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Abstract

We deal with the problem of modality distillation for the

purpose of remote sensing (RS) image classification by ex-

ploring the deep generative models. From the remote sens-

ing perspective, this problem can also be considered in line

with the missing bands problem frequently encountered due

to sensor abnormality. It is expected that different modali-

ties provide useful complementary information regarding a

given task, thus leading to the training of a robust prediction

model. Although training data may be collected from differ-

ent sensor modalities, it is many a time possible that not all

the information are readily available during the model in-

ference phase. This paper tackles the problem by proposing

a novel adversarial training driven hallucination architec-

ture which is capable of learning discriminative feature rep-

resentations corresponding to the missing modalities from

the available ones during the test time. To this end, we fol-

low a teacher-student model where the teacher is trained

on the multimodal data (learning with privileged informa-

tion) and the student model learns to subsequently distill

the feature descriptors corresponding to the missing modal-

ity. Experimental results obtained on the benchmark hyper-

spectral (HSI) datasets and another dataset of multispectral

(MS)-panchromatic (PAN) image pairs confirm the efficacy

of the proposed approach. In particular, we find that the stu-

dent model is consistently able to surpass the performance

of the teacher model for HSI datasets.

1. Introduction

The current generation has witnessed the accumulation

of a large volume of satellite remote sensing (RS) images,

∗Authors contributed equally

thanks to a number of successful space missions. These im-

ages play an extremely important role in applications con-

cerning urban mapping, disaster management, city plan-

ning, to name a few [30]. Different types of RS images

are capable of capturing completely diverse aspects regard-

ing the underlying Earth’s surface: from detailed spatial

(VHR optical) to high spectral information (hyperspectral).

Hence, it is needless to mention that the joint exploration of

different RS modalities is worthwhile for improved Earth

monitoring. However, it is not always possible to obtain

all the cross-modal information together in time-critical sit-

uations (concerning the facts related to different temporal

resolutions for the sensors, quick response for disaster man-

agement etc.). This further instigates the following scenario

in terms of developing a machine learning system: given

that the training data are captured offline, it is always pos-

sible to train a model with multimodal information, how-

ever, the test samples may not always be available with all

the modalities on the fly.

Nonetheless, it is always preferable to train prediction

models with extra (multi-modal) information: a paradigm

known as learning with privileged information [22]. How-

ever, if the test samples are not consistent with the training

data in terms of the feature dimensions, the trained model

apparently cannot be evaluated on the test set. There are

two possible solutions in this regard: i) use the informa-

tion that are deemed to be available both during training

and testing, however, compromising the performance of the

learning model to some extent, or ii) train the model with

the privileged side information and device a way to ap-

proximate the missing information of the test data given

the available information, a phenomenon generally known

as modality distillation through hallucination [9]. In this

paper, we propose a solution to the distillation problem in

the area of RS image classification by exploring deep gen-



erative model driven teacher-student architecture. While

the teacher model is trained with all the modalities, we

subsequently train a student model that work on the avail-

able and hallucinated fetures. We consider two experimen-

tal scenarios: i) RS scene classification using multispectral

(modality-1) and panchromatic (modality-2) data, and ii)

HSI classification where two non-overlapping subsets of the

spectral bands denote both the concerned modalities. Note

that discriminative feature descriptors are initially learned

specific to both the modalities and the distillation module

is devoted to learn the feature mapping from modality-1 to

modality-2.

There has recently been a surge in this type of knowledge

transfer in the area of computer vision [10, 13] within the

teacher-student based distillation framework. On the other

hand, the problem, though of immense importance in the

field of RS, has hardly been studied to date. To the best of

our knowledge, the only noteworthy endeavor [15] in this

respect has directly extended the work of [13] to support

RS images. However, the reconstruction loss based method

of [13] does not always learn well the overall data distribu-

tions. Another important issue in this regard is the discrim-

inativeness of the modality specific feature descriptors. A

conditional generative adversarial network (C-GAN) based

model has recently been utilized in this respect [31]. How-

ever, the vanilla GAN models with binary discriminator fre-

quently get affected by the mode collapse problem during

the learning phase of hallucination.

