of the same class within the same scene

forces the annotators to provide more detailed descriptions.

Unlike RefExp, we also include images with only one

instance of the object to achieve a balanced distribution

of the object classes occurring in the SUN RGB-D dataset.

Our image selection process first computed the number of

occurrences of each object class in each image. For each

multiply-occurring object class, we then selected a random

sample of 50 images containing at least 2 objects of that class.

Some classes like “oven” never appear more than once in the

same image. For these classes, we take a random sample of

10 images depicting these classes to avoid excluding object

classes that appear in the SUN RGB-D dataset. For example,

Figure 1 shows two labeled objects from the class “flowers”

and one labeled object from the uncommon class “calendar.”

Table 1 summarizes the size and complexity of the

resulting dataset. It has long descriptions compared to other

RE datasets and a larger average number of spatial preposi-

tions per annotation. The most similar dataset in terms of

expression length and frequency of location prepositions is

RefExp. Figure 2 shows that eight of the ten most frequent

location prepositions are shared by SUN-Spot and RefExp.

Figure 2: Relative frequency of the 10 most frequent location

prepositions in RefExp and SUN-Spot

To calculate the frequency of location prepositions, we use

a vocabulary of common location prepositions and count

token occurrences in the dataset. Since these prepositions

may have multiple senses, this calculates an upper-bound on

their usage as location prepositions. Several prepositions that

unambiguously refer to location, such as ‘on,’ ‘left,’ ‘right,’

‘front,’ and ‘top,’ occur in greater proportion in SUN-Spot.

4. Experiments

In order to compare the challenges of learning on SUN-

Spot to other RE datasets we run generation and compre-

hension experiments using the same baseline RE generation

network as Mao et al. [18]. Furthermore, to investigate the

value of SUN-Spot’s depth channel, we modify the baseline

slightly to accept depth input and compare to RefExp with

synthetically generated depth.

4.1. Models

Mao et al.’s baseline network consists of two main

components, an image network to encode the image fea-

tures, followed by an LSTM to generate text. Across all

experiments, the LSTM architecture remains the same, and

we substitute two different image models described below.

Furthermore, we modified Mao et al.’s training procedure

and architecture in the following ways to improve training

time and performance. First, we used L2-regularization

on the LSTM weights. We disregarded dropout as we saw

little to no improvement at cost of training time. We also

used the Adam Optimizer [10] to train, where Mao et al.

use vanilla stochastic gradient descent. Our implementation

is available as a Github repository: https://github.

com/crmauceri/ReferringExpressions.



Dataset Images REs Vocab Classes Length LocPrep

SUN-Spot 1,948 7,990 2,690 578 14.04 2.60

ReferIt [8] 19,997 130,364 9,320 276 3.51 0.76

RefCOCO [24] 19,994 142,209 10,341 80 3.50 0.87

Google RefExp [18] 25,799 95,010 2,890 80 8.41 1.23

Table 1: A comparison of RE datasets in terms of the number of images (Images), referring expressions (REs), average location

prepositions per RE (LocPrep), average words per RE (Length), and number of unique object classes (Classes).

RGB Models For direct comparison between the SUN-

Spot and RefExp, we omit SUN-Spot’s depth channel so that

the models can accept both SUN-Spot and RefExp examples

as input. We use a pretrained VGG-16 network [20] to

produce image features.

We trained two RGB RE networks. The first model,

Baseline, was trained for 60 epochs on the RefExp dataset.

For the second model, Baseline+fine, we fine-tuned the

Baseline model with the SUN-Spot training set for a further

30 epochs.

RGB-D Models To test the potential gains from adding

depth based features, we train a custom VGG-16 network

with a 4th channel added to the first convolutional layer of a

conventional VGG-16 network. Because no other RE dataset

contains RGB-D images, we used synthetic depth. Using

MegaDepth [13], we generated a synthetic depth channel for

the COCO dataset [14], the source of images for RefExp. We

train the VGG-16 network for 65 epochs on the portion of

the COCO 2014 training set disjoint from the RefExp dataset.

We use multi-label binary cross entropy loss to predict all

the object labels in each image.

We train two RE models with depth. The first model,

VGG+D, is trained for 30 epochs on the RefExp training

set with the added depth channel. For the second model,

VGG+D+fine, we fine-tune the VGG+D model on SUN-

Spot for a further 5 epochs. For a direct comparison, we

also train an RGB VGG-16 in the same way as the depth

networks, VGG and VGG+fine.

