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Abstract

Crowd counting which aims to calculate the number of

total instances on an image is a classic but crucial task

that supports many applications. Most of the prior works

are based on the RGB channels on the images and achieve

satisfied performance. However, previous approaches suf-

fer from counting highly congested region due to the in-

complete and blurry shapes. In this paper, we present an

effective crowd counting method, Depth Enhanced Crowd

Counting Network (DECCNet), which leverages the es-

timated depth information with our novel Bidirectional

Cross-modal Attention (BCA) mechanism. Utilizing the

depth information enables our model to explicitly learn to

pay attention to those congested regions on the basis of the

depth information. Our BCA mechanism interactively fuses

two different input modalities by learning to focus on the in-

formative parts according to each other. In our experiments,

we demonstrate that DECCNet outperforms the state-of-

the-art on the two largest crowd counting datasets avail-

able, including UCF-QNRF, which has the highest crowd

density. The visualized result shows that our method can

accurately regress dense regions through leveraging depth

information. Ablation studies also indicate that each com-

ponent of our method is beneficial to final prediction.

1. Introduction

Crowd counting has attracted the researchers, thanks to

the massive growth of the various types of unmanned cam-

eras. Many applications such as traffic control, election

rally or video surveillance are built upon the accurate crowd

counting. Recent methods [2, 4, 8, 20, 24, 29, 32, 35, 37]

estimate the count with RGB channels on the image by

generating density map without explicitly detect accurate

position then taking integration of whole predicted density

map and achieve promising results. These methods most

leverage CNN architecture due to its excellent feature rep-

resentation learning compared with hand-crafted features.

However, these approaches suffer from highly congested

regions due to severe occlusion, perspective distortion and
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Figure 1. This figure explains the design intuition of our method.

The left column is RGB image and its corresponding depth chan-

nel. The right column is the distribution of each bounding box. It

can be observed that deep regions tend to have denser crowds. In

RGB image, the color distribution of the solid box (dense region)

and the dashed box (sparse region) are roughly the same, while

in the depth image, their corresponding depth value is quite dif-

ferent, providing extra information compared to RGB and can be

leveraged as prior to the network.

non-uniform crowd distribution where the RGB channels

of pixels are too small to offer the informative representa-

tion to the crowd counting networks, demonstrated in figure

1. Furthermore, we find that those regions are often deeper

among the whole image, resulting in the count of pixels of

each head is smaller than other, which is hard to estimate

than those close-to-camera heads.

To tackle this, we introduce an effective Depth Enhanced

Crowd Counting Network (DECCNet), which leverages the

RGB channels with our estimated depth information that

has been widely used and improves many tasks such as ob-

ject detection [34], image segmentation [15] and 3D scene

reconstruction [16]. Figure 1 explains the intuition of our

method. Since an image may contain several crowds that

distance of each crowd to camera differs, scale variation

of people hurts the performance. Furthermore, informa-

tion which RGB channel offers has insufficient capability

to represent such difference. But in the depth space, dis-
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Figure 2. Overall architecture of the proposed method. In addition to the RGB image, we also use the estimated depth as an input to our

model. Our proposed component, BCA (bidirectional cross-modal attention), which attends the color and depth modalities according to

another (details in section 3.3), is applied to two-stream Resnet encoder, while decoder is composed of a self-attention layer followed by

DUC layers. The final count is calculated by taking integration of the predicted density map.

tance of each pixel from the camera can be leveraged to

alleviate such problems, as demonstrated in figure 1. To

fuse two input modalities, we also propose a novel bidirec-

tional cross-modal attention (BCA) which attends the color

and depth modalities according to another, on the basis of

the observation that despite the depth is additionally infor-

mative, the depth and the RGB channels provide the signal

to each other to encourage the model to pay attention to the

desirable regions (figure 7).

The experiments on various benchmarks demonstrate

that our DECCNet surpasses the state-of-the-art models.

The qualitative results demonstrate that our proposed ap-

proach accurately estimates the far and blurry regions where

previous state-of-the-art methods suffer from (figure 4, 5

and 6). Our ablation study also shows the significance

of BCA by comparing different fusing methods and our

method performs better than directly concatenating depth as

the fourth channel for input RGB image or without BCA.

To summarize, our main contributions of this paper are

as follows:

• In addition to RGB data, we argue the importance of

depth information based on the observation in figure

1. To the best of our knowledge, we are the first to

discover the advantage of incorporating depth channel

to crowd counting. Recent works use only RGB as

input and tend to fail in highly congested regions due

to scale variation.

