
Fourier-CPPNs for Image Synthesis

Mattie Tesfaldet, Xavier Snelgrove, David Vazquez

Element AI

Montréal, Canada

mattie,xavier.snelgrove,dvazquez@elementai.com

Abstract

Compositional Pattern Producing Networks (CPPNs)

are differentiable networks that independently map (x,y)
pixel coordinates to (r,g,b) colour values. Recently, CPPNs

have been used for creating interesting imagery for creative

purposes, e.g. neural art. However their architecture bi-

ases generated images to be overly smooth, lacking high-

frequency detail. In this work, we extend CPPNs to explic-

itly model the frequency information for each pixel output,

capturing frequencies beyond the DC component. We show

that our Fourier-CPPNs (F-CPPNs) provide improved vi-

sual detail for image synthesis.

1. Introduction

The fields of computer graphics and computer vision

have a long history of introducing new computational ap-

proaches for the creation of images. Recently, excit-

ing new deep learning approaches for synthesizing im-

ages have come about, such as Generative Adversarial Net-

works (GANs) [5] for generating realistic faces [9, 10],

Convolutional Networks (ConvNets) for image style trans-

fer [4, 16, 7], and Compositional Pattern Producing Net-

works (CPPNs) [15, 8, 6, 11, 12, 14] for creating aesthet-

ically interesting high-resolution images for creative pur-

poses. The proposed research extends CPPNs by explicitly

modelling frequency information. Our experiments show

that our Fourier-CPPN (F-CPPN) produces images with im-

proved visual detail while maintaining the advantages of

CPPNs.

1.1. Compositional Pattern Producing Networks
(CPPNs)

CPPNs are differentiable networks that independently

map (x,y) pixel coordinates to (r,g,b) colour values via

the composition and combination of various simple acti-

vation functions (Fig. 1 top), e.g. linear, exponential, pe-

riodic, etc. Originally, CPPNs were designed for analysing

the properties of natural developmental encodings [15] and

Figure 1: Fourier-CPPNs (F-CPPNs) for image synthe-

sis. (top-left) CPPNs are differentiable networks that map

(x,y) pixel coordinates to (r,g,b) colour values via linear

and non-linear transformations. (bottom) We propose F-

CPPNs, an extension of CPPNs which explicitly model the

frequency information for each pixel output, capturing fre-

quencies beyond what can be captured by CPPNs. This al-

lows for outputs with increased visual detail.

were optimized using a neural-evolutionary approach that

augmented the CPPN’s weights and topology. Instead of

using the same activation function at each layer, the evo-

lutionary process would find the optimal activation from

a list of possible activation functions and “grow” the net-

work, increasing its complexity. Recently however, CPPNs

have started to be used for creating interesting imagery for

creative purposes [6, 11, 12, 14], e.g., neural art. These

recent CPPN implementations have avoided using neural-

evolutionary approaches in determining the network’s ar-

chitecture and have opted for using a fixed architecture in-

stead, whose weights are optimized via gradient descent.

CPPNs have several useful properties. The image they

parameterize can be generated at arbitrary resolutions and at

arbitrary crops. They can also easily integrate into computer

graphics pipelines [14]. However, the locality of pixel coor-

dinates and choice of smooth activation functions constrains

the resulting image such that colour tends to smoothly vary

across neighbouring pixels. As a consequence of this induc-

tive bias, CPPNs create images that appear overly smooth,

lacking high-frequency detail that can otherwise add real-

ism to the synthesized image. Up until now, CPPNs have

not been designed to incorporate frequency information be-

yond the DC (zero-frequency) component. We propose an

extension to CPPNs, based on Fourier analysis, where each

pixel’s colour value is represented as a linear combination

of complex-valued sinusoids.

