
Dropout Induced Noise for Co-Creative GAN Systems

Sabine Wieluch, Dr. Friedhelm Schwenker

Institute for Neural Information Processing

Ulm University

sabine.wieluch@uni-ulm.de, friedhelm.schwenker@uni-ulm.de

Abstract

This paper demonstrates how Dropout can be used in

Generative Adversarial Networks to generate multiple dif-

ferent outputs to one input. This method is thought as an

alternative to latent space exploration, especially if con-

straints in the input should be preserved, like in A-to-B

translation tasks.

1. Introduction

In current co-creative Generative Adversarial Net-

work (GAN) systems, latent space exploration[5] and

manipulation[16] is a common way to give the user a variety

of possible generative outcomes. To give even more control

to the user, neural net architectures like InfoGAN[1] aim to

learn disentangled latent space representations, so features

of the generative model can be controlled separately.

Alas generating different outputs via latent space explo-

ration is not a suitable solution for all generative settings.

Many tasks require a generative system to start from a cer-

tain given input and not from a noise vector, for exam-

ple Conditional GANs[8]. Typical examples for such tasks

would be A-to-B translation[17, 4] like style transfer[2],

image inpainting[9, 14] or image synthesis from text[15]

or label masks[11]. In such cases, manipulations in the la-

tent space could result in losing or altering the original con-

strains from the input vector.

One solution to this problem could be to feed an additional

noise vector to the neural net, but Isola et al.[4] and Math-

ieu et al.[7] describe that the generator only learns to ignore

this noise.

Therefor we propose to use Dropout[3] in the generation

phase to create a variety of outputs.

2. Dropout as induced Noise

To receive multiple different results from one GAN in-

put, we propose to use Dropout not only in the training but

also in the generation phase.

Dropout[12] is usually used in GAN layers for regulariza-

tion to prevent over-fitting: units are deactivated with a

given probability p. This is done to prevent co-adaptions

betweens units. These co-adaptions prevent generalization,

so unseen data performs worse.

Dropout in one unit i is defined as:

Training : Oi = Xia(

di∑

k=1

wkxk + bi)

Generation : Oi = qa(

di∑

k=1

wkxk + bi)

With P (Xi = 0) = p and q = 1− p.

In the generation phase, the activation function a is scaled

by q to match the expected output from the training phase.

Though, most implementations use Inverted Dropout,

which is defined as:

Training : Oi =
1

q
Xia(

di∑

k=1

wkxk + bi)

Generation : Oi = a(

di∑

k=1

wkxk + bi)

This slight change (scaling in the training phase instead of

in the generation phase) gives the improvement, that in the

generation phase no scaling or other alteration is required.

In our experiments, we use Inverted Dropout for bet-

ter comparability. To induce noise in the generation

process, we use the same formula for testing as for

generation.

Generation : Oi =
1

q′
X ′

ia(

di∑

k=1

wkxk + bi)

But we use independent probability variables, so that

scaling and dropout can be controlled separately:



P (X ′

i = 0) = pdropout and q′ = 1− pscale.

3. Experiment Design

For our experiments, several models were trained on

the MNIST dataset[6] using different probabilities p for

dropping out units in the training phase: 0 (which is the

equivalent of using no Dropout), 0.2, 0.4, 0.6 and 0.8.

The GAN architecture is derived from DCGAN[10]:

The Discriminator hidden layers consist of a 2D-

Convolution, Batch Normalization and LeakyReLu.

The output layer consists of a 2D-Convolution and a

sigmoid activation function.

The Generator hidden layer consist of 2D Transposed

Convolution, Batch Normalization, ReLu. We added

Dropout at the end of the Sequence. The output layer

consists of a 2D Transposed Convolution and hyperbolic

tangent as activation function.

The experiments aim to find the best Dropout config-

uration to both achieving the broadest variety of generated

images but also the visually most appealing images.

To measure the variety, N = 500 noise vectors z were

drawn. With these noise vectors we generate images with

the unaltered generator g(x) that uses no Dropout in the

generation phase and an altered generator g′(x) that uses

Dropout while generating. Between these two outputs, the

euclidean distance d is calculated. To minimize statistical

errors, these calculations are repeated R = 100 times.

Finally the standard deviation of all distances is calculated

and used as metric for variety.

std(
R∑

j=1

N∑

i=1

(d(g(zi), g
′(zi))))

We calculated the standard deviation for different settings:

• Dropout applied to all hidden layers.

• Dropout applied to only the first hidden layer (first

layer after input).

Usually Dropout is applied to all hidden layers, but in terms

of generating a variety of outputs it might be interesting to

apply Dropout only on the early hidden layers. This way

certain features or concepts will not be used in the genera-

tion process because of the dropped out units. These miss-

ing concepts might create errors in the generated output.

But if Dropout is only applied on the first layers, other lay-

ers may be able to fix these errors, which might result in an

overall more consistent result.

• No Scaling (pscale = 0).

• Scaling matches Dropout probability

(pscale = pdropout).

