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Abstract

Architectural improvements are studied for convolu-

tional network performing estimation of heart rate (HR)

values on color signal patches. Color signals are time

series of color components averaged over facial regions

recorded by webcams in two scenarios: Stationary (with-

out motion of a person) and Mixed Motion (different mo-

tion patterns of a person). HR estimation problem is ad-

dressed as a classification task, where classes correspond

to different heart rate values within the admissible range

of [40; 125] bpm. Both adding convolutional filtering lay-

ers after fully connected layers and involving combined loss

function where first component is a cross entropy and sec-

ond is a squared error between the network output and

smoothed one-hot vector, lead to better performance of HR

estimation model in Stationary and Mixed Motion scenar-

ios.

1. Introduction

Wide-spreading of cheap color cameras, especially built

into smartphones, makes efforts to retrieve biosignals re-

motely, out of video and without specials sensors, very ap-

pealing.

Early papers [30, 34, 36] demonstrated this possibility,

with information retrieved trough analysis of small fluc-

tuations of skin color. This approach was later called

iPPG (imaging photoplethysmography) or rPPG (remote

photoplethysmography), which are effectively synonyms

(possibly, except the specific cases like one-pixel cam-

era [33]). Later papers also demonstrated analysis of micro-

movements caused by pulse (imaging ballistocardiogra-

phy) [2, 24].

More recent works demonstrated that pulse signal can be

recovered from long distances [25] up to 50 m [1] and from

images as small as 41× 30 pixels [14].

Motion of the subject is a significant challenge. The stan-

dard approach is to extract heart rate (HR) information from

a signal based on small fluctuations of skin color (the green

color component is mostly useful [30, 20]), often on ba-

sis of its spectrum [30]. However, frequency of the typi-

cal subject’s movements (head tilts, for example) often fits

within the expected HR range, generating strong false sig-

nal [4, 20, 30].

Poh et al. [21] tried to resolve this issue by Independent

Component Analysis (ICA), which tries to distinguish dif-

ferent sources of the final signal [13, 21].

It was demonstrated, however, that even small motion

of a subject during natural interaction with the computer

causes significant accuracy decrease (compared to control-

lable no-movements case), and in-door exercise environ-

ment makes ICA almost useless. At the same time, simi-

lar methods improved by ML (machine learning) techniques

shows much better accuracy [16, 17, 19, 22].

Our work aims at studying impact of certain architec-

tural tricks which could contribute to modern ML-based ap-

proaches on rPPG.

In particular, we consider classification-based estimation

of HR values by convolutional network followed by two

fully connected layers.

Outputs of this network, if normalized, can be treated

as relative probabilities distribution (we have single output

for the every HR value with constant step). This “pseudo-

spectrum” is often noisy. In order to suppress noise-related

outliers, some processing or filtering method may be ap-

plied to this distribution, for example, smoothing. We re-

place determined processing by convolutional layers assum-

ing to get optimal filtering procedure during training.

2. Related works

Almost all of recent rPPG papers include ML elements

for pre-processing, post-processing or as a main element;

often it’s neural networks and specifically convolutional

neural networks (CNN) [6].

Ground truth signal in most cases retrieved by either

electrocardiography (ECG) [3, 17, 28] or contact PPG [20,

31, 38]. ECG is quoted to be more reliable [28], while con-

tact PPG is quoted to be closer to rPPG signal retrieved [38],

making training easier. Reproduction of ground truth signal



is often the main area of ML-based training [3].

Some mask is often applied to select the so-called “re-

gion of interest” (ROI) – area of the frame image with-

out background pixels and with most informative fluctua-

tions [17, 3, 20]. In most cases, the video of the face is

processed.

While modern progress in deep learning techniques is

believed to provide powerful tools for the rPPG, straight-

forward approach is facing difficulties:

Small datasets for training. Most of the available

datasets include less than 100 subjects. Often only one type

of camera is used.

