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Abstract

The goal of this paper is to find an effective method to

retrieve an image with a fashion instance from one domain

based on a similar fashion instance image from a different

domain. Where existing works focus on retrieving relevant

shop images based on a consumer instance, we introduce

the reverse task and treat both tasks equally in our training

setup. We use several deep metric learning techniques to get

baseline scores for these tasks on the DeepFashion2 dataset

and we show how ensemble methods can be used to boost

the performance.

1. Introduction

This paper focuses on cross-domain fashion instance re-

trieval. This is a specific type of image instance retrieval

where query and gallery images come from different do-

mains. Cross-domain instance retrieval has been studied in

the past for fashion [2, 6, 7, 9, 12], but also for other tasks

such as visual place recognition [1] and hotel instance re-

trieval [17]. For these examples, a gallery with higher qual-

ity commercial images is queried with a lower quality user

image. However, the reverse setup with low quality gallery

images and high quality query images has not been stud-

ied in fashion. This can still be relevant, for example for

forensic science where clothing items are used for person

re-identification. Both tasks are explained in Figure 1.

Many cross-domain fashion instance retrieval models

use simple approaches based on the triplet loss [14]. Af-

ter [14], variations of the triplet loss showed an increase in

performance [5, 15, 16, 18]. To the best of our knowledge,

an evaluation of the usability for these improved losses has

not been studied for cross-domain fashion instance retrieval

before.

Recently a new dataset has been released to encourage

research on cross-domain fashion instance retrieval, namely

DeepFashion2 [3], which is an extension of DeepFashion

[12]. Compared to DeepFashion, DeepFashion2 has a larger

focus on cross-domain retrieval, since it contains more pairs

of consumer (user) and shop (commercial) images. The

dataset that is currently available for download consists of

Figure 1. (a) Consumer-to-shop task. A gallery with shop images

is queried with a consumer image. The most left image represents

the query consumer image, the four images on the right are the first

retrieved results with an indication whether the instance is correct

or wrong. The differences between the retrieved results are often

subtle. (b) Shop-to-consumer task. A gallery with consumer

images is queried with a shop image.

more than 300,000 training instances and almost 40,000

validation instances as indicated in Table 1. The number of

images per instance varies a lot between items, but on aver-

age there are more than three images per consumer instance

and almost six images per shop instance.

We make the following contributions in this paper. First,

we define the shop-to-consumer retrieval task, where a

shop query is used to search for consumer images in a

gallery. This paper treats this as an equally relevant task

as consumer-to-shop retrieval in [3]. Second, we analyze

the behavior of deep metric learning techniques for cross-

domain fashion instance retrieval and present baselines for

both the consumer-to-shop task and the shop-to-consumer

task. Last, we analyze post-processing techniques and we

show that ensemble methods improve our results.

2. Method

Instance retrieval models are often trained using a stan-

dard backbone model with a specific loss function related to

the characteristics of the dataset. For problems with many

instances and only a few images per instance, metric learn-

ing approaches are a common approach. However only the

basic version of the triplet loss has been used for cross-

domain fashion instance retrieval models and other methods



Figure 2. Overview of our approach. Our model consists of a ResNet50 backbone together with one of the four possible losses. It is

trained with consumer and shop images and returns embeddings for each image in the validation set. The cosine similarity is computed

between each query embedding and all gallery embeddings to find the instances in the gallery that are most similar to the query instance.

Then either the results can be analyzed directly or other techniques can be used, namely diffusion or ensembling.

Table 1. DeepFashion2 characteristics for the train and valida-

tion set with the total number of images (NUM), the total number

of instances (INS), the minimum number of images per instance

(MIN), the maximum number of images per instance (MAX), and

the average number of images per instance (AVG)

NUM INS MIN MAX AVG

Train set shop 228557 38962 1 195 5.9

Train set consumer 83628 24533 1 37 3.4

Val set shop 36961 6455 1 57 5.7

Val set consumer 15529 4055 1 29 3.8

have not been studied thoroughly.

An overview of our approach is shown in Figure 2. A

ResNet50 [4] model, pretrained on Imagenet [13] is used as

our backbone architecture. In this work, we evaluate four

popular loss functions in deep metric learning: the N-pair

loss [15], the lifted loss [16], the angular loss [18], and the

hard-triplet loss [5]. These methods are all variations of

the triplet loss, which is a loss that takes three images as

input: an anchor image, an image from the same class (pos-

itive) and an image from another class (negative) [14]. This

loss function encourages the distance between the anchor

and the positive image to decrease and the distance between

the anchor and the negative image to increase. Both the N-

pair loss [15] and the hard triplet loss [5] select a subset of

possible triplets within a batch, with the N-pair loss using

N negative samples during the same update and the hard

triplet loss selecting only hard positives and hard negatives

for training. The lifted loss [16] lifts a batch of examples

into a dense pairwise matrix and the angular loss [18] dis-

tinguishes itself from the triplet loss by using the angle of

the triplet triangle instead of pair wise distances between

the elements in the triplet. It claims to be not only rotation

invariant but also scale invariant. These four losses are all

improvements of the triplet loss and we will analyze their

differences in performance.

