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Abstract

In this study, we investigate in-shop clothing retrieval

performance of densely-connected Capsule Networks with

dynamic routing. To achieve this, we propose Triplet-based

design of Capsule Network architecture with two differ-

ent feature extraction methods. In our design, Stacked-

convolutional (SC) and Residual-connected (RC) blocks are

used to form the input of capsule layers. Experimental re-

sults show that both of our designs outperform all variants

of the baseline study, namely FashionNet, without relying

on the landmark information. Moreover, when compared to

the SOTA architectures on clothing retrieval, our proposed

Triplet Capsule Networks achieve comparable recall rates

only with half of parameters used in the SOTA architectures.

1. Introduction

Fashion has recently become one of the most fea-

tured topics of interdisciplinary studies in Computer Sci-

ence. With the emergence of deep learning based solutions,

fashion-related researches start to get promising results on

various subjects including clothing recognition, attribute

prediction, clothing retrieval, body segmentation, and style

prediction. Retrieving the desired clothing image from a

collection is one of the most challenging tasks in fashion

domain, and it is attacked by such a mechanism that learns

to capture different notions of the similarities between the

images in a common subspace.

There has been numerous studies [3, 4, 7, 1, 12, 13, 9,

2, 6] to employ Convolutional Neural Networks (CNNs) to

their solutions. However, CNNs, by their nature, have some

limitations such as losing the hierarchical spatial informa-

tion of the objects and not being robust to affine transfor-

mations. Recently, an alternative deep learning architec-

ture, namely Capsule Networks, and a novel dynamic rout-

ing algorithm have been proposed by Sabour and Hinton

et al. [10]. In this design, with the help of the routing-by-

Figure 1. Some examples of retrieved images by our architectures.

Blue: query, Green: correct, Red: wrong.

agreement algorithm, it is possible to learn more descriptive

information about the objects without losing the intrinsic

spatial relationship between the object and its parts. There-

fore, Capsule Networks have the capacity for recognizing

the images regardless of the visual angle and without requir-

ing different transformations, since this architecture can in-

herently learn higher dimensional pose configuration of the

images.

In this study, we employ Capsule Networks to clothing

retrieval problem by extending their capabilities with some

improvements. First, we extract the features of larger-sized

clothing images by more powerful methods (i.e. stacked or

residual-connected convolutional layers), and forward these

features to fully-connected capsules. Next, we introduce a

Triplet-based design of Capsule Networks that learns the

similarity between triplets. Lastly, we train our proposed

architectures on in-shop partition of DeepFashion data set

[7], and compare our results with the baseline study, namely

FashionNet [7] and the other SOTA methods.

2. Related Works

Clothing retrieval has become more important after some

major developments in Computer Science and the emer-



Figure 2. Illustration of our proposed architectures containing different feature extraction blocks.

gence of e-commerce. Recent studies generally attack to

this task by using deep convolutional networks. [3] intro-

duces an excessively challenging task, namely Exact Street

to Shop, where the goal is to match the exact same item

in the photos captured by users to online shopping photos.

[4] proposes Dual Attribute-aware Network (DARN) to ad-

dress the cross-domain image matching problem. [7] intro-

duces a new data set, namely DeepFashion, which has a vast

amount of large-scale clothing images annotated with nu-

merous attributes, landmark information and cross-domain

image correspondences. [1] demonstrates that integrating

bag-of-words approach to weakly-supervised learning pro-

cess can achieve promising results on clothing retrieval task.

[12] proposes a Visual Attention Model (VAM), and intro-

duces a novel Dropout-like connection after attention lay-

ers. [13] addresses the issues of defining a model with

right complexity and choosing hard samples carefully dur-

ing training. [9] shows how to improve the robustness of the

feature embeddings by exploiting the independence within

ensembles. [2] introduces hierarchical triplet loss (HTL) to

address the random sampling issue during training a triplet

loss. [6] proposes multiple-way attention-based ensemble

architecture that learns the feature embeddings with multi-

ple attention masks.