To compensate a little number of subjects, researchers

tend to gather a lot of videos from every single subject,

which doesn't seem to resolve the problem, since even with

long videos the datasets are still relatively small. To over-

come this problem, transfer learning approach is used with

original data coming from other domains [6, 5] or even gen-

erated out from training on mock signals [18]. Transfer

learning capability is also used in [3] to measure quality

of the proposed method.

Video compression methods, which tend to preserve de-

tails which is visible to the naked eye, and suppress mostly

invisible (and therefore meant to be not important) details.

Another problem is variable frame-rate [23], often gener-

ated by video codecs trying to keep constant bit-rate, which

causes jitter on periods between frames.

It was observed that non-compressed video, while im-

practical, is a much better source for iPPG [28], and

iPPG accuracy decreases linearly as compression rate in-

creases [14, 15].

Magnification of small motion and color changes of

the skin is used to overcome problems caused by video

compression and as a method to increase general sensitiv-

ity, [4, 7, 35]. Another quite unusual approach is to use

1-pixel camera which has no problems with the bandwidth

and therefore needs no compression [33].

The following methods used to handle the motion of the

subject and to overcome the related problems like illumina-

tion changes:

• ML-based detection of peaks instead of spectrum anal-

ysis [20];

• CNN signal post-processing to extract HR informa-

tion [28];

• CNN pre-processing which is expected to be stable to

small movements [28, 29];

• skin reflection model, which is expected to help with

noise caused by observational skin color changes

caused by different view angles [3];

• attention model – ROI building procedure which pays

special attention to moving pixels of image, also ex-

pected to distinguish smaller movements from global

rigid motion [12, 3, 37];

• spatio-temporal CNN, which is able to extract

temporal-based features out of series of 2D images but,

compared to the traditional 3D convolutions, uses sig-

nificantly less parameters for training [38].

Another sources of inspiration for this paper include:

• increasing of quality of events detection when multi-

lead ECG used instead of 1-lead [6];

• motion-compensated pixel-to-pixel pulse extraction

sensors used to utilize spatial-redundancy of im-

age [23].

The both researches involved multichannel registration

of biosignals, which led to more accurate evaluation of

spatio-temporal characteristics of signals. This could be

explained by the enhancement of manifestation of the

common sources of the registered signals in their cross-

correlations.

3. Experimental setup

This section describes the self-collected dataset contain-

ing 52 videos recorded on three cameras in different motion

scenarios. The preprocessed and ground truth data are pub-

licly available (see Section 4.1).

Three cameras were alternately used for video recording:

Cam1: Logitech C920 webcam with 1920×1080 (Width×
Height) pixels and WMV2 video codec.

Cam2: Microsoft VX800 webcam with 640 × 480 pixels

and WMV3 video codec.

Cam3: Lenovo B590 laptop integrated webcam with 640×
480 pixels and WMV3 video codec.

All video sequences were recorded in RGB (24-bit

depth) at 15 frames per second (fps) with 60–80 seconds

duration. Each frame contains a person's face.

From 2 to 14 video sequences were recorded for each of

8 healthy participants (7 male, 1 female, aged from 24 to

37, with skin-tones categorized from type-I to type-IV on

the Fitzpatrick scale). Distribution of reference HR values

is shown in Fig. 1. Each subject signed written consent to

take part in the tests, which were performed in compliance

with the bioethics regulations; experimental protocols were

approved by the bioethics committee of the Southern Fed-

eral University.

The distances range from the face to webcam was 0.5–

0.7 m. The pixel size of the facial area was from 350× 350
pixels to 550×550 when using the Cam1 and from 150×150
to 250×250 when using cameras Cam2, Cam3. Each video

sequence was recorded at 15 frames per second in daylight



Figure 1. Distribution of HR values in the experimental dataset and

corresponding class weights (see Section 4.3).

Figure 2. Examples of subject's poses and recording conditions in

dataset: Stationary Scenario a) and Mixed Motion Scenario b).

illumination (300–1000 lx). Ground truth, or reference,

HR values were obtained by the Choicemmed MD300C318

pulse oximeter (with declared mean absolute error of 2

bpm).