• We proposed an effective attention mechanism called

BCA (bidirectional cross-modal attention) to progres-

sively fuse two different input modalities and shows

that BCA can correctly focus on deep/dense regions.

• In ShanghaiTech dataset, we reach MAE of 58.6 in

part A and MAE of 7.1 in part B, and MAE of 107.9

in UCF-QNRF dataset which outperforms the state-of-

the-art crowd counting methods.

2. Related work

There is a large number of methods proposed in recent

years aimed at crowd counting and single image depth esti-

mation. In this section, we discuss each task respectively.

2.1. Crowd counting

Crowd counting methods can be mainly divided into

three categories: detection-based, regression-based and

density estimation-based method. Detection-based methods

such as [9, 11, 26] use head or body-part detectors to local-

ize each person’s position. However such methods often

fail on dense scenes due to severe occlusion and low reso-

lution of each person. To tackle this problem, regression-

based methods such as [5, 6] learn the mapping from im-

age feature to the number of people in a patch-based fash-

ion. This kind of methods consists of two steps, image

feature extraction and regression from the extracted fea-

tures. Although regression-based methods perform better

than detection-based methods, outputting only a number of

people lacks spatial information.

More recent works such as [4, 20, 24, 36] are density

estimation-based methods that leverage the power of CNN,

due to its great feature representation learning capability, to

generate density map. [45] propose a multi-column CNN

with various receptive-field size to aggregate different scale

of people/head. [33] proposes a switch CNN that consists of

a switcher and many independent regressors, each of them

has different receptive fields. [39] introduces a contextual

pyramid CNN which leverages global and local context of

crowd image. [24] use VGG backbone and dilated kernel to

enlarge the receptive field of convolution, resulting in per-

formance gain in congested regions. [35] generates density

maps by leveraging adversarial training, compared to only

using L2 loss, resulting in a sharper prediction. [20] pro-

posed a novel loss of combining count, density map esti-

mation and localization in addition to only MSE loss. [4]
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Figure 3. Encoder of DECCNet: Encoder uses the first 3 ResBlocks of ResNet-50 as the main backbone, coupled with proposed bidirec-

tional cross-modal attention mechanism (BCA). Detail of BCA can be found in section 3.3. Two input streams interactively attend to each

other after each ResBlock, scaling feature map for each modality. With BCA, two input modalities are progressively fused from the low

level feature to high level representations. Overall architecture can be found at table 1.

propose a novel SSIM [42] loss to emphasize local patch

consistency, and use an efficient Inception-like [40] net-

work that has only about 1M parameters. [36] propose

a perspective-aware network that simultaneously estimates

density maps and perspective maps resulting in state-of-the-

art performance. However, previous methods suffer from

estimation for those high-density regions due to scale varia-

tion of the crowd, which can be enhanced by leveraging our

proposed depth information.

2.2. Single image depth estimation

There are lots of works [10, 23, 27, 28] proposed to pre-

dict depth from a single RGB image. Some datasets such

as NYU [31] or KITTI [12] are generated by RGB-D sen-

sor or laser. Furthermore, MegaDepth [25] is a large dataset

whose images are collected from the Internet, containing

about 130K images. [10] presents a method that first gen-

erates a coarse global prediction then refines the predicting

locally. [27] formulates single image depth prediction into a

conditional random field learning problem, combined with

deep CNN. [23] proposes a novel end-to-end method that

leverages residual [17] architecture and can run in real time.

For this work, as estimating depth is not our main fo-

cus, we do not directly estimate depth from the RGB im-

age. Instead, we use a state-of-the-art pretrained model,

MegaDepth [25], to extract depth information from the

RGB image. Further end-to-end methods can be further in-

vestigated.

3. Method

In this section, we will discuss our proposed DECCNet

(figure 3) in detail. Section 3.1 presents the motivation, fol-

lowed by depth estimation in section 3.2, the network de-

sign in section 3.3 and the loss function in section 3.4.

3.1. Motivation

The bottleneck of the crowd counting task where previ-

ous methods suffer from is to accurately estimate the count

on certain regions where the instances are dense, small and

overlapping. Moreover, these instances can dominate the

count due to the high density. We observe that the regions

where previous approaches can hardly estimate are usually

far away from the viewpoint, and argue to fill this gap by en-

couraging the model to pay attention to the faraway regions.

