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Abstract

Spatially placing an object onto a background is an es-

sential operation in graphic design and facilitates many dif-

ferent applications such as virtual try-on. The placing op-

eration is formulated as a geometric inference problem for

given foreground and background images, and has been ap-

proached by spatial transformer architecture. In this paper,

we propose a simple yet effective regularization technique

to guide the geometric parameters based on user-defined

trust regions. Our approach stabilizes the training process

of spatial transformer networks and achieves a high-quality

prediction with single-shot inference. Our proposed method

is independent of initial parameters, and can easily incor-

porate various priors to prevent different types of trivial so-

lutions. Empirical evaluation with the Abstract Scenes and

CelebA datasets shows that our approach achieves favor-

able results compared to baselines.

1. Introduction

In this paper, we consider the problem of naturally plac-

ing a new object onto a background image, such that the

resulting composition looks realistic, enabling applications

such as virtual try-on. Geometrically placing an object is a

basic operation in graphic design. The difficulty in object

placement is that subtle misalignment of the object to the

background can severely hurts the design quality. Design-

ers spend a lot of efforts in completing visually pleasing

graphics layout because of this quality requirement. Au-

tomating this operation using machine learning techniques

can help designers’ productivity and open the door for intel-

ligent tools for creating magazine covers [8], posters [10],

banners [9], and virtual try-on [4].
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Figure 1. Overview of our image compositing pipeline. Given

a foreground and background image, our single-shot placement

model produces plausible image warping parameters to place the

foreground image on the background. We propose a simple yet

effective regularization to stabilize the adversarial training of the

spatial transformer network.

Object placement can be formulated as the task of find-

ing appropriate geometric warping given foreground and

background images. One of the promising approaches is

Spatial Transformer Generative Adversarial Networks (ST-

GAN) [6], which comprises of multiple spatial transformer

networks and adversarial training. The main idea is geo-

metrically correcting the location of the foreground object

given the initial warping parameters. For this purpose, ST-

GAN iteratively updates the initial warping parameters to



refine resulting composite image. The drawbacks of this

iterative approach is an increase in computation time due

to costly multiple forward computations, initial parameters

highly affecting the result, it is unclear how many iterations

should be applied to a given input, and most importantly,

the adversarial training process becomes unstable. We ob-

served that the ST-GAN model often suffers from falling

into trivial solutions such as excessive scaling and framing

out , because these solutions can easily fool the discrimina-

tor during training.

In this paper, we propose a simple yet effective regu-

larization technique to guide the parameters based on user-

defined trust regions. Our approach effectively stabilizes

the training process of spatial transformer networks, and

enables an accurate single-shot inference (Figure 1), unlike

the iterative approach in ST-GAN [6]. Furthermore, our ap-

proach does not require any initial warping parameters, and

can easily incorporate different types of user-defined priors

(e.g., avoiding excessive skewing) for further guidance. Our

experiments with the Abstract Scenes and CelebA datasets

shows that our proposed approach shows favorable results

compared to the state-of-the-art approaches.

We summarize our main contributions in the following:

• We propose a novel regularization technique to guide

warping parameters during the adversarial training

of spatial transformer networks, enabling high-quality

single-shot inference of object placement for virtual try-

on.

• We show that our approach achieves favorable results on

the Abstract Scenes and CelebA datasets in comparison

to existing approaches.

2. Related Work

Virtual try-on based on 2D image composition has re-

cently started to attract the attention from the research com-

munity. Most recent approaches are based on pixel-level

transformations of the image [4], however, it is challenging

in this setting to generate realistic high-resolution composi-

tions without modifying the content of the image. Addition-

ally, large amounts of training data limit the applicability. In

this paper, we do not assume the target is wearing a similar

garment to that being tried-on and learn to predict a trans-

formation of the original image, allowing high-resolution

image composition.

Spatial Transformer Networks (STNs) [5] introduce

learnable image warping module within a deep learning ap-

proach, allowing overlaying a masked foreground image

onto a background image. The main components of STNs

are a neural network to predict a set of warp parameters and

a differentiable warping function. We build upon STNs to

implement our single-shot inference.