In this paper, we intend to tackle both the aforemen-

tioned issues of discriminative modality distillation prob-

lem under the realm of teacher-student based network. The

teacher network is designed as a multi-stream network with

a multi-layer classifier where each stream focuses on learn-

ing discriminative feature representations corresponding to

the specific modality under consideration. This is followed

by a C-GAN based hallucination model to generate the fea-

tures of the absent modality conditioned on the features cor-

responding to the available modality. Here we propose to

consider 2C number of nodes for C classes in the C-GAN

discriminator and carry out the min-max type optimization

in order to ensure discriminativeness of the hallucinated fea-

tures. Finally, we design the student network that takes

the features corresponding to the available and hallucinated

modalities and subsequently carry out the C-class classi-

fication task. This setup, apart from mitigating the mode

collapse problem, ensures discriminativeness in the halluci-

nated features. In addition, we utilize the soft-target based

knowledge distillation (KD) paradigm for training the stu-

dent’s classifier. We summarize our major contributions as:

• We introduce a novel teacher-student based modal-

ity distillation framework for RS image classification

where a novel C-GAN based cross-modality mapping

module is proposed. We also consider the KD tech-

nique to ensure that the student’s classifier does not

diverge too much from the teacher’s classifier.

• We perform data augmentation through noise perturba-

tion on the teacher’s training samples in order to train

the hallucination and student models.

• We perform extensive experiments on HSI classifica-

tion and RS scene classification using MS-PAN image

pairs where improved results can be observed.

2. Related works

The two concepts that form the backbone of this research

are learning under privileged information and modality dis-

tillation. We discuss about the related prior endeavors in the

following.

2.1. RS image classification

RS data may contain images from several modalities

such as multispectral, synthetic aperture radar (SAR), light

detection and ranging (LiDAR), panchromatic images and

hyperspectral imageries (HSI) [45]. HSI classification and

analysis is one of the most sought topics in the field of re-

mote sensing owing to the high dimensionality and informa-

tion content of the HSIs. Several research works emanating

from the field of conventional machine learning [23, 18, 38]

or deep learning [27, 24, 25] have focused on fast and ef-

ficient classification of HSIs from both spectral and spatial

perspectives. However, the research is not just limited to

conventional classification paradigm but also branches into

other areas such as domain adaptation [3, 29, 37] and zero

shot learning [33, 17, 20].

In contrast to working with a single modality, there have

been several approaches to combine different RS image

modalities in synergistic way to get maximum results from

the same feature set. This is obtained through image fu-

sion and multi-modal learning. Recently, the deep learning

techniques are used to combine the learned features cor-

responding to different modalities in a principled manner.

[21] proposed an architecture called Pan-Sharpening GAN

(PSGAN) to fuse panchromatic image and multispectral im-

ages of a given geographical area. Similarly, [12] proposed

a method to fuse SAR imageries (from Sentinel-1) and mul-

tispectral imageries (from Sentinel-2) using a model com-

posed of CNN with residual connections and C-GAN. [1]

introduced a multi-modal segmentation model called Or-

thoSeg that works on three modalities, namely RGB im-

ages, infrared images and digital surface model (DSM). [4]

came up with a modification over existing CNNs (based on

Squeeze and Excitation Networks [14]) to fuse LiDAR data

and HSI data. The model comprises of parallel streams for

each modality while a residual block is used in each stream

to extract hierarchical and multi-scale features.



2.2. Learning under privileged information (LUPI)

The LUPI paradigm was first introduced in [35] specif-

ically for the support vector machines (SVM) classifiers.

This idea was later extended in [28] where the authors intro-

duce a concept of privileged empirical risk minimization to

identify a faster learning function in decision space. Mod-

ifications were incorporated into existing LUPI paradigm

in [34] while it was used along with knowledge distilla-

tion in [22]. LUPI has subsequently been implemented in

several other domains such as unsupervised learning [5],

metric learning [8, 39, 7], object localization [6], face de-

tection [40], expression recognition [36] and many more.

However, all these works incorporate privileged informa-

tion in the conventional machine learning setting where the

idea is either to maximize the margin among the classes or

maximize the likelihood of an instance belonging to a cer-

tain class. More recently, [43] introduces the idea of LUPI

in deep learning setting where instead of teacher-student

framework, an ensemble of students are considered, which

encourages co-operative learning. This is achieved by in-

corporating two losses namely a supervised learning loss

and mimicry loss. The latter one tries to match the posterior

of each student network to the class probabilities of other

students.

