
Who Goes There? Exploiting Silhouettes and Wearable Signals for Subject

Identification in Multi-Person Environments

Alessandro Masullo, Tilo Burghardt, Dima Damen, Toby Perrett, Majid Mirmehdi

Department of Computer Science

University of Bristol, Bristol, BS8 1UB, UK

a.masullo@bristol.ac.uk

Abstract

The re-identification of people in private environments is

a rather complicated task, not only from a technical stand-

point but also for the ethical issues connected to it. The lack

of a privacy-sensitive technology to monitor specific indi-

viduals prevents the uptake of assistive systems, for example

in Ambient Assisted Living and health monitoring applica-

tions. Our approach adopts a deep learning multimodal

framework to match silhouette video clips and accelerome-

ter signals to identify and re-identify the subjects of interest

within a multi-person environment. Brief sequences, which

may be as short as only 3 seconds, are encoded within a

latent space where simple Euclidean distance can be used

to discriminate the matching. Identities are only revealed

in terms of accelerometer carriers, and the use of silhou-

ettes instead of RGB signals helps to ring-fence privacy

concerns. We train our method on the SPHERE Calorie

Dataset, for which we show an average area under the ROC

curve of 76.3%. We also propose a novel triplet loss for

which we demonstrate improving performances and conver-

gence speeds.

1. Introduction

With the recent development of Internet of Things (IoT)

technologies, devices employing permanent microphones

are an increasingly common sight in people’s homes. In

spite of this form of monitoring becoming more accepted

by users, camera-based home monitoring systems are still

far from being as common. In fact, most Ambient Assisted

Living (AAL) applications adopt colour images as a main

form of input to provide clinically relevant measurements

[18]. However, as shown in past research, people’s reluc-

tance to install colour cameras in their home, particularly

if internet connected, extends to health monitoring applica-

tions [26, 28, 1], limiting the use of this powerful technol-

ogy. In order to reduce the intrusiveness of cameras while

keeping an eye on patients when staying at home, colour

images can be replaced by binary silhouettes. As shown in

[15] and [16], silhouettes can be reliably used to monitor pa-

tients in their homes and and provide important physiolog-

ical measurements like the calories burnt and the transition

from Sitting-to-Standing (as well as Standing-to-Sitting).

The recent work from the SPHERE project [27] collected

data from different homes, including silhouettes, body ac-

celerations and a variety of different environmental sensors’

(SPHERE Sensors) data that can be adopted to monitor the

overall health of the household. One of the disadvantages

of using silhouettes rather than colour images lies in their

anonymity. In fact, physiological measurement derived by

the analysis of silhouettes would pose quite a challenge to

associate with specific individuals, since their silhouettes

would be very difficult to distinguish. This is especially

true in real-life monitoring applications, where silhouettes

can be noisy, low resolution and there is no control over the

environment (e.g. presence of guests). This problem is par-

ticularly significant in long-term clinically relevant moni-

toring applications, for example the HEmiSPHERE project

[8], where patients undergoing hip and knee replacement

spend their rehabilitation period at home while being mon-

itored with the SPHERE Sensors. Being able to isolate the

measurements of the monitored participant from the rest of

the household is essential for clinicians to investigate the

recovery trends of their patient.

In order to solve the re-identification (ReID) problem

from silhouettes while preserving the privacy of the mem-

ber of the household, we provide each monitored partici-

pant with a wrist-worn accelerometer. Our deep learning

algorithm then maps video and accelerometer streams in a

latent space, where the matching between the two can be

verified with a distance threshold. Since an accelerometer

is body-worn, its measurements are unequivocally assigned

to the person being monitored. With this approach, we can

compare the silhouettes from every person in the frame with

the accelerometer data of each monitored subject to decide

whether they belong to the same person or not. Thanks to



our method, anonymous silhouettes can be safely paired to

a specific identity using the motion of wearables, therefore

maintaining the anonymous aspect of the monitoring pro-

cess. In addition, the matching of video and accelerom-

eter streams facilitates a wide new range of possibilities

for health monitoring applications, allowing for a fusion of

multiple sensors that can potentially improve the error of the

parameters being monitored. While previous work already

attempted the problem of matching videos with accelerom-

eters, they all focused on colour images and required all the

participants to wear an accelerometer. In real world appli-

cations, patients may have guests, which cannot be required

to carry wearables at all times.

