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Abstract

The Synesthetic Variational Autoencoder (SynVAE) in-

troduced in this research is able to learn a consistent map-

ping between visual and auditive sensory modalities in

the absence of paired datasets. A quantitative evaluation

on MNIST as well as the Behance Artistic Media dataset

(BAM) shows that SynVAE is capable of retaining sufficient

information content during the translation while maintain-

ing cross-modal latent space consistency. In a qualitative

evaluation trial, human evaluators were furthermore able

to match musical samples with the images which generated

them with accuracies of up to 73%.

1. Introduction

Art is experienced as a flow of information between an

artist and an observer. Should the latter be visually im-

paired however, a barrier appears. One way to overcome

this obstacle might be to translate visual art, such as paint-

ings, from an inaccessible sensory modality into an acces-

sible one, such as music.

Our research builds upon single-modality generative

models for images [2, 3] and music [8] as well as on multi-

modal models which leverage corresponding audio-visual

data in order to learn denser information representations [4]

or to make visual information more accessible [1]. Further-

more, generative models have been used to measure the ex-

pressiveness of image-based audio generation tools for the

visually impaired [5] and as such they offer a solid basis for

our approach.

While previous approaches make use of paired audio-

visual ground truth data, these are unavailable for visual

art and music, making an unsupervised approach necessary.

The main focus of this research will therefore be to learn

a consistent cross-modal mapping in the absence of paired

data such that similar images produce similar music. Eval-

uation metrics must be able to quantitatively reflect consis-

tency and retained information content while a qualitative

evaluation with humans must measure whether such consis-

tencies are actively perceived.

To summarize, the main contributions of this research

are as follows:

• With the Synesthetic Variational Autoencoder (Syn-

VAE), we introduce an unsupervised cross-modal ar-

chitecture for translating data from one sensory modal-

ity into another consistently without the need for sub-

jectively paired ground truth datasets (see Section 2.1).

• In a series of experiments on generating music from

the MNIST [6] and Behance Artistic Media (BAM)

[9] datasets, we compare a variety of mutual informa-

tion metrics in order to establish a quantitative basis

for evaluating such cross-modal models.

• In a qualitative study based on these quantitative met-

rics, we evaluate the human perception of the cross-

modal translation consistency and lay out a framework

for avoiding subjective biases within this process (see

Sections 2.2 and 3).

2. Methodology

Leveraging the well established visual β-VAE architec-

ture (VisVAE) [3] and the auditive MusicVAE [8], we are

able to construct the Synesthetic VAE (SynVAE) (see Sec-

tion 2.1). Additionally, evaluating SynVAE with respect to

cross-modal consistency requires a diverse set of methods

which are outlined in Section 2.2.

2.1. Synesthetic Variational Autoencoder

Translating information across the audio-visual modal

boundary requires a synesthetic approach. By using multi-

ple single-modality models which have unrestricted access

to high quality data in their respective domains, we are able

to remove the need for subjective correlations of images and

music and are able to construct a fully unsupervised archi-

tecture which is outlined in Figure 1.

Initially, the visual encoder pvenc(zv|x) creates a 512 di-

mensional latent representation zv from the original image

x. It provides the initial state of the pre-trained MusicVAE

decoder padec(a|zv) which then produces a melodic output

a using its hierarchical architecture. These two components



Figure 1. Synesthetic VAE Architecture. An image is first encoded into a latent vector zv by the VisVAE encoder, before being decoded

into music by the MusicVAE decoder. During training, the music is subsequently re-encoded into za by the MusicVAE encoder and

reconstructed into the output image by the VisVAE decoder.

make up the overall synesthetic encoder psenc(a|x) which,

during inference, can be used to perform the audio-visual

translation.

In order to obtain a differentiable loss formulation, the

audio output is subsequently re-encoded as za using the

pre-trained, bidirectional MusicVAE encoder paenc(za|a)
and then passed through VisVAE’s decoder pvdec(x

′|za) to

produce an image reconstruction x
′. These two components

make up the synesthetic decoder psdec(x
′|a).