Experiments were conducted in Stationary Scenario and

in Mixed Motion Scenario (Fig. 2).

Stationary Scenario. Subject sat still in front of the we-

bcams in a fixed pose looking straight ahead. 12 video se-

quences for each webcam were recorded.

Mixed Motion Scenario. Subject rotated their head

from right to left (with 120◦ amplitude), from up to down

(with 100◦ amplitude). Subject was asked to speak and

change facial expressions. 6 video sequences were recorded

for each webcam.

4. Methods

In this section, we describe methods of data pre-

processing and HR estimation on a color signal sample by

means of CNN model. The final model architecture sequen-

tially performs three steps: feature extraction (convolutional

layers in Fig. 3 (a) ), HR prediction (fully connected layers

in Fig. 3 (b) ), and filtering (Fig. 3 (b) ).

The following contributions are considered.

Multiple ROIs, forming several input signals (Sec-

tion (4.1.2) ). Our simple attention model focuses on

easy-identifiable parts of the face, known to be impor-

tant [11, 12, 14]. CNN expected to use spatial-redundancy

as in [23] and extract cross-correlations between signals like

in multi-lead ECG [6].

Pseudo-spectrum instead of regression-like mod-

els (Section (4.2) ). As long as different sources (blinking,

head tilts, mimics) generates noise of different frequencies.

Therefore features important to filter them out may differs

for different heart rates. Also classification models (com-

pared to regression ones, like used by Spetlik et al. [28])

are mentioned to be effective for events detection (HR es-

timation is believed to be based on detection of a heartbeat

events) even if the input is noisy [6].

Combined loss, which is based on the cross-entropy and

mean squared error losses (Section (4.3) ). In order to min-

imize the penalty of the minor missclassification (when es-

timated HR value is close to reference one), we add a mean

squared error to the loss function.

Post-processing 1D CNN (Section (4.4) ). Magnifica-

tion of pseudo-spectrum peaks increases contrast and make

detection of the HR more accurate. It resembles the post-

processing approach of Spetlik et al. [28] (but used to in-

crease contrast between classes) and magnification tech-

niques described in [4, 7] (but used for post-processing in-

stead of pre-processing).

4.1. Data pre-processing

The pre-processing is made independently on each given

video sequence. It includes extraction of color signals from

a sequence and generating of training, validation and test

sets. It is assumed that each frame of a video sequence con-

tains face of the same person, while persons can differ in

different sequences.

The data containing CS
v and coordinates of ROI r

with synchronized reference HR values are publicly avail-

able [10].

4.1.1 Color signal extraction

For a given video sequence, ROI r(t) is defined as r-th rect-

angle with coordinates relative to facial bounding box in

t-th frame. Facial bounding box is detected by the OpenCV

implementation of the Viola–Jones face detector [32] ap-

plied to each frame. Regarding the works on ROIs selec-

tion [11, 12], six ROIs are used in this paper: r = 1..6
(Fig. 4): corresponding to nose, nose bridge, areas under

eyes, truncated facial box, and full bounding box. Coor-

dinates of the bounding box are averaged over the last 20

frames (≈1.3 sec) to minimize detection jitter.

CS
c
r(t) (c ∈ R,G,B) is a color signal value obtained
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Figure 3. Architecture of CL+F: basic classification network a), and filtering appendix b).

Figure 4. Location of ROIs on the facial bounding box: nose (1),

nose bridge (2), areas under eyes (3, 4), truncated facial box (5),

full bounding box (6). ROIs coordinates are not ideally symmet-

rical about a horizontal axis: they were set manually to match the

facial features on most video sequences in the dataset.

by averaging intensity of red (R), green (G), or blue (B)
color component over the ROI r(t). Finally, 18 (6 × 3)
one-dimensional color signals CS

c
r(t) were obtained from

each video sequence, forming multi-dimensional color sig-

nals CS
v , where v is index of video sequence.