In this work, we present a novel multimodal deep-

learning detection framework that maps video silhouettes

and accelerometer streams into a latent space where a dis-

tance threshold can be used to verify the matching. Our

novel solution to the Video-Acceleration matching prob-

lem can operate on even short (≈ 3 seconds) video snip-

pets, compared to previous methods that require long (> 1
minute) clips to yield satisfactory results. We present results

for video-wearable matching on the challenging SPHERE-

Calorie dataset [22, 21].

2. Related Work

The idea of matching video features with accelerome-

ters to identify subjects in front of a camera has already

been explored in the past, and one of the earliest approaches

matches trajectories derived from video and accelerometer

streams [23]. They suggested a probabilistic approach that

maximises the likelihood that subject locations extracted

from the cameras correspond with the locations produced

by the inertial sensors. Jiang et al. [11] used Histogram of

Oriented Gradient (HOG) descriptors and a Support Vector

Machine (SVM) to generate tracks from colour images of

pedestrians, and then compared them with dead-reckoning

paths integrated from Inertial Measuring Units (IMU) car-

ried by the recorded subjects. Henschel et al. [9] adopted a

graph labelling formulation that integrates body worn IMUs

and trajectories extracted from a video camera to solve the

Video Inertial Multiple People Tracking problem.

While the approach of comparing trajectories to solve

the Video-Accelerometer Matching problem works well for

outdoor scenarios, it is not suitable for indoor free-living

monitoring. In fact, many of the typical indoor activities of

daily living do not necessarily require the transition from

two different places (e.g. eating, ironing, washing dishes,

watching TV...). For these activities, trajectories are less

likely to develop, limiting the application of such type of

approaches. Moreover, these methods are completely re-

liant on the performances of the trackers, and IMU based

trajectories which are particularly affected by a strong bias

that accumulates over time due to the double integration in-
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Figure 1. Description of a typical real-life scenario for home mon-

itoring. Two subjects (A and B) are wearing an accelerometer,

but only one of them appears within camera view, together with a

guest. Our aim is to understand which of the two monitored targets

appears in the video silhouette frames.

volved in the computations [12].

A different approach to tackle the Video-Accelerometer

Matching problem is to estimate accelerations from the

video stream. In Shigeta et al. [20], a method we shall

compare our work against, frames are segmented based on

motion and the centroid of each detected area is used to

estimate the accelerometer vector. Rofouei et al. [17] fol-

low a similar approach using the position of skeleton joints

to estimate the acceleration, while Wilson et al. [25] esti-

mate the acceleration field using dense optical flows from an

infrared camera and convert them into accelerations using

depth fields recorded with a Kinect camera and a Kalman

filter. All these methods are limited to cases where the wear-

able device is in the line of sight to the camera and are un-

able to reliably determine whether the device is in the frame

or not.

In [3, 4], another work we shall compare against,

Cabrera-Quiros et al. tackle the case of crowd-mingling

events that include dozens of participants, recorded by cam-

eras, accelerometers and proximity sensors. They estimate

acceleration from the video optical flow and use the mea-

surements from proximity sensors to cluster neighbouring

people and hierarchically associate them to wearables. A

strong limitation of this approach is that every person in

the room needs to be carrying the proximity device for the

hierarchical method to work. Moreover, their method re-

quires several minutes of recording before being able to re-

liably match video and accelerometer streams, which may

be unsuitable for cases where the subjects frequently move

in-between rooms.