3. Methodology

3.1. Capsules

Capsules are groups of neurons that convey higher di-

mensional information throughout the network in more re-

fined way. This information is interpreted as the pose con-

figuration and the existence probability of an instance. Each

capsule in a higher level is formed by the routing of incom-

ing votes from the capsules in lower level. At this point,

these votes are calculated by the linear transformation of

the pose configuration. During dynamic routing [10], the

linear combination of incoming votes weighted by their co-

efficients (i.e. coupling coefficients) forms the non-activated

outputs in higher level capsules. For each iteration, the

weights of these votes are updated with respect to the dot

product of the incoming votes and the outputs in higher

level capsules. This is called agreement between capsules.

Finally, the output of each capsule in lower level is deter-

mined by squashing function as proposed in [10].

3.2. Proposed Architectures

In our design, we adjust the original Capsule Network

structure to a Triplet-based version, so that the network

can learn the similarity between two images by feeding the

objective function with the embedded representations ex-

tracted by capsules. At this point, our Capsule Network

design aims to minimize the Triplet loss shown in Equa-

tion 1, where d is the Euclidean distance metric, α is dis-

tance margin, l, l+, l− are the latent capsule embeddings

extracted from the anchor image x, positive image x+ and

negative image x− respectively. During forming these em-

beddings, we normalize latent capsules by L2-norm, and

then we mask all capsules but the one that belongs to the

correct class to zero.
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As illustrated in Figure 2, Capsule Networks essentially

contain two main blocks: feature extraction block and cap-

sule layers. There is only one feature extraction block that

has a single convolutional layer with 64 filters in the original

design proposed by Sabour and Hinton et al. [10]. Extract-

ing the features by such a shallow structure may be enough

for one-channel handwritten digit images with the size of

28×28 [10]. However, fully-connected capsules need more

complex features to achieve better results on more compli-

cated image-related problems. Therefore, we design two

different feature extraction blocks to form more powerful

features as the input of capsules. First, a number of convo-

lutional layers are stacked without using any pooling oper-

ation between them, and the latter is to connect these layers

as residual. In both of our designs, leaky form of linear

rectifier [8] is used as activation function, and batch nor-

malization [5] is applied between convolutional layers.

Furthermore, capsule layers are kept identical in both de-

signs. There are two fully-connected capsule layers, namely

Primary Capsule and Class Capsule. Primary Capsule is

the layer where the extracted features are grouped with re-

spect to the capsule dimensionality. In our designs, this

layer has 32 channels of 16-dimensional capsules that are

fully-connected to Class Capsule. Next, there are c number

of 16-dimensional capsules in Class Capsule layer, where c

is the number of classes in the data set. Activations and the

latent capsule vectors of Class Capsule are calculated via

dynamic routing with 3 iterations. Any kind of reconstruc-

tion methods (e.g. as in [10]) is not applied to our Capsule

Network designs.

4. Experiments

The experiments for proposed Stacked-convolutional

(SCCapsNet) and Residual-connected (RCCapsNet) archi-

tectures are conducted on in-shop partition of DeepFashion

data set [7]. Both are trained on 25k training images, and

tests are performed by using 14k query and 12k gallery im-

ages. Since this task is an information retrieval task, the

performance is measured by Recall@K metric, where K is

1 or multiplies of 10 up to 50. Moreover, as mentioned

in Schroff et al. [11], negative hard sampling strategy im-

proves the convergence behavior of the model significantly.

Based on this strategy, the negative images are picked as

the closest image to the anchor provided that they are of

different categories; whereas we pick each possible positive

image in the data set as the positive one.

As shown in Table 1, SCCapsNet and RCCapsNet

achieve better retrieval performance than all variants of the

baseline study (i.e. FashionNet) by a wide margin. It is im-

portant to note that both of our proposed architectures use

only images during training in contrast to the baseline study

where the network is supported by different number of at-

tributes and the landmark information. These experiments

Table 1. Recall@K performance of the variants of the baseline

study [7] and our proposed model. FashionNet has different build-

ing blocks where the model has different numbers of attributes (A)

(i.e. 100, 500 and 1000), or fashion landmarks (L) are replaced

with human joints (J) or poselets (P). SCCapsNet and RCCapsNet

do not use any extra side information during training.