Our framework leverages the encoder-decoder architecture

with following novelties: 1) combining depth channel along

with RGB as the input of the model and 2) bidirectional

cross-modal attention mechanism that effectively fuses two

input modalities.

3.2. Depth estimation

Since available crowd counting datasets have only RGB

images, generating depth information turns out to be a crit-

ical task. We decide to directly use MegaDepth [25] as our

main depth extraction model. MegaDepth is a state-of-the-

art single image depth estimation model trained on more

than 100K examples, including indoor and outdoor scenes,

which shows better prediction on crowd counting datasets

whose images are usually outdoor scenes, than other mod-

els.

Besides, to show the robustness of our concept that in-

corporating depth information is beneficial to final pre-

diction in spite of the quality of the estimated depth, we

also extract depth channel using MonoDepth [14] which is

mainly designed for KITTI [12], not general cases.



3.3. Network architecture

Inspired by [18], convolutional encoder-decoder archi-

tecture has shown great success in various works [3, 7].

Our proposed network consists of a front-end cross-modal

encoder to encode two different input modalities and a

back-end density map decoder to progressively generate

estimated density map. Encoder is a two-stream ResNet

[17] coupled with a novel attention mechanism, bidirec-

tional cross-modal attention (BCA), to fuse RGB and depth

inputs. Decoder uses self-attention mechanism [44] to

catch long-range dependency followed by Dense Upsam-

pling Convolution (DUC) [41] to generate the high resolu-

tion density map. Each component is discussed in the fol-

lowing section.

3.3.1 Cross-modal encoder

As shown in figure 3, we use the first 3 block of Resnet-50

as the main backbone due to Resnet’s powerful feature rep-

resentation. We remove the fourth block of Resnet and fully

connected layer since model should accept arbitrary input

size and the fourth block will downsample feature map to

1/16 of the original input size which is too small for later up-

sampling. Instead of directly concatenating RGB and depth

channel as input or lately fusing extracted feature of each

input modalities, we introduce a novel Bidirectional Cross-

modal Attention (BCA) mechanism to interactively affect

one stream by the other.

Suppose there are two stream, RGB stream and depth

stream, output of each ResBlock is denoted as:

R
{rgb,d}
i , i = {1, 2, 3}. (1)

Then Bidirectional Cross-modal Attention is defined as:

R
′rgb
i = R

rgb
i ⊗ Sigmoid(Conv(Rd

i )), (2)

R′d
i = Rd

i ⊗ Sigmoid(Conv(Rrgb
i )). (3)

⊗ denotes element-wise multiplication with broadcasting

and Conv is 1 × 1 convolution that reduces the number of

channels to one to generate an attention map. Then R
′rgb,d
i

is used as input to next ResBlock or decoder that extracts

higher level representations or generate density map.

There are two attention directions, one is depth to RGB,

and the other is RGB to depth. Depth to RGB, shown in

equation 2, scales the RGB feature map by depth stream,

making RGB stream focus on deep regions. On the other

hand, RGB to depth, shown in equation 3, use RGB infor-

mation to enhance depth stream since depth information our

model used is an estimation, not an accurate one.

This BCA mechanism is repeated three times for each

output of ResBlock, progressively fusing two input modali-

ties from low level feature map to high level representations

Network Architecture

RGB Depth

Cross-modal encoder

c48k7s2 c48k7s2

ResBlock (f=48, s=3) ResBlock (f=48, s=3)

Bidirectional cross-modal attention (BCA)

ResBlock (f=96, s=4) ResBlock (f=96, s=4)

BCA

ResBlock (f=192, s=6) ResBlock (f=192, s=6)

BCA

Density map decoder

concat

c512k1s1

Self-Attention

2*c256k3s1, DUC (r=2)

2*c128k3s1, DUC (r=2)

2*c64k3s1, DUC (r=2)

2*c32k3s1

c1k1s1

Output

Table 1. Detailed network architecture of DECCNet. 2*c256k3s1

denotes convolution operation with 256 output channels, kernel

size of 3 × 3, strides 1, repeated 2 times. ResBlock (f=48, s=3)

means a standard ResBlock with 48 initial filter, block size of 3.

DUC (r=2) means exchanging feature map of 1×1×4 for 2×2×1.

Details of BCA can be found at figure 3 and section 3.3.

(see figure 7). Final outputs of each stream are concate-

nated and then send to decoder. Table 4 shows the effec-

tiveness of BCA. Besides its performance, BCA uses only

1 × 1 convolution to produce a one-channel attention map

for each stream, slightly increasing trainable parameters by

about 2.7K of the whole network, but significantly reduces

the error (table 4), indicating that this attention mechanism

is also an efficient one.