For each of the four loss functions, we train a model on

DeepFashion2. Then the cosine similarity will be used to

rank the retrieved embeddings. Based on these results, the

performance on the consumer-to-shop task and the shop-to-

consumer task can be directly obtained. We also use dif-

fusion presented by [19], a ranking technique to increase

the performance. Furthermore, ensembling methods will be

used.

3. Experimental Setup

3.1. Dataset

For this paper, we use the DeepFashion2 dataset [3] that

has been released for the related challenge at ICCV 2019.

This dataset contains 191961 images in the train set and

32153 images in the validation set. This is not the full

dataset as mentioned in [3], since not all images have been

released yet. The official test set with ground truth labels is

not available, so results are reported on the validation set. In

our setup, we use the ground truth bounding boxes during

training and evaluation. Images with instances are cropped

by their bounding box labels, which results in the number

of instances in Table 1. In this way we disregard clothing

detection as a task and we focus only on instance retrieval.

Apart from retrieval, DeepFashion2 can be used for mul-

tiple fashion related tasks, such as clothes detection, land-

mark estimation and segmentation. In [3], features learned

for these tasks are used to increase the retrieval perfor-

mance. We decide to disregard these labels for our task and

will not train for any other task than instance retrieval. The

main reason for this is that retrieval with side information

might not scale to other datasets, since the number of anno-

tations is expensive to generate and and typically unavail-

able for other datasets. However, we do use some of the



Table 2. Consumer-to-shop retrieval results from four different loss function with different subsets of the validation consumer images.

The evaluation metric is Recall@20 for the subsets, the overall performance is presented in Recall@1, 5, 10, and 20. The best performance

is bold. For example, the score 0.745 for N-pair scale large means that for the subset of the validation set with all consumer queries with

label large for scale, the Recall@20 is 0.745.
scale occlusion zoom-in viewpoint overall

small moderate large slight medium heavy no medium large no wear frontal side or back R@1 R@5 R@10 R@20

N-pair 0.476 0.580 0.745 0.699 0.585 0.554 0.621 0.698 0.584 0.744 0.626 0.567 0.328 0.501 0.579 0.648

Lifted 0.427 0.528 0.653 0.615 0.525 0.525 0.563 0.617 0.499 0.643 0.565 0.504 0.282 0.435 0.503 0.577

Angular 0.445 0.559 0.718 0.673 0.559 0.538 0.603 0.673 0.539 0.731 0.598 0.536 0.324 0.479 0.553 0.623

Hard Triplet 0.469 0.573 0.719 0.681 0.570 0.547 0.614 0.679 0.548 0.727 0.609 0.554 0.324 0.489 0.560 0.632

Table 3. Shop-to-consumer retrieval results from four different loss function with different subsets of the validation shop images. The

results are presented in the same way as Table 2.
scale occlusion zoom-in viewpoint overall

small moderate large slight medium heavy no medium large no wear frontal side or back R@1 R@5 R@10 R@20

N-pair 0.487 0.626 0.781 0.654 0.581 0.505 0.660 0.598 0.324 0.818 0.603 0.622 0.329 0.482 0.546 0.608

Lifted 0.455 0.573 0.720 0.607 0.529 0.480 0.607 0.553 0.302 0.697 0.557 0.568 0.281 0.433 0.497 0.559

Angular 0.475 0.611 0.775 0.645 0.567 0.481 0.650 0.578 0.305 0.782 0.594 0.590 0.331 0.478 0.538 0.595

Hard Triplet 0.488 0.614 0.766 0.650 0.568 0.503 0.651 0.586 0.322 0.794 0.594 0.614 0.320 0.475 0.538 0.599

extra label information from DeepFashion2 as ground truth

to analyze our results. Each instance is annotated with four

labels related to the visibility of the instance in the image:

scale, occlusion, zoom-in, and viewpoint. Each label has

three categories representing none/small, medium or large,

except for viewpoint, which uses categories no wear, frontal

or side or back. We will analyze our results by selecting

all query images with a specific level of scale, occlusion,

zoom-in, or viewpoint.

3.2. Training procedure

Deep metric learning models are trained by using a Ten-

sorFlow implementation1. The lifted loss and the hard

triplet loss use batches of size sixty containing ten classes

with six samples per class, the angluar loss and the N-pair

loss contain batches of thirty classes with two images per

class. Since we do retrieval in both directions, we train our

models with anchor images coming from both domains.