2.3. LUPI with modality distillation

The idea of LUPI is further extended to deep learning

setting mostly in combination with knowledge distillation

frameworks. [2] incorporated LUPI with CNN for im-

age categorization where the mapping difference between

the visual feature and word embeddings is used as privi-

leged information (termed as privileged cost). [26] intro-

duced a multimodal method for gesture recognition from

video dataset by combining multiscale learning (using spa-

tial and temporal scales) coupled with multimodal learn-

ing. A multimodal CNN is employed to fuse the different

modalities and perform classifcation. In addition, a regular-

ization technique called ModDrop is presented, where dur-

ing the fusion, weights corresponding to certain modalities

are dropped for each iteration based on probabilities from

Bernoulli’s selector. [13] uses depth as extra information

in a convolutional RGB object detection framework along

with modality hallucination. [9] improvised the aforemen-

tioned method by incorporating adversarial learning in hal-

lucination process where depth is used along with RGB im-

ages during training phase but omitted during testing phase.

[31] proposed a C-GAN based approach to generate the

missing modalities from the available ones. LUPI is fur-

ther used in several other deep learning based computer vi-

sion applications such as brain tumour detection [42], action

recognition using RNNs [32] and multi-instance multi-label

(MIML) learning [41].

Note that there exists only very few works for modality

Figure 1. Schematic of teacher network. The two modalities X1

and X2 are fed to featurents fT
1 (.) and fT

2 (.). The obtained fea-

tures are concatenated and sent to the classifier fT

C .

distillation in RS which are primarily the direct extension

of the existing techniques to the RS space [15].

2.4. How are we different?

The existing works closest to us are [31, 9] which also

exploit the C-GAN architecture for modality distillation.

However, i) while both the [31, 9] approaches are focused

on the RGB-D based human activity recognition, ours is the

first C-GAN based modality distillation framework in the

domain of RS, ii) we have introduced a novel C-GAN dis-

criminator architecture with 2C output nodes as opposed

to the C + 1 nodes mentioned in [31, 9] which can bet-

ter deal with the mode collapse problem of GAN, while

still preserving the discriminativeness of learned features.

iii) While both the teacher and student classifiers of [9] are

designed by averaging the softmax scores of the modality-

specific classifiers, we, on the other hand, prefer learnable

classifiers both in the teacher and student networks. We

also add a KD term while training the student’s classifier

in a more constrained manner, and iv) we utilize the no-

tion of data augmentation to encourage the training of the

student’s classifier on extra novel samples in comparison to

the teacher model.

3. Proposed Methodology

We discuss the proposed algorithm in this section. The

training pipeline is broadly divided into three phases: i)

training of teacher network, ii) training of hallucination

module and, iii) training of student’s classifier practically

to be utilized during inference. The stages are detailed in

the following.

3.1. Training the teacher network

Let us consider a dataset X = {xi
1, x

i
2, y

i}Ni=1 where

xi
1 ∈ X1 and xi

2 ∈ X2 define the two modality specific in-

puts and yi ∈ Y denotes the class labels from a pre-defined



Figure 2. Schematic of feature hallucination through C-GAN. Ex-

tracted features fT
1 (X̄1) and labels are fed to the generator G that

hallucinates features G(fT
1 (X̄1)), which are fed to the discrimina-

tor D along with fT
2 (X2). D is then trained against the real and

fake sets of classes.

Figure 3. Schematic of student network. Modality X1 is fed to

fT
1 (.). Extracted features fT

1 (X1) are then sent to the trained G

to hallucinate the missing modality through G(fT
1 (X1)). Both

fT
1 (X1) and G(fT

1 (X1)) are concatenated and sent to the classifier

fS

C .

set of C land-cover classes. For the MS-PAN data, we con-

sider the images as the inputs for both the modalities while

for the HSI datasets, local patches centered around the pixel

locations are considered in order to jointly capture both the

spectral and spatial information. The teacher model is re-

garded as the cumbersome model which is trained with the

privileged information. In particular, the teacher network

T consists of two modality specific feature extractors fT
1 (·)

and fT
2 (·) (we refer to them as featurenets) and a classifi-

cation model fT
C which considers the concatenated feature

representations (x̃i = [fT
1 (xi

1)f
T
2 (xi

2)]) obtained from the

featurenets as inputs and maps them onto the label space.