Models Top-20 (%) Top-50 (%)

FashionNet+100A+L 57.3 62.5

FashionNet+500A+L 64.6 69.5

FashionNet+1000A+J 68.0 73.5

FashionNet+1000A+P 70.0 75.0

FashionNet+1000A+L 76.4 80.0

SCCapsNet (ours) 81.8 90.9

RCCapsNet (ours) 84.6 92.6

demonstrate that our Capsule Network designs can inher-

ently learn pose configuration of the objects without any

requirement of recovering pose information.

Table 2 summarizes in-shop clothing retrieval results of

SCCapsNet, RCCapsNet, and the SOTA methods. These

figures indicate how successful our proposed designs are,

and what the main limitations of them are when compared

to the SOTA CNN-based architectures. First, both of our

designs outperform the earlier methods (i.e. WTBI [3] and

DARN [4]) which both disparately use semantic attributes

to improve the overall performance, but neglect pose con-

figurations of the images during training. According to Top-

20 Recall@K scores, while SCCapsNet improves the scores

of the best FashionNet variant by 31% and 14%, RCCap-

sNet has even better performance with a margin of 34% and

17% respectively. The other approach whose performance

falls behind in ours is the method of leveraging weakly-

annotated textual descriptors of the images proposed by

Corbiére et al. [1]. In this design, these textual descrip-

tors (i.e. bag-of-words) represent different coarse semantic

concepts such as texture information, color and shape. Cap-

sules can directly learn these concepts from the images in a

sophisticated way, and hence, SCCapsNet and RCCapsNet

can achieve higher Recall@K scores than this approach

without taking advantage of bag-of-words descriptors.

In addition to all these, our proposed architectures can-

not achieve the performances of more advanced CNN-based

architectures. In these designs, there are various techniques

applied to CNNs to boost the overall performance, which

are alternative hard sampling strategies [13], more advanced

objective functions [2, 9], network ensembling [9, 6] and

attention-based mechanisms [12, 6]. Although these tech-

niques may significantly improve the overall performance

in CNNs, in principle, they increase the model complexities

by a wide margin, or increase training time considerably.

At this point, the numbers of trainable parameters in SC-



Table 2. Experimental results of in-shop clothing retrieval task on DeepFashion data set. ”-”: not reported.

Models # of Top-1 Top-10 Top-20 Top-30 Top-40 Top-50

Params (M) (%) (%) (%) (%) (%) (%)

WTBI [3] 60 35.0 47.0 50.6 51.5 53.0 54.5

DARN [4] 105 38.0 56.0 67.5 70.0 72.0 72.5

FashionNet [7] 134 53.2 72.5 76.4 77.0 79.0 80.0

Corbiére et al. [1] 25 39.0 71.8 78.1 81.6 83.8 85.6

SCCapsNet (ours) 2.5 32.1 72.4 81.8 86.3 89.2 90.9

RCCapsNet (ours) 4.5 33.9 75.2 84.6 88.6 91.0 92.6

HDC [13] 5 62.1 84.9 89.0 91.2 92.3 93.1

VAM [12] 6 66.6 88.7 92.3 - - -

BIER [9] 5 76.9 92.8 95.2 96.2 96.7 97.1

HTL [2] 5 80.9 94.3 95.8 97.2 97.4 97.8

A-BIER [9] 5 83.1 95.1 96.9 97.5 97.8 98.0

ABE [6] 10 87.3 96.7 97.9 98.2 98.5 98.7

CapsNet and RCCapsNet are respectively ∼2.5 and ∼4.5

million, while the SOTA methods have twice as many train-

able parameters in their models. Capsule Networks need

more time for training than CNNs since dynamic routing al-

gorithm is a relatively slow routing mechanism when com-

pared to the pooling variants. Therefore, within limited

computational resources, these techniques are not yet ap-

plied to our models to boost the overall performance of our

Capsule Network designs, and left as future research ideas.

5. Conclusion

In this study, we present two different Triplet-based de-

signs of Capsule Networks with more powerful feature ex-

traction blocks, and employ them to clothing retrieval task.

Experiments show promising results where both of our de-

signs outperform all FashionNet variants without any extra

information besides to the images. Moreover, when com-

pared to the SOTA methods, our designs perform compara-

bly well with only the half of the number of parameters as

in the SOTA methods, and it shows the potential of Capsule

idea in case of the computational burdens are lightened.
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