4.1.2 Input data generation

The input data samples are 64-frames fragments of color

signals CS
v (≈4.3 sec per fragment), obtained by split-

ting each signal into overlapping segments, starting from

the first video frame with a step of 10 frames. Samples are

scaled to fit the [−1, 1] interval. It is assumed that HR will

not change significantly over the sample, so ground truth

HR values are averaged within sample resulting in one ref-

erence value for each sample.

The video sequences are typically collected in similar

environmental conditions but with different participants. In

order to keep the training, validation and test sets statisti-

cally equivalent, the training set includes first 70% of sam-

ples obtained for a CS
v , while the validation set includes

next 10% samples (excluding ones that overlap with the

training), and test set includes last 20% samples. In this

Camera
Scenario

Stationary Mixed Motion Both

Cam1 1169 / 94 / 340 439 / 27 / 128 1608 / 121 / 468

Cam2 944 / 64 / 279 446 / 28 / 132 1390 / 92 / 411

Cam3 1056 / 84 / 312 402 / 24 / 120 1458 / 108 / 432

All 3169 / 242 / 931 1287 / 79 / 380 4456 / 321 / 1311

Table 1. Number of samples in the training / validation / test sets

per camera and scenario.

way, color signals from each video sequence are presented

in all sets, while the training set doesn't intersect with vali-

dation or test sets. Alternative distribution of train, valida-

tion, and test sets was also evaluated, where the sets were

chosen from different non-overlapping video sequences,

recorded by different webcams to estimate model general-

ization properties. Table 1 represents number of samples

per each camera and scenario.

The data augmentation was made on the training set,

where random uniform noise was added to CS
v values. The

noise amplitude was also a uniformly distributed random

value with amplitude from 5e-3 to 5e-2, that typically cor-

responds to 5%–50% of the pulse signal amplitude. The

amplitude changed after each training step.

4.2. Network architecture

Data sample size is (18 × 64), where the 1st dimension

is for color signal channels, the 2nd is for discrete time. A

sample is processed as a single-channel image. Due to rel-

atively large kernels and, therefore, quick reducing of tem-

poral information through the convolutional layers of the

network, we don't use pooling layers to avoid double reduc-

ing.

The basic architecture contains five 2D convolution

layers with ReLU activation functions followed by two

fully connected layers, also with ReLU activations (see

Fig. 3(a) ). After each convolution layer there is 2D Batch

Normalization [8], while after fully connected layers there

are 1D Batch Normalization and dropout layers (with 0.5

dropout rate). We tried to add Batch Normalization before

and after ReLU, and the latter proved to lead to better accu-

racy. The number of output channels in convolution layers



is 16. Kernel size is 5×11 (color signal channels×discrete

time) for the first four layers, and 2×11 for 5th layer. Con-

sequently, a 16-channel image of 1×14 size is input to the

first fully connected layer, which has 60 output neurons.

We formulate the problem of HR estimation in two ways:

as regression or classification tasks. For regression, output

of the second fully connected layer is a single value ŷ rep-

resenting HR estimate. For classification, the output Ŷ is

a N -length prediction vector, where N = 128 is the num-

ber of classes. Classes are generated from the range of ad-

missible HR values (40–125 bpm), which is split into N

segments of equal size (≈ 0.7 bpm). The segments are as-

signed to corresponding class labels Ŷi. The resulting label

y is calculated as argmax(Ŷi).
Note that reference value y and estimate ŷ correspond

to HR values in regression task, while in classification task

they are class labels.

4.3. Loss functions

We consider several loss functions: squared error (SE)

for regression task; cross entropy (CE) and combined loss

(CL) for classification task.