We realize both the feature extractors in terms of convolu-

tional networks while the classification module is defined

in terms of a feed-forward neural network model. Classi-

fication is subsequently carried out in terms of the softmax

cross-entropy loss as follows:

LT = −E(xi
1
,xi

2
,yi)∈X [yi log fT

C (x̃i)] (1)

The schematic for the teacher network can be found in

Fig. 1.

3.2. Modality hallucination using C-GAN

In our experimental setting, modality X2 is assumed to

be absent during inference and X1 as the available modal-

ity. Hence, our hallucination model H is devoted to hal-

lucinate fT
2 (xi

2) given fT
1 (xi

1) as the input. Note that we

are interested in hallucinating the features as learned by T
than the actual data themselves considering the discrimina-

tiveness of the features learned by fT
2 (·). By design, the

C-GAN model consists of a feature generator (G) or the

hallucination stream and a discriminator (D) network. The

feature generating network is conditioned on the samples

from fT
1 (X1) along with the label vector Y , respectively.

Moreover, we introduce two intuitive modifications in the

C-GAN architecture so as to avoid any possible trivial solu-

tion and to ensure the generation of more discriminative hal-

lucinated features which are at par with the features learned

by T . They are:

• We consider samples from X as well as augmented

samples by adding random Gaussian noise z ∈
N (0, 1) to fT

1 (X1). We note that for a given

(xi
1, x

i
2, y

i), even if we perturb fT
1 (xi

1) to generate a

cloud of feature points surrounding fT
1 (xi

1), we do not

modify fT
2 (xi

2) while hallucinating in order to ensure

robustness of the cross-modality mapping.

• The discriminator D is designed to output 2C class

scores where the real and fake samples are considered

per class basis. This mitigates the generation of poten-

tially spurious samples for modality fT
2 (X2). In par-

ticular, the label outputs of D (denoted as Ȳ) are en-

coded as vectors of length 2C where the given jth and

j + 1th index are labeled as 1 each based on whether

the input sample is the feature descriptor correspond-

ing to a real sample from the jth ∈ Y category from

X2 or hallucinated (fake).

Let X̄ = (x̄j
1, x

j
2, ȳ

j)Mj=1 where x̄
j
1 is either a sample

obtained from X (referred to as x
j
1) or a perturbed version

of x
j
1 (x

j
1 + z) and ȳj ∈ Ȳ , be the training samples used to

train H. To this end, both the G and D are trained based on

the adversarial min-max strategy through the optimization

of Lhal as stated in the equation 2.

min
G

max
D

Lhal = E(x̄j

1
,ȳj ,yj)[logD(G(fT

1 (x̄j
1|y

j , ȳj)))]

+E(xj

2
,ȳj ,yj)[logD(fT

2 (xj
2), ȳ

j)]

(2)

where | denotes the concatenation operation. Fig. 2

shows the schematic of modality hallucination through C-

GAN.



3.3. Training the student network

For the student model S, the featurenet fT
1 (·) for the

available modality X1 from the teacher T and the trained

generator of the hallucination network H are kept fixed

while only the student’s classifier is trained. Since modal-

ity X2 is absent during the testing phase, the student net-

work S is trained using the availability modality X1 only.

In principle, x̄
j
1 is first sent to featurenet fT

1 (.) to obtain the

feature representation fT
1 (x̄j

1) which is subsequently for-

warded to the generator G in order to generate the hallu-

cinated features G(fT
1 (x̄j

1)) corresponding to the missing

modality. Next, fT
1 (x̄j

1) and G(fT
1 (x̄i

1)) are concatenated

as x̂j = [fT
1 (x̄j

1), G(fT
1 (x̄j

1))] and is further used to train

the student’s classifier fS
C . However, we require that the

predictions of fS
C should not diverge much from the predic-

tions on fT
C on similar samples. In order to ensure the same,

we consider to jointly optimize a cross-entropy based clas-

sification loss and a knowledge distillation loss between the

teacher and the student which can be mentioned as:

LS = −E(x̂j ,yj)[y
j log fS

C(x̂
j)] + λ(||qj

T − q
j
S ||2) (3)

where, q
j
T and q

j
S are the softmax probability vectors of

size C × 1 (where C is the number of classes) for jth sam-

ple from teacher and student networks, respectively, where

a high temparature value is considered within the softmax

formulation. Precisely, the temperature based softmax nor-

malization is given as:

qjc =
ez

j
c/T

∑C
c=1 e

zj
c/T

(4)

where, qjc is the more soften softmax probability for cth

class, zjc is the logit scores for cth class given x̂j .

