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Abstract

In this paper, we present the enhanced Attentional Gen-

erative Adversarial Network (e-AttnGAN) with improved

training stability for text-to-image synthesis. e-AttnGAN’s

integrated attention module utilizes both sentence and word

context features and performs feature-wise linear modula-

tion (FiLM) to fuse visual and natural language represen-

tations. In addition to multimodal similarity learning for

text and image features of AttnGAN [28], cosine and fea-

ture matching losses of real and generated images are in-

cluded while employing a classification loss for “significant

attributes”. In order to improve the stability of the train-

ing and solve the issue of model collapse, spectral normal-

ization and two-time scale update for the discriminator are

used together with instance noise. Our experiments show

that e-AttnGAN outperforms state-of-the-art methods on the

FashionGen and DeepFashion-Synthesis datasets.

1. Introduction

The focus of the work presented in this paper is the task

of text-to-image generation which aims to produce realistic

images that match text descriptions. Recently introduced

Attentional Generative Adversarial Network (AttnGAN)

[28] has improved both image quality and text-image simi-

larity compared to the previous methods [20, 31]. AttnGAN

is comprised of hierarchically connected attentional genera-

tive networks to gradually generate multi-scale images with

an attention model over word embeddings in the network.

In this paper, we present an enhanced version of At-

tnGAN called e-AttnGAN. The e-AttnGAN incorporates

an integrated attention module which includes both word

and sentence context features in the image generation pro-

cess with Feature-wise Linear Modulation (FiLM) [18] lay-

ers which have the ability to manipulate the visual features

without extra supervision.

Long sleeve shirt in tones of red, black,
and white. Plaid pattern and mother-of-

pearl buttons throughout, wrinkled texture.

Slim-fit trousers in tones of green, grey, blue.
Mottled floral camo print throughout. Four-

pocket styling. Tonal stitching.

Long sleeve semi-sheer sweater in tones
of light grey. Striped panels throughout.

Ribbed crewneck collar. Tonal stitching.

Figure 1. Text-to-image synthesis examples of e-AttnGAN using

the FashionGen dataset [21]

.
In addition to the integrated attention module, e-

AttGAN includes the following enhancements for improv-

ing text/image similarity and for stabilizing training (1) co-

sine similarity and feature matching [22] learning between

the generated and real samples to guide the generator net-

work on the expected data representations, (2) classification

losses to ensure that the generated image consists of im-

portant attributes such as clothing category and color, (3)

spectral normalization [17] to address the instabilities in the

training of AttnGAN, (4) two-time-scale update rule [12]

for the discriminator network that is affected by the spec-

tral normalization, and (5) instance noise to inputs of the

discriminator network to evade “mode collapse”.

Figure 1 presents some images generated by our pro-

posed e-AttnGAN based on text descriptions from the Fash-

ionGen dataset [21]. It is evident that e-AttnGAN is able to

generate high-quality precise images that are semantically

consistent with the desired clothing attributes such as cloth-

ing category, color, sleeve length and pattern. An earlier

version of e-AttnGAN which lacked the integrated atten-

tion module and stabilized training attained the second rank

at the FashionGen Challenge [21] held at ECCV2018 work-

shop Computer Vision for Fashion, Art and Design.

2. Related Work

Generative Adversarial Networks (GANs) introduced by

Goodfellow et. al [9] have demonstrated remarkable suc-
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Figure 2. e-AttnGAN architecture for text-to-image synthesis.

cess in many computer vision problems including image

generation [22, 19], image-to-image translation [13, 7].

GANs consist of a generator and a discriminator networks

where they compete with each other in a minmax game.

Reed et. al [20], the first to use GANs for text-to-image

synthesis, is able to generate low-resolution images (642).

StackGAN++ [31] aim to generate realistic images using

tree-like structures with multiple generators and discrimi-

nators. AttnGAN [29] has a similar structure with Stack-

GAN++ but additionally consists of attention modules and

a deep similarity model.

Fashion related research include [15, 24], attribute dis-

covery [11, 26], recommendation [5, 23], retrieval [8, 2, 1,

3] , fashion parsing [14, 30] as well as GANs [32, 27, 4].