3.3.2 Density map decoder

Density map decoder is composed of a standard 1x1 con-

volution to reduce the channel sent from the encoder and

self-attention mechanism [44] followed by Dense Upsam-

pling Convolution [41]. These components are commonly

used in other areas but also boost the performance of our

work.

Self-attention mechanism is firstly used on Generative

Adversarial Network, which fails to capture geometric or

structural patterns [44]. Instead of standard convolution op-

eration only processing information of local neighborhood,

self-attention mechanism attends on each pixel guided by

global context. By incorporating self-attention mechanism

in our crowd counting network, decoder can deal with the

long-range dependency which crowd regions on images of-



ten present.

Since the size of the feature map sent from the encoder

is only 1/8 of the original image, directly upsampling to

original size using bilinear method leads to blurry density

maps. Hence, choosing an appropriate upsampling method

is important, considering the quality of the predicted den-

sity map. Dense Upsampling Convolution [41], also known

as pixel shuffler or sub-pixel convolution, upsample the fea-

ture map by reassigning each 1∗1∗r2 feature map subregion

to r∗r∗1, without any parameterized operation. Since DUC

exchanges channel for space, two convolutional layers are

applied after each DUC operation to increase the channel

for later DUC layers. Experiments show that DUC can gen-

erate high quality density map as shown in figure 4.

3.4. Loss functions

Our model leverages two loss functions, euclidean loss

and SSIM loss. The former focuses on pixel-wise similarity

while the latter emphasizes patch consistency.

3.4.1 Euclidean loss

Instead of estimating a single number of people of the given

image, our method regresses each pixel of density map

whose size is the same as the input. Thus, Euclidean loss

is chosen to force the estimated density map as close as

ground truth as possible. Euclidean loss compares the dif-

ference between two images, defined as:

LE =
1

N

N
∑

i=1

‖Pi −GTi‖
2, (4)

supposed there are N pixels in a given image where Pi is

the prediction of our model and GTi is ground truth density

map.

3.4.2 SSIM loss

SSIM [42] is firstly used to measure the structural similarity

of images. [4] uses SSIM as loss function to train network

and achieves promising result. Compared with Euclidean

loss, which encourages only the similarity of each, not a

group of pixels. SSIM loss considers the local patch con-

sistency by applying a sliding window on the given image,

computing each region’s SSIM respectively. Following [4],

we use a 11x11 Gaussian kernel with a standard deviation

of 1.5 to compute local statistics. SSIM of a given point is

defined as:

SSIM =
(2μpμgt + c1)(2σp,gt + c2)

(μ2
p + μ2

gt + c1)(σ2
p + σ2

gt + c2)
(5)

where μp and μgt are mean and σp and σgt are standard

deviation of prediction map and ground truth density map,

ShanghaiTech Dataset

Part A Part B

Method MAE MSE MAE MSE

Zhang et al. [43] 181.8 277.7 32.0 49.8

MCNN [45] 110.2 173.2 26.4 41.3

CP-CNN [39] 73.6 106.4 20.1 30.1

ic-CNN [32] 68.5 116.2 10.7 16.0

CSRNet [24] 68.2 115.0 10.6 16.0

SANet [4] 67.0 104.5 8.4 13.6

PACNN [36] 62.4 102.0 7.6 11.8

DECCNet (Ours) 58.6 101.1 7.1 11.4

Table 2. The performance comparison between DECCNet and

other methods evaluated on both parts of ShanghaiTech dataset.

Average count of people in part A is higher than part B. Lower

MAE/MSE represents better performance. Our method outper-

forms all previous methods by a large margin.

σp,gt denotes the covariance, c1 and c2 are small value to

avoid division by zero.

Aggregating each pixel of prediction, SSIM loss is de-

fined as:

LSSIM = 1−
1

N

∑

SSIM(x), (6)

where x is the position of the map.

Final loss is calculated by fusing these two loss func-

tions:

L = LE + λLSSIM , (7)

where λ is used to balance two loss functions. In this paper

we set λ to 1e− 3.

4. Experiments

In this section, we first discuss the datasets used to eval-

uate our method in section 4.1, implementation details in

section 4.2, followed by main result in section 4.3. Abla-

tion studies and visualization are discussed in section 4.4

and section 4.5 respectively.