Usually, if Dropout is applied, a unit’s output is scaled

by 1

1−p
to match the expected output and prevent over-

saturation. But in this case, the goal is to generate a variety

of outputs which in the best case are a creative addition to a

human-in-the-loop system. So removing the scaling but still

dropping out units might give a more interesting or creative

result.

4. Results

Table 1 shows the results of using typical Dropout

configuration (same as in training) in the generation phase.

Training p states the Dropout probability that was used

to train the model. So each column represents a separate

model. Generation p states the Dropout probability that

was used for scaling (pscale) and as Dropout probability

(pdropout).

For each model (so no matter with which Dropout

probability it was trained), it is clearly visible that a higher

p in Generation results in a larger difference between

outputs. This is also visible in Figure 1 where one noise

vector was used to generate images with different Dropout

rates starting at 0 on the left and go up to 0.8 on the

right. The generation series was repeated 3 times. With a

higher dropout rate, the images differ more between each

generation. Also conspicuous is that with a higher dropout

rate, the images tend to have sharper edges. This leads to

the conclusion that details are getting lost.

Figure 1. Model trained with a Dropout rate of 0.8. Images gen-

erated with Dropout rates ranging from 0 to 0.8. Generation was

repeated three times to show variety in output. Especially with

higher Dropout rates, generated images differ a lot.

The standard deviation also increases with a larger

Dropout probability in training. Except if the model was

trained completely without Dropout. In this case, the stan-

dard deviation directly jumps to values similar to a Train-

ing p of 0.6. Figure 2 shows corresponding images: If the

model was trained with no Dropout but Dropout is used

in generation, the resulting images look broken, especially

with higher probabilities. This is most certainly due to

learned co-adaptions between units. These co-adaptions are

not reliable anymore if Dropout is applied, so the generation

breaks.



Figure 2. Model trained with no Dropout. Images generated with

Dropout rates ranging from 0 to 0.8. Generation was repeated

three times to show variety in output. Especially with higher

Dropout rates, generated images look distorted or broken.

all layers Training p

matching Scale 0 0.2 0.4 0.6 0.8

G
en

er
a
ti

o
n
p

0 0 0 0 0 0

0.2 1.258 1.158 1.227 1.342 1.55

0.4 2.092 1.716 1.804 1.994 2.668

0.6 3.027 2.394 2.55 2.752 3.847

0.8 4.116 3.468 3.683 3.973 5.213

Table 1. Standard deviation of models tested with Dropout on all

hidden layers. The scale factor matches the Dropout probability in

generation (pscale = pdropout).

4.1. Scaling

In this experiment, Dropout was applied to the same

models as in section 4, but no scaling was used (pscale = 0).

Table 2 shows the resulting standard deviations from all

tested models and Dropout rates. The results look different

than before: the variety first increase with a higher dropout

rate but then shrinks again. A higher Dropout rate in train-

ing again gives the largest standard deviation.

Figure 3 helps to understand why the variety decreases with

high Dropout rates: With medium Dropout rates in genera-

tion, the result images look slightly different but also start

to get noisy. If the Dropout rate is increased even more, the

image generation completely breaks and only results in ran-

dom noise. This is most certainly due to under-saturation

in units: Dropout is applied, so the average signal value

is decreased. Usually this value would be scaled back to

match the expected output, but in this experiment no scal-

ing is applied. So the unit’s output stays at it’s low level,

which results in noisy images. So, values should definitely

be scaled if Dropout is used.

4.2. Dropout and Layers

If Dropout is only applied in the first hidden layers, the

remaining layers might be able to fix errors that emerge due

to deactivated units. Therefor in this experiment, Dropout

was only applied to the first hidden layer of the models de-

scribed in 4. When comparing the initial experiment setting

(Dropout on all hidden layers) versus Dropout only applied

to the first hidden layer, no significant differences could be

Figure 3. Model trained with a Dropout rate of 0.8. Images gen-

erated with Dropout rates ranging from 0 to 0.8 and no scaling

(pscale = 0). Generation was repeated three times to show variety

in output.

all layers Training p

no Scaling 0 0.2 0.4 0.6 0.8

G
en

er
a
ti

o
n
p

0 0 0 0 0 0

0.2 1.204 1.141 1.097 1.301 1.733

0.4 1.544 1.399 1.148 1.763 3.233

0.6 1.713 1.755 1.235 2.227 3.441

0.8 1.126 1.272 0.777 0.909 1.517

Table 2. Standard deviation of models tested with dropout on all

hidden layers and no Scaling.

found in the standard deviation. Generated images also look

very similar and no distinct difference could be recognized.

However, Figure 4 demonstrates that the mentioned repair

ability of additional non-Dropout layers exists. The first

row shows one row of the no-scaling experiment. A model

was trained with a Dropout rate of 0.8 and tested with

Dropout rates ranging from 0 to 0.8 but without scaling

(pscale = 0). This results in very noisy images.