1.2. Fourier synthesis

Here we briefly review the relevant theory and mathe-

matics before introducing F-CPPNs. The two-dimensional

(2D) discrete Fourier transform (DFT) allows us to repre-

sent an image, I, as a linear combination of complex-valued

sinusoidal basis images with varying frequency. The mix-

ing coefficients of these images are given by the complex-

valued F [ωx,ωy], which represent the magnitude and phase

of the sinusoid with spatial frequency ωx and ωy. The in-

verse 2D DFT (IDFT) allows us to synthesize I from its

Fourier coefficients, F . It is defined, per colour channel, as

follows,

Ic(x,y) =
1√
WH

W−1

∑
ωx=0

H−1

∑
ωy=0

Fc[ωx,ωy]e
i2π(ωxx/W+ωyy/H) , (1)

where Ic(x,y) is the intensity at pixel (x,y) for a particu-

lar colour channel c, Fc[ωx,ωy] is the Fourier coefficient for

the given spatial frequencies ωx and ωy, and W and H are

the width and height of the image in pixels, respectively.

Note that the number of frequencies (and coefficients) cor-

responds to the number of pixels in the input image. F and I

above are complex-valued functions. Since we seek to gen-

erate a real-valued image, in this work we simply take the

real part of I.

2. Fourier CPPNs

We propose the Fourier-CPPN (F-CPPN), an alternate

parameterization to CPPNs where each pixel’s (r,g,b)
colour value is obtained from an IDFT on a set of learned

Fourier coefficients (see Fig. 1 bottom),

(x,y)
F−CPPN−−−−−→

(

Fr[ωx,ωy],Fg[ωx,ωy],Fb[ωx,ωy)
] IDFT−−−→ (r,g,b) .

(2)

Consider a H ×W ×2 grid of pixel coordinates as inputs to

a F-CPPN. Recall that a H ×W image can be defined by

a single set of Fourier coefficients of the same dimensions.

We design our F-CPPN to output a smaller number of co-

efficients with dimensions HF ×WF . However, we allow

them to vary at each pixel coordinate. This localized and

spatially-varying Fourier parameterization of the image is

defined as follows,

Ic(x,y) =
1√

WF HF

WF−1

∑
ωx=0

HF−1

∑
ωy=0

Fxyc[ωx,ωy]e
i2π(ωxx/WF+ωyy/HF) , (3)

where Fxyc[ωx,ωy] represents the localized frequency infor-

mation for spatial frequencies ωx and ωy at pixel coordi-

nate (x,y) for colour channel c. The final (r,g,b) colour

value is constructed as I(x,y) = (Ir(x,y), Ig(x,y), Ib(x,y)),
from which the final H ×W ×3 image I is obtained.

This image representation is overparameterized. Instead

of representing the image with H×W Fourier coefficients, it

is now represented with H×W ×HF ×WF localized Fourier

coefficients. However, this parameterization has some use-

ful properties. First, a region of an image containing a peri-

odic texture with period WF and HF in x and y, respectively,

can be represented with a constant set of localized Fourier

coefficients at every pixel location in that region. Second, a

region of transition from one periodic texture to another can

be represented as an interpolation from one set of localized

Fourier coefficients to another.

By combining the inductive bias of a CPPN, which tends

towards constant or smoothly varying outputs, with the

property of the localized IDFT, whereby regions with con-

stant coefficients become regions of constant periodic tex-

ture, we arrive at our contribution, the F-CPPN. Our F-

CPPN is able to explicitly model frequency information be-

yond the DC component. We can consider CPPNs as a spe-

cial case of F-CPPNs, where WF =WH = 1, in other words,

a F-CPPN that only captures the DC component.

Architecture design Our F-CPPN architecture builds on

the CPPN implementation from Mordvintsev et al. [12].

Their network consists of eight 1× 1 convolutional layers,

each with 24 filters and each followed by an activation func-

tion φ(a) =
(

arctan(a)/0.67, arctan2(a)/0.67
)

, where a is

the output from a convolution and (·, ·) is a channel-wise

concatenation. Note that CPPNs can be implemented as

ConvNets strictly using 1× 1 convolutions. This implies

that no information is shared between neighbouring pixels.

Our F-CPPN differs from their CPPN in that the final layer

does not directly output (r,g,b) colour values but instead

outputs
(

Fxyr[ωx,ωy],Fxyg[ωx,ωy],Fxyb[ωx,ωy]
)

Fourier co-

efficients, which are then fed to an IDFT to produce (r,g,b)
colour values.