4.1. Datasets

There are several crowd counting datasets, ranging from

sparse to dense crowds. We experiment our method on two

largest and well-annotated crowd counting datasets: Shang-

haiTech and UCF-QNRF.

ShanghaiTech [45]: It contains 1198 images in RGB or

greyscale with 330,165 annotations on the center of each

head, divided into two parts A and B. Part A has 482 im-

ages, 300 for training and 182 for testing. Part B has 716

images, 400 for training and 316 for testing. The main dif-

ferences between part A and B is that part A is collected

from Internet whose average count of people is 501 while
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Figure 4. Visualization of predicted density map and final count of our method. First row is the original RGB image, second row is depth

generated from pretrained model, third row is ground truth density map and fourth row is our model’s prediction. It’s obvious that with the

help of depth information, those congested regions can be accurately estimated.

UCF-QNRF Dataset

Method MAE MSE

Idrees [19] 315.0 508.0

MCNN [45] 277.0 426.0

Switch-CNN [33] 228.0 445.0

CMTL [38] 252.0 514.0

CL [20] 132.0 191.0

DECCNet (Ours) 107.9 179.0

Table 3. This table shows the performance comparison between

our method and the state-of-the-arts evaluated on UCF-QNRF

dataset, which is the most challengeable one. Our DECCNet

reaches MAE of 107.9 which is 18% lower than previous meth-

ods.

part B is collected from busy streets of metropolitan areas

in Shanghai, China, which has an average count of 123.

UCF-QNRF [20]: This is the largest and the newest

real-world crowd counting dataset. Collected from the In-

ternet, this dataset contains highly congested crowd image

with higher resolution (2013 × 2092 on average), denser

crowds (815 people per image on average) and finer anno-

tations. Training set consists of 1201 images while testing

set has 334 images.

4.2. Implementation details

First, we need to generate ground truth density map as

training target. Since annotations in the aforementioned

datasets have only coordinate of each person, We can gen-

Ablation Studies

Part A Part B

Method MAE MSE MAE MSE

DECCNet 58.6 101.1 7.1 11.4

RGB-D fused 63.9 106.3 8.7 14.8

MonoDepth 61.5 97.2 8.6 14.4

w/o depth 60.8 102.9 9.3 15.1

w/o BCA 62.4 104.6 9.1 14.1

w/o self-attn 62.0 102.2 8.3 13.9

w/o DUC 58.9 101.9 8.7 14.6

Table 4. Ablation studies conducted on ShanghaiTech dataset.

MonoDepth denotes replacing MegaDepth with MonoDepth.

RGB-D fused denotes directly using depth information as 4
th

channel of RGB image, which results in a one stream network.

This table shows the significance of each component of our net-

work. Dropping any of them leads to performance decrease.

erate a binary map as:

Hi,j =

{

1 if (i, j) is annotated
0 else

(8)

Then convolve H with geometric-adaptive Gaussian kernel

[45] or fixed Gaussian kernel. Part A of ShanghaiTech is

generated by applying geometric-adaptive Gaussian kernel

and others are generated by a fixed kernel.

Since images’ sizes are different, for those images big-

ger than 1024×768, we resize their height to 768, then ran-

domly crop a patch of 256×256 during training. To prevent
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Figure 5. Failure cases. First row is the original RGB image, sec-

ond row is depth generated from pretrained model, third row is

ground truth density map and fourth row is our model’s predic-

tion. Depth prediction of these images is noisy and inaccurate.

Our method depends on two input, RGB and depth. If one is in-

complete or erroneous, performance will degrade.
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Figure 6. Comparison versus state-of-the-art. First row is the origi-

nal image, second row is ground truth density map, third row is the

prediction of CSRNet and fourth row is our prediction. In highly

congested regions, our DECCNet generates more accurate crowd

distribution and final count.

overfitting, each example is horizontally flipped with proba-

bility 0.5 and converted to grey scale with probability 0.1 if

the original image is RGB to simulate the presence of grey

scale images. Batch normalization [21] and Relu [30] are

applied after each convolution layer. Our network is trained

from scratch without any pretrained weight. Weights on

ResBlocks are initialized with Xavier [13] initialization and

the rest are initialized with Gaussian distribution using zero

mean and 0.01 standard deviation. Adam [22] optimizer is

used because it shows faster convergence on this task, learn-

ing rate is set to 1e− 4 with 1e− 7 weight decay and batch

size is set to 16. All of the experiments are implemented by

TensorFlow [1] framework.