The second row shows the exact same setup with the differ-

ence, that the Dropout without scaling only was applied on

the first hidden layer. The resulting images are less noisy

and up to medium Dropout ranges, the Dropout-induced er-

rors are visually repaired very well. On high Dropout rates,

the remaining layers do not completely succeed in fixing

the errors from earlier layers, but still improve the image

quality.

Figure 4. Model trained with a Dropout rate of 0.8. Images gener-

ated with Dropout rates ranging from 0 to 0.8 and no scaling. The

first row shows a model with Dropout applied to all hidden layers

in generation, the bottom row has Dropout only applied to the first

hidden layer.

4.3. Test on Layer Mask Dataset

To give a better impression how Dropout can be used

to generate a variety of results, we trained a model on the



label masks in the CMP Facades dataset[13]. The model

was trained to add additional labels to a label mask only

containing the facade and window labels. The training goal

was to let the model add additional labels, so that the fa-

cade would still looks coherent. Additional labels can be

other windows, shops, sills, moldings, etc. This way the

model could for example help an architect to decide where

to put the next facade element. The neural net architecture

matches the pix2pix architecture described in [4].

Figure 5 shows the generative results using our model. It

was trained with a Dropout rate of 0.5. The image on the

left shows the input image and the right side shows four

generated outputs using a Dropout rate of 0.5. The model

adds additional windows (turquoise), shops(pink), mold-

ings(yellow) and cornices(green). The generated images

differ mainly in placing and size of shops and windows.

Windows are also sometimes split into two separate ones.

The resulting images are coherent, give different sugges-

tions to the user and could therefore very well be used in a

human-in-the-loop system.

Figure 5. Model trained on facade label masks. Left images shows

input, right images show variety of output if Dropout rate of 0.5 is

used for generation.

5. Conclusion

In our experiments, we showed that Dropout is a

suitable method in GANs to generate a variety of outputs

to one input, especially if other methods like latent space

exploration cannot be used. Larger Dropout rates give a

larger variety but might also result in incoherent images.

The Dropout rate in training also influences the result with

larger rates also resulting in a larger variety. However

training with large Dropout rates is difficult and may

result in mode collapse. Therefore training and generation

Dropout rates should be set as high as possible with the

trade-offs in mind.

Applying Dropout only to the first hidden layers might be

beneficial to the image quality, because the non-Dropout

layers can repair errors emerging due to Dropout in the

early layers. How advantageous this is exactly will have to

be researched in future studies.

References

[1] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever,

and P. Abbeel. Infogan: Interpretable representation learning

by information maximizing generative adversarial nets. In

Advances in neural information processing systems, pages

2172–2180, 2016. 1

[2] L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm

of artistic style. arXiv preprint arXiv:1508.06576, 2015. 1

[3] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and

R. R. Salakhutdinov. Improving neural networks by pre-

venting co-adaptation of feature detectors. arXiv preprint

arXiv:1207.0580, 2012. 1

[4] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-

image translation with conditional adversarial networks. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1125–1134, 2017. 1, 4

[5] D. P. Kingma and P. Dhariwal. Glow: Generative flow with

invertible 1x1 convolutions. In Advances in Neural Informa-

tion Processing Systems, pages 10215–10224, 2018. 1

[6] Y. LeCun. The mnist database of handwritten digits.

http://yann. lecun. com/exdb/mnist/. 2

[7] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale

video prediction beyond mean square error. arXiv preprint

arXiv:1511.05440, 2015. 1

[8] M. Mirza and S. Osindero. Conditional generative adversar-

ial nets. arXiv preprint arXiv:1411.1784, 2014. 1

[9] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A.

Efros. Context encoders: Feature learning by inpainting. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 2536–2544, 2016. 1

[10] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-

sentation learning with deep convolutional generative adver-

sarial networks. arXiv preprint arXiv:1511.06434, 2015. 2

[11] S. E. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, and

H. Lee. Learning what and where to draw. In Advances

in Neural Information Processing Systems, pages 217–225,

2016. 1

[12] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: a simple way to prevent neural

networks from overfitting. The journal of machine learning

research, 15(1):1929–1958, 2014. 1

[13] R. Tyleček and R. Šára. Spatial pattern templates for recog-

nition of objects with regular structure. In Proc. GCPR, Saar-

brucken, Germany, 2013. 4

[14] R. A. Yeh, C. Chen, T. Yian Lim, A. G. Schwing,

M. Hasegawa-Johnson, and M. N. Do. Semantic image in-

painting with deep generative models. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 5485–5493, 2017. 1

[15] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and

D. N. Metaxas. Stackgan: Text to photo-realistic image syn-

thesis with stacked generative adversarial networks. In The

IEEE International Conference on Computer Vision (ICCV),

Oct 2017. 1

[16] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros.

Generative visual manipulation on the natural image mani-

fold. In European Conference on Computer Vision, pages

597–613. Springer, 2016. 1

[17] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-

to-image translation using cycle-consistent adversarial net-

works. In Proceedings of the IEEE international conference

on computer vision, pages 2223–2232, 2017. 1