SE loss is calculated between model output ŷ and refer-

ence HR value y:

SE (ŷ, y) = (ŷ − y)2 (1)

The distribution of reference HR values in a dataset can

be unbalanced. To compensate this, weight coefficients

w̃y ∈ W̃ are involved in all CE losses. First, L vector is

calculated denoting inverse numbers of samples per classes

in dataset. Next, the weights vector W̃ is calculated by

smoothing the L vector, which is computed as:

W̃ =
L ∗Gk(σ2)

∑
128

i=1
L ∗Gk(σ2)

, (2)

where Gk is zero-mean Gaussian kernel with window size

k = 13 bpm and σ = 13

3
≈ 4.3 bpm. Operator ∗ means

discrete convolution with the same padding.

The CE loss combines softmax and negative log likeli-

hood functions:

CE
(

Ŷ, y
)
= −w̃y ln

(
exp Ŷy∑
128

i=1
exp Ŷi

)
=

= w̃y

(
−Ŷy + ln

(
128∑

i=1

exp Ŷi

)) (3)

In pure classification task, loss value does not depend on

distance between predicted and reference HR values. To

take account for the distance, we introduce one-hot vector

Yy
(
∈ {0, 1}N : Y y

i = 1 ⇔ i = y
)
, corresponding to y la-

bel. Similarly to Eq. (2), the vector is smoothed resulting in

Ỹ
y
:

Ỹy =
Yy ∗Gk(σ2)

∑
128

i=1
Yy ∗Gk(σ2)

, (4)

where k = 13 bpm, σ = k
6
≈ 2.2 bpm.

Finally, combined loss CL is calculated based on CE

loss:

CL
(

Ŷ, y
)
= CE

(
Ŷ, y

)
+ α · MSE

(
Ŷ, Ỹ

y
)
, (5)

where MSE(Ŷ, Ỹ
y
) = 1

N

∑N

i=1
(Ŷi − Ỹ

y

i )
2 is a mean

squared error, α is a balancing coefficient equal to 25. The

coefficient is selected heuristically in order to equalize the

contribution of terms to the sum in Eq. (5) during training.

4.4. Filtering

CL loss function implies a comparison between model

prediction Ŷ and smoothed one-hot vector Ỹ
y

(see Eq. (5) ).

Smoothing parameters σ and k (Eq. (4) ) can be hyperpa-

rameters, however, their optimization is a challenging prob-

lem that should be possibly done after each training itera-

tion. Instead of adding new hyperparameters, we add filter-

ing step to the basic network architecture (Fig. 3(b) ), opti-

mizing smoothing of Ŷ during standard training process in

order to fit Ỹ
y
.

Filtering step goes after the output of second fully con-

nected layer. We use three 1D convolution layers with 16

output channels (single channel for the last layer) and ker-

nel size of 3. Each layer is followed by ReLU activation

and 1D Batch Normalization. Due to the layers containing

no padding, output of the second fully connected layer in-

creased to 134, so the model output shape remains the same

single-channel vector of N length.

We recommend using the filtering step together with

CL loss. Nevertheless, it also can be applied when using

CE loss in order to clarify a class label. Regarding the re-

gression task, where the model output is a single value, the

filtering step is inappropriate.

5. Experimental evaluation and results

This section describes metrics for models evaluation, list

of training hyperparameters, and experimental results.

5.1. Evaluation metric

We used two metrics to evaluate the performance of dif-

ferent models of HR estimation. All metrics were applied

to results on color signal samples of a test set.

MAE Mean absolute error calculates L1-distance be-

tween estimated vector Ŷ of HR values and referent vec-

tor Y:

MAE(Ŷ,Y) =
1

M

M∑

j=1

∣∣∣Ŷj − Yj

∣∣∣ , (6)
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Figure 5. Classification loss as a function of learning rate (for

CL+F). The dashed lines indicate the minimum and maximum

learning rates (5.8e-5 and 5.8e-3 respectively).

where M is a number of samples. We treat MAE as a quali-

tative measure of model accuracy.