The objective of our work is to identify subjects for

long-term clinical monitoring using only silhouettes and

accelerometers in the shortest time possible. Since we

are considering real-life monitoring scenarios, we tackle

the rather complex case where only the monitored partici-

pants wear an accelerometer whilst being visually recorded

amongst other persons who do not wear accelerometers.

Our method must be capable of distinguishing people in



such scenarios, as Figure 1 illustrates. In particular, we fo-

cus on the challenging problem of matching short segments

of video and accelerometer streams, so that quick and clini-

cally relevant movements (e.g. Sit-to-Stand [16]) can be as-

sociated to a specific individual in spite of the length of the

event.

We tackle the Video-Accelerometer Matching problem

using a completely new approach, which is inspired by the

Active Speaker Detection community. We provided each

patient requiring monitoring with a wrist-worn IMU (i.e. a

wearable) and we developed an active wearable detection

method that identifies which, if any, wearable is active in

a specific video sequence. We resolve this problem with

a two-stream CNN that encodes both video silhouettes and

accelerations in a latent space, where the Euclidean distance

is used to discriminate between pairs of matching and non-

matching sequences of video and wearable.

3. Methodology

Before matching video sequences with accelerometers,

the video stream must be processed to detect different sub-

jects appearing in the frame. In our work, we use the

person detector and tracker from OpenNI, which provides

bounding boxes and tracking information. Similar to Active

Speaker Detection works, we developed our framework to

match short video/accelerometer clips (≈ 3 seconds). The

reason behind this choice is that we are interested in iden-

tifying subjects while performing short, clinically relevant

movements. As a side-benefit of this choice, we also min-

imise possible errors of the trackers that, over long periods

of time, can mistakenly exchange bounding boxes of differ-

ent subjects.

3.1. Video-Wearable Synchronisation

Let us consider a set of video clips V = {V1, ..., VN}
portraying one person at a time (i.e. the sequence of

cropped bounding boxes) while wearing the wristband, and

a set of recorded accelerations Ap = {A1, ..., AN} that con-

stitute a positive match for the videos V by construction.

We also define a set of non-matching accelerations An. The

objective of the video-wearable synchronisation is to find

two optimal encoding functions f(·) and g(·), so that the

Euclidean distance d is minimised for d{f(V ), g(Ap)} and

maximised for d{f(V ), g(An)}. The functions f and g are

two CNNs that take as input the video clip and the raw ac-

celerations respectively, and produce for output feature vec-

tors. During testing, the synchronisation between a generic

video stream and a specific accelerometer can be verified

by comparing the Euclidean distance of the two encoded

streams against a fixed threshold.
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Figure 2. (a) Example of triplet constituted by an anchor video

of silhouettes and two accelerometer sequences for positive and

negative matches. (b) Possible problem occurring while training

with the Standard Triplet Loss and a fixed margin α.

3.2. Loss Function

The triplet loss was first proposed to train Siamese Net-

works for face recognition [19]. A triplet is defined as set

of three elements constituted by an anchor, a positive match,

and a negative match. In the original work, the triplet was

constituted by images of the same person or different faces.

In this work, we adapted the triplet using the video as an-

chor, and a synchronised and non-synchronised sequence of

accelerations for the positive and the negative match:

(anchor, positive, negative) ≡ (V,Ap, An) . (1)

With this definition of triplet, the loss is defined as:

Ltriplet = max
{

|f(V )− g(Ap)|
2
−

|f(V )− g(An)|
2
+ α, 0

}
, (2)

where α is a constant, empirically set to 0.2. The behaviour

of the triplet loss is described in Figure 2a: by minimising

the quantity described in Eq. (2), the pairs of (V,Ap) are

pulled together, while (V,An) are pushed apart, to a dis-

tance greater than α.

In addition to the Standard Triplet Loss (STL), we also

experimented using alternative formulations that take ad-

vantage of the triplets. One of the problems we experienced

with the standard triplet loss is that it does not guarantee

that a single threshold can be used to discriminate between

matching and not-matching pairs. In fact, the objective

of the triplet loss is to separate the (V,Ap) pair from the

(V,An) pair, no matter what the intra-pair distances are.