3. Experiments

Our goal is to improve the visual detail of images syn-

thesized by CPPNs by explicitly modelling frequency infor-

mation, arriving at F-CPPNs. We qualitatively evaluate the

Figure 2: Image reconstruction via Compositional Pattern Producing Networks (CPPNs) and Fourier-CPPNs (F-CPPNs).

(left) Target image. (middle) Mordvintsev et al. [12]’s CPPN output. (right) Our F-CPPN’s output. Notice in the zoomed-in

sections that our F-CPPN is able to better reconstruct the textural detail of the cat’s fur.

F-CPPN approach of extending a CPPN’s frequency rep-

resentation beyond the DC component through an ablation

study on two image synthesis tasks, image reconstruction

and texture synthesis. For each task, we compare the out-

puts from our F-CPPN and Mordvintsev et al. [12]’s CPPN

(the baseline). Additional results can be found in the sup-

plementary material.

Training The objectives used for optimizing the weights

of the F-CPPN and the baseline are described in the follow-

ing sections. We used L-BFGS [1] for optimization. Results

were generated using an NIVIDA Tesla P100 GPU and op-

timization took about an hour for generating a 224× 224

image. The input pixel coordinates were set to range be-

tween [
√

3,−
√

3] with (0,0) in the centre. The weights for

each layer were initialized randomly with zero mean and a

variance equal to
√

1/C, where C is equal to the number

of input activations. Biases were initialized to zero. The

number of spatial frequencies, HF ×WF , was set to 10×10.

3.1. Image reconstruction

We show that F-CPPNs have the capacity to synthe-

size images with greater detail than the baseline with the

straightforward task of image reconstruction. Both a F-

CPPN and a CPPN are tasked with reconstructing a given

image, I, to produce an output, Î. To optimize the weights

of both networks, we use the content loss from Gatys et al.

[4],

Lcontent =
1

L
∑

l

||φl(I)−φl(Î)||22 , (4)

where φl(·) are the activations of the l-th layer of VGG-

19 [13] when processing input (·), L is number of layers

used, and || · ||2 is the L2 norm. In short, the content loss is

computed as the mean squared error (MSE) between feature

representations of I and Î. The activations used were from

layers conv1 1, pool1, pool2, pool3, and pool4 of VGG-19.

As shown in Fig. 2, the level of detail captured by the F-

CPPN is generally greater than the CPPN’s.

3.2. Texture synthesis

A visual texture can be loosely defined as a region of an

image with stationary feature statistics. Examples of nat-

ural textures can include bark, granite, or sand. Texture

synthesis is the process of algorithmically generating new

image regions that match the stationary feature statistics of

a given source texture. Gatys et al. [3] demonstrated im-

pressive results using the learned filters from VGG-19. Tex-

tures were modelled in terms of the normalized correlations

between activation maps within several layers of the net-

work. Here we synthesize textures with our F-CPPN and

the baseline CPPN using Gatys et al. [3]’s texture objec-

tive. The task is as follows. Given a target texture, let

Al ∈ R
Nl×Ml be its row-vectorized activation maps at the

l-th layer of a ConvNet (in this case, VGG-19). Nl and Ml

denote the number of activation maps and the number of

spatial locations, respectively. The normalized correlations

between activation maps within a layer are encapsulated by

a Gram matrix, Gl ∈ R
Nl×Nl , whose entries are given by,

Gl
i j =

1
NlMl

∑
Ml

k=1 Al
ikAl

jk. Al
ik denotes the activation of fea-

ture i at location k in layer l on the target texture. Similarly,

given a synthesized texture, let Âl ∈ R
Nl×Ml be its row-

vectorized activation maps and Ĝl ∈ R
Nl×Nl be its Gram

matrix, whose entries are given by, Ĝl
i j =

1
NlMl

∑
Ml

k=1 Âl
ikÂl

jk.

The final objective is defined as the average of the MSE be-

tween the Gram matrices of the target texture and that of the

synthesized texture,

Lstyle =
1

L
∑

l

‖Gl − Ĝl‖2
F , (5)

where L is the number of ConvNet layers used when com-

puting Gram matrices and ‖·‖F is the Frobenius norm. This

texture objective is also known as the style loss [4]. Simi-

larly to Gatys et al. [3], Gram matrices were computed on

layers conv1 1, pool1, pool2, pool3, and pool4 of VGG-19.