Both the visual and auditive latent vectors zv and za

in this model are sampled from multivariate Normal dis-

tributions that share the same regularizing prior distribu-

tion N (0, I). This actively encourages the latent spaces

to follow a similar and consistent shape across modalities

when compared to an unregularized training procedure and

is therefore at the core of our unsupervised approach.

Since this architecture requires an expressive musical la-

tent space with high variability, the weights of the Music-

VAE model remain fixed throughout the entire training pro-

cess. Additionally, its pre-conditioning on the N (0, I) prior

alleviates us from the need to enforce a regularizing KL

constraint on the frozen auditive components. Furthermore,

audio reconstruction need not and cannot be measured due

to the general absence of an audio-visual ground truth. The

differentiable basis Lsyn for the optimisation process there-

fore only consists of a KL constraint on the visual encoder,

in addition to the difference of the synesthetic decoder’s re-

construction with the original image:

Lsyn =− E
a∼psenc(a|x)[ln psdec(x|a)]

+ β KL(pvenc(zv|x) ‖ pprior(zv))
(1)

with β controlling the balance between reconstruction

quality and adherence to the canonical prior. In the synes-

thetic case, this carries additional importance since the ac-

tively trained visual components cannot stray too far from

the prior without risking to land in undefined music space.

Extending this approach to further modalities is low fric-

tion. For instance, switching the auditive and visual com-

ponents results in a SynVAE which encodes music into cor-

responding visuals. Regardless of the modality pair, as long

as the encoders are regularized with matching prior distri-

butions and the central generative component is capable of

producing realistic results across its latent space, the cross-

modal translation is likely to succeed. Since advances in

single-modality models are being made constantly, this ar-

chitecture could keep on improving in parallel to such gen-

erative models provided they offer consistent latent spaces.

2.2. Evaluation

Apart from the quantitative metrics already present in the

loss formulation Lsyn (i.e. MSE for reconstructions’ infor-

mation retention and KL divergence as a proxy for latent

space consistency), labels of the visual datasets can be used

to measure how well latent representations encode seman-

tic similarity. By collecting the nearest neighbours of each

encoded data point, it is possible to calculate the class preci-

sion at rank n. Since the higher inner-class visual variance

of more complex datasets may not be well reflected how-

ever, we attempt to bridge this gap with reconstruction clas-

sification accuracy. Using the same architectures as for the

visual encoders, but with a final softmax layer, classification

networks are trained and tested on the images reconstructed

by the autoencoders.

We are also strongly interested in the degree to which

the visual and auditive latent spaces within the synesthetic

model overlap. In absence of paired images and audio, we

make use of Data-Efficient Mutual Information Neural Es-

timation (DEMINE) [7] in order to approximate a lower

bound on the mutual information I(Zv;Za) of correspond-

ing visual and auditive latent vectors.

Considering SynVAE’s potential application in cultural



Model MSE KL P10 Acc MI Ql

M-VIS 16.43 24.38 0.31 0.99 - -

M-SYN 36.66 15.63 0.28 0.96 5.03 0.73

B-VIS 273.08 56.34 0.23 0.80 - -

B-SYN 455.16 27.89 0.25 0.77 5.16 0.71

Table 1. MSE, KL divergence, Precision@10 (P10) and classifica-

tion accuracy (Acc) for VisVAE and SynVAE models on MNIST

(M) and BAM (B) test sets. Mutual information lower-bound (MI)

and evaluator accuracy on qualitative task (Ql) for SynVAEs.

settings such as art exhibitions, it is vital to evaluate whether

humans can correlate similar images and audio in the same

way as the model would predict. Since evaluating the entire

corpus is not feasible and determining a sub-sample manu-

ally would introduce the curator’s bias, we propose a more

consistent and reproducible approach: By using VisVAE’s

latent space to sample images embedded closely around the

centroids of their semantic classes, evaluators can be pre-

sented with a smaller subset of representative images and

subsequently, their related audio. Through the accuracy

with which they can identify correct audio-visual pairs, it is

possible to determine whether the model’s translations line

up with human notions of similarity and intuitiveness.