We also experimented with HHA depth preprocessing [5]

which is the standard approach for incorporating depth into

image networks. However, we observed that HHA depth

preprocessing magnified errors in surface normal prediction

in synthetic depth images. Additionally, many of the COCO

images do not have a ground-plane, which is required to

calculate HHA. Therefore we did not find HHA suitable for

synthetic depth.

4.2. Referring Expression Generation

We evaluate our generated expressions with automated

metrics, BLEU, ROUGE-L, and CIDEr [9]. Traditionally

used for measuring the quality of machine translation and

image captioning, they can also be used for comparing the

similarity of two REs. Table 2 shows a summary of the

Model Dataset B1 R-L C P@1

- RefExp 0.33 0.31 0.82

- SUN-Spot 0.56 0.51 1.33

Baseline RefExp 0.30 0.31 0.31 0.50

Baseline SUN-Spot 0.27 0.19 0.07 0.20

Baseline+fine RefExp 0.18 0.21 0.08 0.50

Baseline+fine SUN-Spot 0.45 0.44 0.15 0.33

Table 2: Quantitative results for generation and comprehen-

sion on RGB models. Columns are BLEU1 (B1), ROUGE-

L(R-L), CIDEr(C), and Precision at 1(P@1). The first two

rows compare ground truth REs to establish an upper-bound.

The other rows evaluate generated sentences.

similarity metrics. The first two rows show the datasets’

internal similarity across REs describing the same object. To

calculate this value, we held out one expression from each set

of expressions describing the same object. These scores can

be considered upper bounds on what generated expressions

can achieve as they represent the natural variance between

human annotators. They also show that SUN-Spot has more

internal similarity than RefExp by all three metrics. The

difference in score between datasets confirms that RefExp

and SUN-Spot do have significant biases that stymie transfer

learning from one to the other for generating expressions.

These biases could stem from different vocabulary or from

different sentence structure. It is nevertheless impressive

that the Baseline+Fine shows such improved performance

on SUN-Spot despite the relatively small size of that dataset.

4.3. Referring Expression Comprehension

The models generate REs, but we can also use them to

measure the comprehension of REs by ranking the likelihood

of generating the input expression. Generation likelihood

ranking was introduced simultaneously by Mao et al. [18]

and Hu et al. [6] and has been widely used since to use

generative networks for comprehension [1, 24]. To compute

generation likelihood, for each target RE, S, we select the

bounding box, R∗, which maximizes the probability of

generating the target expression for the given image I . This

can be expressed as

R∗ = argmax
R∈C

p(R|S, I) (1)



Model Dataset B1 R-L C P@1

VGG RefExp 0.17 0.19 0.15 0.25

VGG+D RefExp 0.18 0.20 0.21 0.25

VGG+fine SUN-Spot 0.30 0.35 0.11 0.13

VGG+D+fine SUN-Spot 0.34 0.34 0.14 0.17

Table 3: Results comparing RGB image features (VGG

and VGG+fine) to RGB-D image features (VGG+D and

VGG+D+fine). Metrics are the same as used in Table 2.

where C is the set of all bounding boxes in image I .

In a fully automated scenario, the bounding boxes would

be generated by a bounding box proposal system. To esti-

mate an upper-bound on the performance, we use the ground

truth bounding boxes. As a metric, we use comprehension

precision at 1(P@1), which measures whether the correct

bounding box had the highest generation likelihood for a

given expression. We compare 8 ground truth bounding

boxes per image in the RefExp dataset and 10 bounding

boxes per image in the SUN-Spot dataset. Randomly

selecting a bounding box would yield 12% precision@1

for the RefExp dataset and 10% for the SUN-Spot dataset.

We report the precision for the comprehension task in

Table 2. The precision for the RefExp dataset does not

drop after fine-tuning. This suggests that the SUN-Spot fine-

tuning leads to better generalization for the comprehension

task.

4.4. Effects of Depth

Table 3 compares RGB and RGB-D models. The results

for VGG and VGG+D are similar. The addition of a synthetic

depth channel has a limited effect on performance. However,

between the fine-tuned models, we see a significant improve-

ment in VGG+D+fine, trained with real depth measurements.

Real depth measurements, from SUN-Spot, improve both

generation accuracy and comprehension precision. This is

an interesting result as it underscores the value of RGB-D

datasets in building multi-model RE models.

5. Conclusion

SUN-Spot is a new dataset focused on spatial expressions

describing objects in cluttered interior scenes. It contains

more objects per image, longer descriptions, and more

location prepositions per description than competing RE

datasets. It is the only RE dataset with RGB-D images.

Using depth in multi-modal RE models improves both

generation and comprehension.
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