3. e-AttnGAN

In this section, following a brief description of the At-

tnGAN architecture [28], we present details of enhance-

ments made to realize the e-AttnGAN architecture which

is summarized in the block diagram of Figure 2.

Attentional adversarial generative network (AttnGAN)

uses attention over word embeddings within an input se-

quence to generate images guided by the deep attentional

multimodal similarity model (DAMSM). The training of

DAMSM [29] is based on the multimodal similarity be-

tween text and image which is made possible with joint co-

operation of a Convolutional Neural Network (CNN) and

a bi-directional Long Short-Term Memory (LSTM). Word

representations are extracted by concatenating two hidden

states of a word. A global vector which represents the sen-

tence is created by concatenating the last hidden state of the

bi-directional LSTM while local and global image features

are extracted from the Inception-v3 network [25]. AttnGAN

consists of hierarchically connected discriminators Di, and

generators Gi for different resolutions and training is based

on multimodal similarity losses between “word features vs
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Figure 3. FiLM-ed resblock structure.

local image features” and “sentence features vs global im-

age features” in addition to adversarial loss.

3.1. Improved Conditioning with FiLM Layers.

In addition to word-context features (attention model)

F att,w
i proposed in AttnGAN, we include sentence-context

features F att,s
i to the generation process of e-AttnGAN.

Rather than simply concatenating visual and language de-

scriptions to calculate the next hidden feature hi, we follow

an advanced procedure to fuse language and visual repre-

sentations. FiLM [18] applies a feature-wise affine trans-

formation to the output of a convolutional block, where the

transformation weights are conditioned on language. This

process enables language features to modify visual features

defined as follows:

γi = Wγ,iF
c
i βi = Wβ,iF

c
i

Z
′

i = γi ◦ hi−1ci + βi

(1)

where βi, γi are modeled as convolutional layers and the

output is defined as Zi, Fi is concatenated form of F att,w
i

and F att,s
i . As can be seen from Figure 3 and Eq. 1, the out-

put is estimated as a combination of visual and language de-

scriptions. Figure 3 shows the combined form of FiLM and

residual layers which is called FilM-ed resblock [10, 16].

We replace res-blocks in AttnGAN with FilM-ed resblocks.

3.2. Deep Similarity & Attribute Learning

The aim of employing similarity learning is to establish a

new semantic feature space where image and language fea-

tures are similar to each other. In addition to the DAMSM

used in AttnGAN [28], we include feature matching, cosine

similarity and classification losses between real and gener-

ated images to further improve text/image correlation and

image quality.

Feature matching & cosine similarity losses A trick to

avoid the instabilities in the training which is also discussed

in Salimans et. al [22] is called feature matching. It can be

applied to the generator and the aim is to generate data that

is close to the real ones in the feature space. We define the

feature matching loss for the generator as:

LG
feat = λfeat||f(x

∗)− f(x)||2
2

(2)



where f represents the final layer from CNN in DAMSM.

Similarly, we define a cosine similarity loss using x∗ and x
and denote it LG

sim with λsim weight.

Classification loss. We impose classification losses to

make sure the network pays more attention to “significant

attributes” such as clothing category, color, sleeve, etc. In

order to ensure that these attributes are present in the gener-

ated image, we add an additional convolutional layer at the

end of each discriminator and impose classification losses

on both D and G. The classification loss for D is defined as:

LD
cls = λcls

n
∑

i=1

[

Ex[−logDi,cls(c|xi)]
]

(3)

where xi represents real images in different resolutions and

Di,cls(c|xi) is the probability distribution of classifying xi

as the corresponding domain label c.
While D is trained to classify the real image with its cor-

responding label, we enforce a similar loss function for the

generator network to ensure that the generated images x∗

i

consist of desired attributes defined as:

LG
cls = λcls

n
∑

i=1

[

Ex∗ [−logDi,cls(c|x
∗

i )]
]

(4)

where the term Di,cls(c|x
∗

i ) is calculated using the addi-

tional classification layers of Di’s. Note that, we do not in-

clude an additional input to signal desired attributes as that

information is already available in language descriptions.

e-AttnGAN uses three generators to generate 256x256
images as shown in Figure 2. We use the same DAMSM

structure from AttnGAN for feature extraction and limit

number of words to 15. The loss term can be jointly opti-

mized with λcls = 10, λfeat = 10, λsim = 50, in addition

to adversarial and DAMSM losses of AttnGAN.