Generative Adversarial Networks (GAN) [2] are gener-

ative models that learn a generator network G and a dis-

criminator network D. In GAN framework, a well-trained

generator network can reproduce a generative distribution

that matches the empirical distribution of a given data col-

lection. One advantage of GAN is that the loss function

is defined by the discriminator network, and therefore does

not require labeled datasets. Unsupervised training by GAN

framework only requires data collections representing the

desired domain distribution.

Recently proposed ST-GAN [6] introduces the GAN

paradigm into STNs. ST-GAN generates the distribution of

possible updates to the current warping parameters. Since

the generator produces updates to warping, the overall

model iteratively applies updates to the initial warping pa-

rameters to solve for the final warping. Although ST-GAN

nicely fits our purpose of object placement, there are sev-

eral drawbacks arising from unstable training of an iterative

model. In this paper, we propose a single-shot inference ap-

proach to object placement that overcomes the instability in

STNs training by proper regularization.

3. Spatial Transformer Generative Adversarial

Networks (ST-GAN)

We briefly introduce ST-GAN [6] in the following sec-

tion. Given a background image IBG and a foreground im-

age IFG with a corresponding alpha mask MFG, the process

of image compositing is expressed by:

Icomp = IFG ⊙MFG + IBG ⊙ (1−MFG) . (1)

A realistic looking composition is then obtained by warping

the foreground image with

I ′
FG = warp

(

IFG,p
)

M′
FG = warp

(

MFG,p
)

, (2)

where warp(.) is a differentiable warping function [5], usu-

ally comprised of a homography transformation and bilinear

interpolation, and p are the warping parameters.

Original ST-GAN [6] iteratively applies Spatial Trans-

former Networks (STN) to predict a series of warping up-

dates. At the i-th iteration, given the input images and the

previous warping parameters pi−1, the warping update ∆pi

and the new warping parameters pi can be written by:

∆pi = Gi

(

warp
(

IFG,pi−1

)

, IBG

)

pi = pi +∆pi, (3)

where Gi is the i-th geometric prediction network.

ST-GAN learns the model parameters for the geometric

prediction networks and the discriminator with Wasserstein

GAN [1] objective with a gradient penalty [3] to force the

discriminator to be a 1-Lipschitz function. The warping up-

date ∆pi is constrained to lie within a trust region by intro-

ducing an additional penalty Lupdate = ‖∆pi‖
2

2
[6], which



avoids trivial solutions, e.g., removing the foreground and

leaving only the background image. The final loss function

is written by:

LD = E
[

D
(

Icomp(pi)
)]

− E
[

D(Ireal)
]

+ λgrad · Lgrad (4)

LGi
= −E

[

D
(

Icomp(pi)
)]

+ λupdate · Lupdate, (5)

where Icomp(pi) denotes the composite image using IBG

and I ′
FG warped by pi, Ireal is a real example sampled from

training data collections, Lgrad is a gradient penalty term [3],

λgrad and λupdate are hyper-parameters to adjust the weights

for the gradient penalty term and the warping penalty term

respectively. For more detail, refer to [6].

4. Proposed Approach

Our approach aims at penalizing the warping parameters

p falling into undesirable regime. The main idea is to in-

troduce plausible warping regions as a prior. To do this,

we introduce the regularization function f to enforce tar-

get parameters x to lie within the range of given minimum

value xmin to given maximum value xmax. The regularizer

f is defined by a rectifier function:

f(x, xmin, xmax) = ReLU(xmin − x)

+ ReLU(x− xmax). (6)

Let us consider two common issues in spatial trans-

former networks: excessive scaling and framing out . For

preventing excessive scaling, we can set a determinant of

the (inverse) affine matrix as a representative parameter, as-

suming we are parameterizing the warp by an affine trans-

formation. We use the ratio between the sum of the origi-

nal mask MFG and the sum of the transformed mask M′
FG,

where p is applied, to approximate the scaling factor:

r =

∑

i,j M
′
FG(i, j)

∑

i,j MFG(i, j)
. (7)

Then, our scaling regularizer is defined by:

Lmask = f(r, rmin, rmax). (8)

For preventing framing out, we can apply regularization to

the coordinates of the warped corners C, where p is applied,

of the foreground object:

Lcoord =
∑

c∈C

f(cx, cxmin, c
x
max) + f(cy, cymin, c

y
max) (9)