Coverage at ±3 bpm This metric was used by Wang et

al. [33] for analysis of video sequences. We redefine it as

a percentage of samples for which MAE value was smaller

than 3 bpm. Regarding the classification task, model out-

put is one of 128 classes corresponding to segments within

the range of admissible HR values (40–125 bpm). There-

fore, for the classification, we use coverage at ±4 class la-

bels which are approximately equal to ±2.7 bpm. Cover-

age metric can be interpreted as model quality. The 3 bpm

threshold is close to the MAE of the pulse oximeter (2 bpm)

indicating that such a threshold could be used to determine

an acceptable measurement.

5.2. Hyperparameters

Here we describe hyperparameters used during the train-

ing process. In this work, we set them manually and don't

address their optimization.

The batch size was 1024 samples; the number of epochs

was 5000. The training set was randomly shuffled after

each epoch. The best model parameters were selected

from epoch with minimum MAE value on the validation

set. The optimization method was Adam [9] with default

parameters. The balancing coefficient α for the CL metric

(Eq. (5) ) is also a hyperparameter.

Learning rate Before the training process, we applied

the learning rate range test [26] to choose the learning

rate boundaries. The test consisted in the estimation of

MAE metric after 5-epochs training for several learning

rates varying from 10e-7 to 10e+1. The resulting curve (see

Fig. 5) was smoothed using Gaussian kernel. The maximum

learning rate is defined as argmin of the smoothed curve;

minimum learning rate is chosen by dividing the maximum

reduced by two orders of magnitude. During further train-

ing, learning rate was linearly changed from minimum to

maximum and back according to the “1cycle” learning pol-

icy [27].

5.3. Results

We evaluated four models that are titled by the

corresponding loss functions: SE model for regres-

sion task (62,675 parameters); CE (70,676 parameters),

CL (70,676 parameters), and CL+F (with filtering layers,

72,017 parameters) for the classification task.

Training and evaluation methods were implemented in

Python (using PyTorch library). The code for generating of

the dataset from the color signals as well as the implemen-

tation of the proposed architecture, training and testing pro-

cedures, and trained models are freely available online [10].

The test set was divided into the several subsets by sce-

nario and used cameras (see Section 3): Stationary and

Mixed Motion subsets titled according to the correspond-

ing scenarios, Cam1, Cam2, Cam3 subsets containing the

samples from the corresponding cameras in both scenarios,

and Full test set, which includes all samples of the test set.

5.3.1 Accuracy on test subsets

Model comparison results are presented in Table 2. The

considered models were trained on the Full training set

(defined in Section 4.1.2). Then the models were evalu-

ated on the test subsets. It is clear that the SE model had

much lower accuracy than classification-based models. Ac-

curacy of both CL and CL+F models was higher than of

CE, where the distance between classes is not taken into ac-

count. Adding filtering layers to the the CL model led to the

highest accuracy in most cases including Full test set. The

CL model had low coverage value on Mixed Motion and

Cam2 subsets. The former can be explained by the presence

of high-amplitude noise in color signals caused by motions.

The coverage metric estimations of the CL+F model

were typically near 50%. It is insufficient to use the model

in a practical applications. However, the size of the train-

ing set was nearly 15 times smaller than the number of the

model parameters. Therefore, the model accuracy and cov-

erage could grow with the dataset expansion.

Fig. 6 shows scatter plots for the considered models eval-

uated on the different test subsets. Predictions of the SE

model were distributed within the first half of admissible

HR range as the result of the unbalanced dataset (see Fig. 1).

Classification-based models led to the similar plots differing

in a number of outliers, where the CL+F model showed the

best results.