3. Experiments

Our experiments involve the simple, but interpretable

28×28×1 MNIST images [6], as well as the highly diverse

BAM [9] of which we use ∼180k oil and watercolour paint-

ings, downscaled and cropped to 64 × 64 × 3. The latter’s

four emotion labels are of especial interest for the quali-

tative evaluation due to their abstract nature and reliance

on shared human intuition. Additionally, we highly recom-

mend listening to selected audio-visual examples from each

dataset on https://personads.me/x/synvae (full

source code is also available).

Both tasks share a similar pipeline: Visual β-VAEs are

trained and evaluated before they are placed into SynVAE.

It too is then trained, validated and tested on the respective

splits of the same data using the methodology outlined in

Section 2.1. For each task, β-values in [0.1, 2.0] were tested

in a grid search pattern. Results for the β = 0.5 MNIST and

the β = 1.3 BAM models are presented in Table 1.

From MSE and KL divergence, it is observable that pass-

ing visual information through music space results in a def-

inite reduction in visual fidelity since VisVAEs have recon-

struction errors which are close to half of that of their synes-

thetic counterparts. Regarding the adherence to the canoni-

cal prior however, the tables are turned: the SynVAEs have

KL terms which are up to 61% smaller. This stems from the

strong regularizing effect of the fixed auditive components.

Measuring our main goal of audio-visual consistency

was shown to be difficult using a single quantitative met-

ric. Precision metrics based on the nearest neighbours of

an embedded data point were indicative of consistency only

if visual similarity was strongly correlated with labelled se-

mantic similarity. For MNIST this was found to be the case

since the monochrome nature of the dataset as well as the

relatively low variance between images of the same class al-

low for MSE to be an appropriate surrogate for the detailed,

low-level information content of an image.

For the more visually complex BAM with its exponen-

tially larger amount of information as well as a higher in-

class variance, it becomes more difficult for SynVAE to en-

code such lower-level details. Therefore not all visual de-

tails are retained when they are passed through SynVAE’s

auditive latent space and image reconstructions are limited

to higher-level features such as overall colour and object

placement. However, the emotion labels tend to share a

larger degree of correlation with such features (e.g. dark im-

ages being ”scary”) and allow for P@10 scores of around

0.25.

Reconstruction classification provides a more flexible

way to measure cross-modal consistency. It relies on se-

mantic labels as well, but has the benefit that it is indicative

of whether same-class image data is consistently encoded

and decoded. Across all experiments a drop in accuracy

from VisVAE to SynVAE showed that while there is a cer-

tain degree of information loss when passing through latent

spaces cross-modally, overall visual consistency of seman-

tic classes is maintained. Reconstructed MNIST digits even

bear a strong enough semblance to the original images to

warrant a 0.96 accuracy even after passing through music

space. SynVAE’s less detailed BAM reconstructions also

retain sufficient higher-level information in order for multi-

class emotion to be identified with 0.77 accuracy.

Independent of labelled data, DEMINE measures a rel-

atively high amount of mutual information between corre-

sponding visual and auditive latent vectors (ln(10) ≈ 2.3
nats would for instance already be sufficient to encode

MNIST’s class information). This shows that SynVAE

does indeed learn to embed information consistently across

modalities and different types of visual data. Combining

these three quantitative metrics, it becomes apparent that in-

formation content is indeed being translated across modali-

ties consistently.

To assess whether human evaluators would share this no-

tion of consistency, we conducted a classification study for

MNIST and BAM with 11 and 21 participants respectively

using the method described in Section 2.2. After being pre-

sented with 4 audio-visual example pairs for each of the 3

most distinct classes (as determined by VisVAE), evalua-

tors were asked to identify which of 3 images was used to

generate an audio across 20 trials.