To evaluate performance, previous works [4, 20, 24, 29]

use MAE (Mean Absolute Error) and MSE (Mean Square

Error) as evaluation metrics, defined as follows:

MAE =
1

M

M
∑

i=1

|Predi − Cnti| (9)

MSE =

√

√

√

√

1

M

M
∑

i=1

|Predi − Cnti|2 (10)

where M is total images, Predi is prediction count inte-

grated from predicted density map and Cnti is ground truth

count.

Different from [4, 24, 35], which use the patch-based

testing scheme. We empirically find out that directly input

the whole image during testing to our network resulting in

better performance.

4.3. Results

Table 2 shows the result of our method versus the state-

of-the-art evaluated on ShanghaiTech dataset. Our DECC-

Net (last row) achieves the lowest MAE of 58.6 in harder

part A with higher density and significantly outperforms

the state-of-the-art, with 6% better, indicating our proposed

method, as mentioned in section 3.3, can deal with high

density regions. In part B with a relatively lower density

of crowds, our approach also reaches a new state-of-the-art

result, with 7% better. Figure 4 and figure 5 present the

density estimation examples of part A of ShanghaiTech.

Table 3 compares the result of DECCNet versus sev-

eral methods evaluated on UCF-QNRF dataset, which is the

largest, newest and most challengeable dataset available. In

this dataset our method achieves the lowest MAE of 107.9,

outperforming other methods by a large margin.

4.4. Ablation studies

To verify the effectiveness of each component of our

architecture, we conduct ablation studies on both part of

ShanghaiTech dataset, containing several different settings:

1) replace MegaDepth with MonoDepth, 2) remove depth

information from input, resulting in a one stream Resnet

encoder, where decoder remains the same, 3) remove BCA,
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Figure 7. Attention map of the proposed novel BCA component. The first row is the original image, the second row is the attention map

of depth stream after third ResBlock, and the third row is the attention map of RGB stream after third ResBlock. We can see that in the

second row, the proposed BCA component can attend on those deep regions, while the third row demonstrates the information flow from

RGB to depth stream, guiding it to attend on high density regions.

so that two streams cannot affect each other in middle lay-

ers, 4) remove self-attention, which is used to catch long-

range dependency and 5) remove DUC, where bilinear up-

sampling is used instead.

As shown in table 4, dropping each component of our

network leads to performance decrease. For example, di-

rectly combining depth as the fourth channel leads to a sig-

nificant performance drop, possibly due to the distribution

difference between two modalities (figure 1). And if BCA

component is removed from the encoder, MAE/MSE of

both part of ShanghaiTech dataset also increases, indicating

the importance of designing a proper fusing method. Be-

sides, if we replace the depth estimation model with Mon-

oDepth, our model can still reach a reasonable performance,

indicating the generalization of the proposed method.

4.5. Visualization

In addition to quantitative result, we also present qual-

itative result on figure 4, 5, 6 and 7. Figure 4 shows the

results that are most accurate among ShanghaiTech dataset.

Congested regions on those images are far away from the

camera, which are deep as well. Furthermore, depth predic-

tion of these images are roughly correct, which is beneficial

to the model.

Figure 5 shows the failure cases of our method. Al-

though the appearances on the predicted density map are

roughly the same as ground truth, final counts are still

inaccurate. Specifically, extracted depth information of

those images is incomplete or noisy, leading to performance

degradation. In other words, our method quite depends on

the quality of the depth channel.

Figure 6 shows the comparison versus state-of-the-art.

CSRNet [24] tends to fail on those congested regions while

our method produces finer estimation.

Figure 7 presents the effectiveness of BCA component.

Since BCA is a bidirectional attention mechanism and takes

place in each of three ResBlocks, we decide to visualize the

attention map of each stream after third ResBlock, where

high level feature map contains more semantic and global

meaning of input. Designing intention of this component

is to interactively enhance RGB stream by depth stream,

and vice versa. Depth attention, as shown in the second

column of figure 7, successfully attends on hard cases, most

of which are deep and congested. RGB attention, shown in

the third column, guides the other stream to focus on high

density region to a certain degree.

5. Conclusion

In this paper, we introduce a novel depth enhanced

crowd counting network to accurately estimate crowd den-

sity of the given image, especially highly congested regions.

Leveraging depth information along with RGB data pro-

vides an extra capability for our model to pay attention to

deep regions. We demonstrate our method with state-of-

the-art and reach the best performance. Experiments show

the necessity of BCA and the depth channel. Since depth

information we used is an estimation, if accurate depth is

available, our performance can be further improved.
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