4. Stabilizing the Training of e-AttnGAN

Several methods were adopted to improve the training

and address instabilities have proven to be effective. The

first is Spectral Normalization by Miyato et. al [17], a com-

putationally inexpensive weight normalization technique

that can be used to address the instabilities in training GANs

without requiring any parameter tuning. We also adopt the

two time-scale update rule (TTUR) introduced by Heusal et.

al [12] which proposes the use of individual learning rates

for the discriminator and generator networks to accelerate

the training. An issue when training GANs is “mode col-

lapse” where the generator network collapses and starts to

generate a limited range of samples. To address this, we add

instance noise to the inputs of the discriminator as in [6].
5. Experiments

In this section, we compare e-AttnGAN with state-of-

the-art methods and also present an ablation study. We

choose to use FashionGen [21] and DeepFashion-Synthesis

[32] datasets as they include text descriptions to describe

each image. For comparison, the inception score [22], R-

precision and classification accuracy are used.

Table 1. Quantitative results on FashionGen dataset.
Inception Score R-precision (%)

StackGAN++ 5.46± 0.13 17.5
AttnGAN 7.94± 0.13 68.28

e-AttnGAN 8.97 ± 0.15 72.00

w/ integ. att. 8.87± 0.12 67.79

w/ integ. att. (no sent.) 8.27± 0.12 65.73

w/ LD
cls, L

G
cls 10.41± 0.18 71.71

w/ LG
feat + LG

sim 9.27± 0.22 67.79

Table 2. Quantitative results on DeepFashion dataset.
Inception Score R-precision (%) Avg. Cls. Acc. (%)

StackGAN++ 1.74± 0.02 12.3 37.08

AttnGAN 4.12± 0.06 70.73 56.18

e-AttnGAN 4.77 ± 0.10 76.21 58.39

w/ integ. att. 4.11± 0.10 67.99 53.3

w/ integ. att. (no sent.) 3.72± 0.04 62.85 54.87

w/ LD
cls, L

G
cls 4.75± 0.14 71.29 59.02

w/ LG
feat + LG

sim 4.28± 0.11 71.53 56.55

5.1. Results

The quantitative results reported in Tables 1 and 2

clearly show that e-AttnGAN outperforms both AttnGAN

and StackGAN++ for all three evaluation metrics in both

datasets. These results show that the enhancements en-

able e-AttnGAN to generate more realistic images (In-

ception score) while improving text/image correlation (R-

precision). For classification accuracy, e-AttnGAN outper-

forms AttnGAN by 2.21% .

Ablation studies are reported at the last four rows of

Tables 1 and 2 to examine the effects of enhancements

compared to AttnGAN. The proposed integrated attention

module “w/integ. att.” increases the inception score by

0.93 for the FashionGen dataset. In terms of R-precision

and classification accuracy, a performance drop is observed

due to the increased complexity and unstabilized training.

The inclusion of sentence-context features “w/integ. att.
(nosent.)” improves the performance for both datasets.

The most successful enhancement is the inclusion of clas-

sification losses “w/LD
cls, L

G
cls” which results on improve-

ments for all metrics. Lastly, including feature similarity

and matching objectives “w/LG
feat + LG

sim” improves the

inception score but decreases R-precision in FashionGen

dataset. It should be noted that some of the proposed en-

hancements may increase certain metrics while decreasing

others which we believe is due to the increased complexity

of appended enhancements. This problem was overcome by

using the proposed training stabilization techniques which

enables e-AttnGAN to achieve state-of-the-art results.

6. Conclusion

The e-AttnGAN proposed in this paper for synthesizing
fashion images from the text descriptions has been shown
to have major performance improvements over state-of-the-
art methods. A possible future direction would be solv-
ing problems when generating humans parts as e-AttnGAN
tends to focus more on text/image correlation.
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