As said before, head motion causes disturbances in the

color signal. The amplitude of disturbances is up to two or-

ders higher than amplitude of the signal. Due to that, it had



Test subset Stationary Mixed Motion Cam1 Cam2 Cam3 Full test set

Model MAE Cover MAE Cover MAE Cover MAE Cover MAE Cover MAE Cover

SE 11.6 10.8% 15.4 13.7% 13.3 13.7% 11.7 12.4% 12.9 9.0% 12.7 11.7%

CE 4.4 44.8% 11.1 31.3% 5.8 36.8% 7.5 38.7% 5.6 47.2% 6.3 40.9%

CL 3.8 48.3% 8.9 39.5% 5.5 43.8% 6.4 34.5% 3.9 58.1% 5.3 45.8%

CL+F 4.1 47.8% 6.9 48.7% 4.6 44.7% 5.6 45.0% 4.5 54.2% 4.9 48.1%

Table 2. Evaluation results of the considered models. The models were trained on the full training set and evaluated on the subsets of the

test set. Cover means Coverage at ±3 bpm metric. The best values are in bold.
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Figure 6. Scatter plots of reference HR values and HR estimations of models trained on the full training set. From top to bottom: models

SE, CE, CL, CL+F. From left to right: test subsets a) Stationary, b) Mixed Motion, c) Cam1 only, d) Cam2 only, e) Cam3 only, f) Full test

set. Dashed line is a zero-error line, two dash-dotted lines form error interval of 3 bpm.

been unexpected for the model to have the same coverage

values on the Stationary and Mixed Motion subsets, which

was true for CL+F. Different MAE values indicate a large

number of outliers (Fig. 6(b) ) on the Mixed Motion sub-

set. We believe that the filtering out of such outliers merits

further research.

5.3.2 Model generalization

We studied the generalization of the CL+F network archi-

tecture by comparing of the models trained on the different

subsets: (CL+F)i (i ∈ {1, 2, 3}) trained on the training sub-

Model
Test subset

Cam1 Cam2 Cam3 Full test set

(CL+F)1 4.9 13.3 17.2 11.6

(CL+F)2 20.5 5.0 16.6 14.3

(CL+F)3 18.2 20.3 4.8 14.4

(CL+F)1,2 3.1 4.6 14.8 7.5

(CL+F)1,3 7.6 13.5 7.1 9.3

(CL+F)2,3 10.1 5.5 4.6 6.8

Table 3. MAE values of CL+F trained on different training subsets.



sets with samples from the single camera Cami; (CL+F)i,j
(i, j ∈ {1, 2, 3} , i �= j) trained on the training subsets with

the samples from two cameras Cami, Camj . Sets based on

two cameras were reduced by removing random 50% of the

samples in order to equalize a number of samples.

MAE values are given in the Table 3. In the single-

camera case, the error was high on the every test subset

excluding one corresponding to the camera. This is due to

the different camera resolutions, noise, codecs, and other

parameters. Two-cameras case led to the similar results:

low error for cameras from the training subset and high er-

rors for the remaining camera. However, the error for the

remaining camera was noticeably lower than the errors on

cameras out of training subset in the single-camera case.

Moreover, two-camera cases provided better accuracy on

the full test set. As the every training subset had a compa-

rable number of samples, we conclude that the CL+F net-

work architecture provides a high generalizing ability for its

instances.

6. Conclusion

The problem of remote photoplethysmography by means

of deep learning was considered. Color signals, which are

time series of red, green, and blue color components aver-

aged over certain regions in the facial area (cheeks, fore-

head, nose, etc.), were used as inputs. Inputs were pro-

cessed by convolutional neural network followed by two

fully connected layers. Multiple outputs of this network

correspond to different possible HR values, with constant

step. The impact of improvements to network architecture

and loss function was studied.

In particular, adding convolutional-based filter for post-

processing of network outputs led to better accuracy of HR

estimations. We expect this improvement can benefit to

wide range of deep neural network architectures which ad-

dress a regression problem by classification and produce

“pseudo-spectrum” as output.

Another improvement is the combined loss function,

where the first component is a cross entropy and the second

one is a mean squared error between the network output

and smoothed one-hot vector. The proposed model demon-

strated generalization tendency: the model performance,

which was evaluated on a particular camera increases

with an increasing number of cameras in the training set

(excluding the chosen camera); the number of training

samples preserved the same.
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