The hyperparameter λ is set empirically as we seek to

give more weightage to the classification term given the

teacher also performs some misclassification. The temper-

ature is fixed to a higher value (> 1) while training the

teacher and the student networks, however during testing

of the student network, its value is set back to 1 (Fig. 3).

3.4. Inference

For a given test sample x in modality-1, we utilize the

featurenet fT
1 and the hallucination generator G in order to

obtain fT
1 (x) and G(fT

1 (x)), respectively. These features

are concatenated and fed to fS
C in order to obtain the class

label for the sample.

4. Experiments and Results

Extensive experiments are conducted on remote sensing

datasets to validate the performance of our model and com-

pare it to existing approaches. We detail the evaluations and

discussions in the following.

4.1. Datasets

We consider two benchmark HSI datasets and an-

other multimodal dataset for RS where a large number of

multispectral-PAN patches are provided in pairs. While we

solve the pixel classification problem for the HSI datasets

by exploring both the spatial and spectral information, we

deal with the problem of scene recognition for the MS-PAN

dataset.

Multispectral-panchromatic dataset: The dataset con-

sists of multispectral (MS) imagery of 4 bands and panchro-

matic (PAN) imagery for a given geographical area with a

total of 80000 image pairs emanating from eight land-cover

classes. All the imageries are collected from multispectral

and panchromatic sensors of GF-1 satellite [19]. The size

of each MS image is 64 × 64 × 4 with 2m spatial reso-

lution whereas the size of the corresponding PAN imagery

is 256 × 256 pixels with spatial resolution of 8m. Fig. 4

shows colour composite for one of the MS samples and its

panchromatic counterpart.

Figure 4. Houston hyperspectral dataset: (a) Colour composite of

three bands for MS image. (b) PAN image.

Indian Pines hyperspectral dataset: Acquired by AVIRIS

sensor over the North-western Indiana, this HSI dataset [44]

is captured in 200 bands each of size 145× 145 with spatial

resolution of 20m. The area contains pixels from sixteen

pre-defined set of land-cover classes. As a whole, there

exist a total of 10249 pixels in the scene with associated

ground-truth labels (fig. 5 [44]).

Houston hyperpectral dataset: The imagery for Houston

dataset [11] (Fig. 6) is collected by National Center for

Airborne Laser Mapping over the campus of University of

Houston and surrounding urban areas. The imagery com-

prises of 144 bands each of size 1905 × 349 and a total

of 15 land-use/land-cover classes with spatial resolution of

2.5m. The number of pixel vectors with associated ground

truth classes is 15029.

4.2. Model Architectures

In this section, we detail the experimental protocols fol-

lowed and the model architectures for T , H, and S, respec-



Figure 5. Indian pines hyperspectral dataset: (a) Colour compos-

ite of three bands from red, green and blue wavelengths. (b)

Groundtruth image.

Figure 6. Houston hyperspectral dataset: (a) Colour composite of

three bands from red, green and blue wavelengths. (b) Groundtruth

with classes.

tively for each of the datasets.

Teacher model: The teacher network consists of two par-

allel featurenets which are realized in terms of CNN ar-

chitectures consisting of convolutional, pooling, and fully-

connected layers. In MS-PAN dataset, the MS images

are fed to featurenet-1 while the PAN images are fed to

featurenet-2, respectively. Each of the MS images is of size

64 × 64 × 4 while each PAN image is 256 × 256, there-

fore, the CNN corresponding to MS image is fixed to 3 lay-

ers of convolutions and pooling while that corresponding to

PAN image comprises of 4 convolutional and pooling lay-

ers since the latter requires further reduction in size. For

both the CNN encoders, 128 filters of size 5 × 5 are used

in their first layers, the second layer uses 128 filters of size

5× 5× 128 while the third layer uses 64 filters each of size

5× 5× 128. The fourth layer of featurenet-2 comprises of

64 filters with size 5 × 5 × 64. Both the layers use same

padding and max-pooling followed by batch normalization

and dropout with a rate of 10% and ReLU activation func-

tion. The strides in both convolutional filters and pooling

kernels is kept as 1.