Figure 3: CPPNs vs. F-CPPNs for texture synthesis. (left) Target texture of pebbles. (middle) Output from Mordvintsev et al.

[12]’s CPPN. (right) Output from our F-CPPN. By explicitly modelling frequencies beyond the DC component, our Fourier

parameterization provides an improvement in surface detail on the synthesized pebbles.

In the case of Gatys et al. [3], textures were synthesized

by directly optimizing their pixel values. Recent approaches

use generative ConvNets to synthesize textures [7, 16], pa-

rameterizing the output by the ConvNet’s weights. Our im-

plementation follows a similar approach, however, we use

a F-CPPN as the generative network. This is a novel ap-

plication of CPPNs. Results are shown in Fig. 3. By ex-

plicitly modelling frequencies beyond the DC component,

our F-CPPN provides an improvement in surface detail on

the synthesized texture of pebbles. However, we observe a

periodic tiling in the top-left region of the output. Whereas

regions of constant output would correspond to untextured

regions of constant colour in a CPPN (visible in CPPN out-

put in Fig. 3), in a F-CPPN it would correspond to regions

of the same coefficients, resulting in a HF ×WF -periodic

tiling throughout the region.

4. Conclusion

In this paper, we presented an extension to CPPNs,

based on Fourier analysis, which we call Fourier-CPPNs (F-

CPPNs). F-CPPNs explicitly model the frequency informa-

tion for each pixel output, capturing high-frequency detail

that can not be captured by CPPNs. We applied our F-CPPN

to the tasks of image reconstruction and texture synthesis

and showed that the resulting images exhibited greater de-

tail than the images synthesized by a CPPN. We observed a

limitation common to both F-CPPNs and CPPNs where re-

gions of constant output manifested themselves as regions

of periodic tiling of texture in a F-CPPN’s output and untex-

tured regions of constant colour in a CPPN’s output. Reg-

ularization methods may alleviate these issues, which we

leave as directions for future work. An advantage of F-

CPPNs is the direct manipulation of frequencies, allowing

for interesting effects such as phase shifting [2] and band-

pass filtering. We aim to explore these techniques in future

work.

References

[1] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory

algorithm for bound constrained optimization. SIAM Journal

on Scientific Computing, 16(5):1190–1208, 1995. 3

[2] W. T. Freeman, E. H. Adelson, and D. J. Heeger. Motion

without movement. In SIGGRAPH, 1991. 4

[3] L. A. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis

using convolutional neural networks. In NeurIPS, 2015. 3, 4

[4] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer

using convolutional neural networks. In CVPR, 2016. 1, 3

[5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In NeurIPS, 2014. 1

[6] D. Ha. Generating large images from latent vectors, 2016. 1

[7] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In ECCV, 2016.

1, 4

[8] A. Karpathy. Image regression, 2014. 1

[9] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive

growing of GANs for improved quality, stability, and varia-

tion. In ICLR, 2018. 1

[10] T. Karras, S. Laine, and T. Aila. A style-based generator ar-

chitecture for generative adversarial networks. arXiv, 2018.

1

[11] L. Metz and I. Gulrajani. Compositional pattern producing

GAN. In NeurIPS Workshops, 2017. 1

[12] A. Mordvintsev, N. Pezzotti, L. Schubert, and C. Olah. Dif-

ferentiable image parameterizations. Distill, 2018. 1, 2, 3,

4

[13] K. Simonyan and A. Zisserman. Very deep con-

volutional networks for large-scale image recognition.

arXiv:1409.1556, 2014. 3

[14] X. Snelgrove and M. Tesfaldet. Interactive CPPNs in GLSL.

In NeurIPS Workshops, 2018. 1

[15] K. O. Stanley. Compositional pattern producing networks:

A novel abstraction of development. GPEV, 8(2):131–162,

2007. 1

[16] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. S. Lempitsky.

Texture networks: Feed-forward synthesis of textures and

stylized images. In ICML, 2016. 1, 4