The models train for 500,000 iterations, where the per-

formance stabilizes. 128 dimensional embeddings are cre-

ated out of the 2048 dimensional features from ResNet50

by using a fully connected layer. We use the open source

implementation of Faiss [8] for similarity search2. For dif-

fusion the open source implementation from the authors of

[19] is used3, with the truncation size set at 1000. Ensem-

bling is performed by the concatenation of the embeddings.

We follow [3] in reporting our results using the Re-

call@K metric, with K set to 1, 5, 10, and 20.

4. Results

Tasks. We present the results for consumer-to-shop re-

trieval in Table 2 and for shop-to-consumer retrieval in Ta-

ble 3. The results from consumer-to-shop retrieval are 2-4%

1https://github.com/ahmdtaha/tf retrieval baseline
2https://github.com/facebookresearch/faiss
3https://github.com/fyang93/diffusion

higher than for shop-to-consumer retrieval. This is surpris-

ing, since the gallery of consumer images is much smaller

than the gallery of shop images. Furthermore, shop images

contain items that are easily identifiable, while consumer

images are usually lower quality images with a low con-

trast and often contain distracting objects. Another interest-

ing difference between the results of both tasks is that the

shop-to-consumer task performs best when the image is not

zoomed in, but the consumer-to-shop task with a medium

zoom-in. We did not notice a clear distinction between im-

ages from both domains for these two zoom levels.

Compared to the results in [3], we see interesting dif-

ferences. Their model, Match R-CNN, that apart from

consumer-to-shop instance retrieval also focuses on detec-

tion of bounding boxes of instances, has a preference for

different image types than the deep metric learning models

we tested. It scores best on moderate scale images, slight

occlusion, no zoom-in and a frontal viewpoint. Our mod-

els only share the preference for slight occlusions. One of

the explanations might be that the detection method from

Match R-CNN works better for these image types.

Losses. When looking at differences between the dif-

ferent loss functions for the two tasks, we see that the N-

pair loss performs best with a Recall@20 of 0.648 for the

consumer-to-shop retrieval task and 0.608 for the shop-to-

consumer retrieval task. The results of the angular and hard

triplet loss are close, but the results for the lifted loss are

lower. The angular loss promised to be scale invariant, but

unexpectedly we see that the angular loss has the same dif-

ficulties with scale as the other losses.

Diffusion. When using the diffusion technique from

[19], the Recall@1 slightly increases, but the Recall@20

shows a drop. An explanation for the increase in perfor-

mance of this technique in [19] might be that the technique

is applied to a dataset with only a few classes and multiple

instances per class. The improvement is measured by using



Table 4. Consumer-to-shop ensembling. The recall@20 is given

for ensembling of two models with two different loss functions.

The diagonal is an ensemble of two models with the same loss but

a different random seed.

N-pair Lifted Angular Hard Triplet

N-pair 0.676 0.599 0.673 0.663

Lifted 0.599 0.618 0.588 0.623

Angular 0.673 0.588 0.652 0.651

Hard Triplet 0.663 0.623 0.651 0.659

Table 5. Shop-to-consumer ensembling. The results are pre-

sented as in Table 4.

N-pair Lifted Angular Hard Triplet

N-pair 0.631 0.576 0.627 0.624

Lifted 0.576 0.592 0.567 0.593

Angular 0.627 0.567 0.617 0.614

Hard Triplet 0.624 0.593 0.614 0.625

mAP, which is not a good metric in our case.

Ensembling. We also use ensembling techniques by

concatenating the embeddings from different models. Re-

sults are presented in Table 4 and 5. Combining two models

trained with the same loss function but a different random

seed gives the same score as combining the results for mod-

els trained with two different loss functions. The highest

score is obtained by combining the results from two models

trained with the N-pair loss. This gives an improvement of

3% compared to the model with one N-pair loss. Ensem-

bling the best three models with the N-pair loss, angular

loss and hard triplet loss results in recall@20 of 0.673 for

consumer-to-shop and 0.631 for shop-to-consumer, which

is lower than the recall of two N-pair loss models. This

questions whether two models with different loss functions

are equally different as two models with the same loss func-

tion and a different random seed. Authors from [18] claim

that the N-pair loss combined with the angular loss per-

forms better than these losses separately. Other combina-

tions might lead to even higher performances, as suggested

by [10, 11, 20]. Furthermore, other ensemble techniques

might be relevant to boost the performance.

5. Conclusion

This paper introduces a new task, shop-to-consumer

retrieval. It introduces baselines for the shop-to-consumer

task and the consumer-to-shop task with the use of deep

metric learning techniques. Different metric learning tech-

niques perform similar, although the N-pair loss performs

best. It shows that both tasks are equally difficult and that

ensemble models have the potential to boost performance.
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