In hyperspectral datasets, each pixel is a 1× 1×B pixel

vector (where B is the number of bands). Hence, a patch of

size 17×17 is created centering around each pixel location.

Thereafter, patches from each modality are sent to corre-

sponding CNN encoder for training. The CNN encoders

are similar to those used for MS-PAN dataset upto the third

layer.

The output from each CNN feature extractor is flattened

and sent to a two layer fully connected (FC) encoder with

512 and 200 nodes in the first and second layers, respec-

tively, to reduce the dimension of the features to 200. The

outputs from the FC encoder are concatenated and sent to a

3 layer FC neural network classifier fT
C (.) that consists of

400 and 200 nodes in the first and second layers followed

by a softmax layer with C nodes where C is the number of

classes. The classifier is trained on categorical cross entropy

loss.

Hallucination model: In the C-GAN based hallucination

model, both generator and discriminator are fully connected

3 layer neural networks with a softmax layer at the end of

the latter. However, the softmax layer consists of 2C nodes

since it takes into account both real and fake samples per

class. Both the networks use batch normalization, dropout

with 10% rate and ReLU activation.

Student model: The student model consists of the fea-

turenet corresponding to the available modality, the trained

generator (weights of both are kept fixed) and an FC mul-

tilayer classifier. The classifier is a 3 layer fully con-

nected neural network fS
C(.) that mimics the architecture of

fT
C (.) and is trained on the extracted features from available

modality and generated features for absent modality.

All the models are trained using Adam optimizer [16]

with a learning rate of 0.001.

4.3. Discussions

We consider two baselines for evaluating the perfor-

mance of the student’s classification module: i) we train

separate classification networks for each of the modalities

and report the classification performances, and ii) the per-

formance of the teacher model where the modality specific

features are fused to train the teacher’s classifier. For base-

line comparison, we consider a randomly selected set of

25% samples to train the student-teacher model and the

remaining 75% samples are utilized during testing. Spe-

cific to HSI, we consider two sets of randomly selected

non-overlapping bands for constituting modality-1 and 2,

respectively.

Apart from the baselines, we compare our model to the

hallucination techniques inspired from [9] (where the hal-

lucination is carried out using an encoder) and [10] (where



Network Accuracy (in %)

Stream MS 90.17

Stream PAN 92.58

Teacher 95.46

Teacher (avg) 98.07

Student with MS absent [9] 81.06

Student with PAN absent [9] 81.06

Student with MS absent [10] 37.24

Student with PAN absent [10] 37.35

Student with MS absent (proposed) 82.75

Student with PAN absent (proposed) 86.40

Table 1. Results on MS-PAN dataset.

Network Accuracy (in %)

Stream 1 73.53

Stream 2 54.91

Teacher 70.28

Student (proposed) 80.57

Table 2. Results on Indian Pines dataset.

Network Accuracy (in %)

Stream 1 95.28

Stream 2 91.80

Teacher 98.17

Student (proposed) 97.96

Table 3. Results on Houston dataset.

the softmax probabilities from two streams are averaged be-

fore classification) since the two aforementioned techniques

have been state of the art in the areas of modality halluci-

nation. The results for baseline comparison for MS-PAN

dataset, Indian pines dataset and Houston dataset are tabu-

lated in tables 1, 2 and 3 respectively.

We also carry out sensitivity analysis on Indian pines

dataset by varying the ratio of bands in each modality and

temperature. In addition, our C-GAN with discriminator

trained on 2C classes is also compared against C-GANs

with binary discriminator and with discriminator having

C + 1 classes.

MS-PAN dataset: For MS-PAN dataset, it is observed that

the accuracies for the MS stream (90.17%) and PAN stream

(92.58%) are comparable and that of the T (95.46%) sur-

passes the above two, which was expected. For S, the accu-

racies recorded for hallucination of PAN imagery (86.40%)

as well as for MS imagery (82.75%) are less than both

streams as well as teacher network. The similar trend is

observed for [9] as well where hallucination of PAN im-

Figure 7. t-SNE comparing the original and encoder generated fea-

tures for PAN imagery.