Our final loss functions become:

LD = E
[

D
(

Icomp(p)
)]

− E
[

D(Ireal)
]

+ λgrad · Lgrad (10)

LG = E
[

D(Ireal)
]

− E
[

D
(

Icomp(p)
)]

+ λmask · Lmask + λcoord · Lcoord, (11)

where λmask and λcoord are hyper-parameters to adjust the

weights for respective regularization terms. We modify

the generator loss for more stable hyper-parameter tuning

since the size of Wasserstein GAN objective for a generator

changes as training proceeds. Note that the first regulariza-

tion term Lmask may suppress framing out as well, however,

we found that using both Lmask and Lcoord is stable. It is also

straight-forward to apply our regularization technique to pe-

nalize any summary statistics from the warping parameters

p, such as skewing, etc.

Thanks to the stable adversarial learning by our loss

(Eq. (11)), we find thati, in contrast to ST-GAN’s iterative

updates, a single-shot inference model can produce high-

quality prediction of object placement, significantly lower-

ing the computational cost. Prediction is then simplified to

the following:

p = G
(

IFG, IBG

)

. (12)

We emphasize that this single-shot inference model does

not converge without our regularization.

5. Experiments

We evaluate our approach quantitatively with the Ab-

stract Scenes dataset [11], and qualitatively with the CelebA

datasets [7].

5.1. Abstract Scenes Evaluation

Dataset. We use the Abstract Scenes dataset [11] to

evaluate our approach in terms of the reproducibility of the

ground-truth placement. The dataset contains 11,000 clip-

art scenes of children playing. Here, we consider a task of

placing glasses and hats in the scene. We split the dataset

into a training, validation and test set of 8,775, 1,111 and

1,109 scenes respectively. We generate background images

by placing all the objects under the target objects (glasses or

a hat), and real images by rendering all of them including

targets. Background images are all resized to 144 × 144.

We create foreground images by placing and resizing target

objects onto the center of 144× 144 transparent pixels.

Warping parameters. We estimate three warping pa-

rameters: scaling, horizontal translation and vertical trans-

lation. We can directly regularize warping parameters with

our regularizing function f (Eq. (6)), but we use Lmask

(Eq. (8)) and Lcoord (Eq. (9)) for emphasizing the generality

of the choice of these parameters.

Evaluation metrics. We regard a frame of foreground

image as a bounding box and compute the accuracy with

Intersection over Union (IoU) under different thresholds.

We denote this metric as IoU@θ where θ indicates the IoU

threshold. We show results for θ = .25, .5, .75.

Results. We summarize the IoU evaluation on the test set

in Table 1. ST-GAN (initial) is the evaluation at the initial

parameters, and ST-GAN (warp 5) is the result at the final
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Figure 2. Virtual try-on results on the CelebA dataset.

Table 1. Image compositing evaluation in Abstract Scenes. For

ST-GAN (warp 5) we show the average value of 10 trials.

IoU@θ

Method 0.25 0.50 0.75

ST-GAN (initial) 0.13 0.03 0.00

ST-GAN (warp 5) 0.41 0.36 0.25

Ours 0.47 0.43 0.32

warping parameters. Our method achieves higher scores

than the maximum scores in ST-GAN while being much

more computationally efficient.

5.2. CelebA Evaluation

CelebA is a large dataset of facial images [7]. Here, we

evaluate our approach in the virtual try-on task of placing

eyeglasses onto faces. We only conduct qualitative eval-

uation since the dataset does not contain ground truth an-

notation. Following procedures in [6], we create an evalua-

tion dataset which contains 152,249 training and 18,673 test

images without glasses, and 10,521 training images with

glasses. We use images of 10 glasses provided by [6] as

foreground image. Following [6], we use a homography

transformation for warping glasses. Results are shown in

Figure 2. We find that our method is able to produce com-

pelling more compelling results than ST-GAN.

6. Conclusions

We proposed an effective regularization technique to

guide the warping parameters of Spatial Transformer. Ex-

periments demonstrate that our approach achieves favorable

results compared to ST-GAN baseline. In the future, we

wish to evaluate our approach in a more realistic virtual try-

on scenario, and extend our approach to enable simultane-

ous placement of multiple objects.
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