For MNIST, evaluators achieve 0.73 accuracy (σ =
0.22) and a consistent Fleiss’ kappa of 0.48 when distin-



Figure 2. Percentages of evaluator choices per class (”scary”, ”happy+peaceful”, ”happy”) and task on the qualitative BAM evaluation.

Correct options highlighted in green. Average accuracy marked at 71%.

guishing between the digits ”0”, ”1” and ”4”. In two tasks,

evaluators unanimously made the correct connection. For

the BAM classes ”scary”, ”happy” and ”happy+peaceful”,

accuracy is at a comparable 0.71 (σ = 0.13) with a Fleiss’

kappa of 0.46. The results in Figure 2 further show how four

”scary” images and one ”happy” image were correctly iden-

tified by all evaluators. Considering that class-adherence for

BAM emotions is not as easily identified as for MNIST dig-

its, the level of agreement across tasks is remarkably high.

This extends to mismatches such as in tasks 5, 6 and 13 as

well, since they typically occur between the correct image

and its visually closest alternative, but rarely for the most

distinct incorrect option. This corroborates that the audio-

visual translations of SynVAE are indeed consistent.

The high accuracy with which the evaluators were able

to distinguish between the three most distinct classes of two

very different datasets by ear alone, shows that low-level in-

formation, such as digits, can be conveyed audibly for sim-

ple data and high-level information, such as emotion per-

ceived through colour and composition, can be conveyed

for more complex data. This in addition to the quantitative

results confirms that audio-visual consistency is not only

theoretical, but also very perceivable.

4. Conclusion

As shown by our results, it can be concluded with high

confidence that SynVAE is able to consistently translate a

diverse range of images into the auditory domain of music

through unsupervised learning mechanisms. The modular

nature of SynVAE furthermore allows for this approach to

be extended to any modality for which high quality single-

modality datasets exist. We therefore hope that the method-

ology outlined in this research will provide a solid basis for

evaluating unsupervised, cross-modal models, in addition to

SynVAE itself enabling more intuitive and inclusive access

to visual artworks across sensory boundaries.

Acknowledgements

This research would not have been possible without ad-

ditional valuable input from Marco Federici and Gjorgji

Strezoski. Additional thanks go to the volunteer evaluators

for their time.

References

[1] L. Chen, S. Srivastava, Z. Duan, and C. Xu. Deep cross-modal

audio-visual generation. In Proceedings of the on Thematic

Workshops of ACM Multimedia 2017, pages 349–357. ACM,

2017. 1

[2] P. K. Diederik and M. Welling. Auto-encoding variational

bayes. In Proceedings of the International Conference on

Learning Representations (ICLR), 2014. 1

[3] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot,

M. Botvinick, S. Mohamed, and A. Lerchner. Beta-VAE:

Learning basic visual concepts with a constrained variational

framework. In International Conference on Learning Repre-

sentations, volume 3, 2017. 1

[4] W.-N. Hsu and J. Glass. Disentangling by partitioning: A rep-

resentation learning framework for multimodal sensory data.

arXiv preprint arXiv:1805.11264, 2018. 1

[5] D. Hu, D. Wang, X. Li, F. Nie, and Q. Wang. Listen to the

image. arXiv e-prints, page arXiv:1904.09115, Apr 2019. 1

[6] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-

based learning applied to document recognition. Proceedings

of the IEEE, 86(11):2278–2324, 1998. 1, 3

[7] X. Lin, I. Sur, S. A. Nastase, A. Divakaran, U. Hasson, and

M. R. Amer. Data-efficient mutual information neural estima-

tor. CoRR, abs/1905.03319, 2019. 2

[8] A. Roberts, J. Engel, C. Raffel, C. Hawthorne, and D. Eck. A

hierarchical latent vector model for learning long-term struc-

ture in music. CoRR, abs/1803.05428, 2018. 1

[9] M. J. Wilber, C. Fang, H. Jin, A. Hertzmann, J. Collomosse,

and S. Belongie. BAM! The behance artistic media dataset for

recognition beyond photography. In The IEEE International

Conference on Computer Vision (ICCV), Oct 2017. 1, 3