Figure 8. t-SNE comparing the original and encoder generated fea-

tures for MS imagery.

Figure 9. Variation in test accuracy with change in modality split

ratios conducted on Indian pines dataset.

agery from MS and vice versa give an accuracy of 81.06%
each. It could be concluded from these observations that the

MS and PAN bands do not share much correlated informa-

tion and hence features from one modality are not efficiently



Figure 10. Variation in test accuracy with change in temperature

conducted on Indian pines dataset.

generating the features of other modality. However, while

using the technique based on [10], it is observed that even

though the T gives accuracy as high as 98.07%, the student

networks give accuracies as low as 37.24% (when MS is

hallucinated) and 37.35% (when PAN is hallucinated). This

could mean that the CNN weights obtained as a result of av-

eraging do not extract as informative features that could be

used to generate the features of absent modality. Fig. 7

and fig. 8 show the t-SNE plots to compare generated PAN

features from available MS features and vice versa through

hallucination framework based on [9]. It is visible from the

t-SNEs that the generated features of absent modality and

original features of the same effectively overlap each other,

thus showing efficient hallucination.

Indian pines dataset: For Indian pines dataset, the ac-

curacy of T (70.28%) is less than stream 1 (73.53%) by

3.25%. In addition, the accuracy for stream 2 (54.91%) is

reported much less than stream 1. From this, it can be con-

cluded that the bands in modality 2 carry irrelevant infor-

mation, which hinders the performance of T as well. The

accuracy for S (80.57%) surpasses both single stream as

well as teacher models. This shows that the generated fea-

tures from the H were able to fully capture the distribution

of the original features and overcome the effects of band

correlation thereby leading to better results.

Fig. 9 presents the trend of sensitivity analysis for the

percentage of bands included and first and second modali-

ties respectively for Indian pines dataset. For every instance

except 75% − 25% split, the S outperforms the T . From

this, it is concluded that even with less number of available

bands, H is able to generate better features.

Fig. 10 shows the variation in accuracies of T and S
with respect to change in temperature keeping the train-test

split fixed to 25% − 75% and band split to 50% − 50%.

The maximum accuracy is achieved when the temperature

is fixed to 2.

Houston dataset: In case of Houston dataset, we can see

that the T with 98.17% accuracy outperforms both stream

1 (95.28%) and stream 2 (91.80%) which is in concurrence

with our expectations. The accuracy of S (97.96%) also

surpasses the ones obtained from both the streams and only

lags behind the T with a difference of 0.21%. It could be in-

ferred from this, that the H is able to generate absent modal-

ity with greater accuracy and therefore the student classifier

is able to learn efficient representations.

We do not compare the performance on HSI datasets to

[9] and [10] because there, the student network either beats

the teacher network or lags behind by a very small mar-

gin, which shows the efficiency of hallucination of absent

modality.

Choice of discriminator architecture: We choose a dis-

criminator that is trained on two sets of classes (real and

fake) based on the intuition that training on two sets would

make the model more susceptible to identify interclass and

intraclass variances and reduce the misclassification rate

among the generated features. This is an improvement over

using the binary discriminator since it is unable to capture

the intraclass variance. In addition, our discriminator also

works better than the one that trains on C + 1 classes since

the chances of misclassification among generated features

is high in the latter’s case. The models that had binary and

C + 1 class discriminators gave classification accuracies as

low as 30% that further strengthens our intuition.

5. Conclusions

We deal with the problem of modality distillation in the

context of RS image classification. Given our data are rep-

resented by multiple modalities, we consider the scenario

when all the modalities are available during training but

some of the modalities are missing for the test data. We

follow the standard teacher-student framework where the

teacher model is trained on the multi-modal information.

The student model, on the other hand has two tasks: i) to

learn to hallucinate the missing modalities from the avail-

able one, and ii) train the student’s classifier by using the

available and hallucinated modalities. For modality hallu-

cination, we propose a novel C-GAN based model which

ensures the generation of classwise distinctive samples. We

perform extensive experiments of different kinds on RS

datasets to showcase the efficacy of our model. As opposed

to the scenario where the student’s classifier is trained on

the training samples deployed to train the target, we are cur-

rently interested in exploring the notion of zero-shot knowl-

edge distillation in this context where pseudo samples are

learned to train the student.
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