For example, given two triplets T 1 ≡ (V 1, A1

p, A
1

n) and

T 2 ≡ (V 2, A2

p, A
2

n) as described in Figure 2b, optimising

for the STL ensures that:

d{f(V 1), g(A1

n)} − d{f(V 1), g(A1

p)} > α , (3)

and

d{f(V 2), g(A2

n)} − d{f(V 2), g(A2

p)} > α. (4)



However, it is entirely possible that the distances are such

that d{f(V 2), g(A2

p)} ≫ d{f(V 1), g(A1

n)}. As it will be

shown later, this behaviour is very common for some train-

ing strategies and renders the model inoperative, since no

single threshold can be used to discriminate between match-

ing and not-matching sequences.

The objective of the training must therefore be such that

the model can be used with a single universal threshold. The

limitation of the STL is that it becomes identically zero once

the distances in Eq. (2) are greater than α. To overcome

this limitation we implemented a new loss function, named

Reciprocal Triplet Loss (RTL), that does not involve any

distance margin α and continuously optimises the distances

between anchor, positive and negative match. The RTL can

be expressed as:

LRTL = |f(V )− g(Ap)|
2
+

1

|f(V )− g(An)|
2
. (5)

The characteristic of the proposed RTL is that it is min-

imised when simultaneously the distances of the good pairs

tend to zero and the distances of the bad pairs tends to

+∞, therefore maximising the separation between pairs.

As shown later in the experiments, the use of the RTL func-

tion helps to improve the performance of our model and

enables it to operate more robustly with a single universal

threshold.

3.3. Negative Samples

When the triplet loss is used to train a deep learning

model, the samples constituting each triplet must be clev-

erly selected in a way that they can actively contribute to

improving the model. In fact, if the distance between the

video anchor and the accelerations from Eq. (2) is greater

than α, the triplet will have zero loss and it will not con-

tribute to the training. In the original paper on the triplet

loss [19], hard mining of triplets was considered as a cru-

cial step to tackle this problem. In our case, the triplets

are constrained by the problem of matching videos with ac-

celerometers, and the anchor-positive pair must be a video

clip with the synchronised accelerometer sequence. How-

ever, the choice of the non-matching acceleration can vary

substantially and it has a strong effect on the outcome of the

training process.

Let us consider an example where a group of N subjects

(Sub1, ..., SubN ) is performing a set of activities (standing,

walking, cleaning, ...). Given an anchor video portraying a

subject doing a specific activity, as depicted in Figure 3, a

non-matching acceleration can be selected from a different

subject doing a different activity (DSDA) or doing the same

activity (DSSA), or it could be from the same subject doing

the same activity (SSSA) or a different activity (SSDA). The

possible combinations of negative samples are summarised

in Table 1 for clarity.

Same Act. (SA) Diff Act. (DA)

Same Sub. (SS) SSSA SSDA

Diff. Sub. (DS) DSSA DSDA

Overlap OVLP
Table 1. Description of possible negative samples for the triplet

learning.

The objective of this work is to train a model that

learns the synchronisation between video and accelerometer

streams. However, if negative samples are only drawn from

a different subject doing a different activity (DSDA), the

video-wearable matching problem degenerates into a sim-

ple activity or identity classifier. Let us consider, for exam-

ple, a triplet where the anchor is the video of Sub1 while

“walking”. The positive match will be the acceleration of

Sub1 while “walking”, whereas a DSDA negative could be

Sub2 doing “cleaning”, as depicted in Figure 3:

(V,Ap, An) ≡
(

{Sub 1;Walking} ,

{Sub 1;Walking} ,

{Sub 2;Cleaning}
)

.

(6)

Since the non-matching acceleration An will always be

from a different subject doing a different activity, the neural

network will try to learn either the identity of the subjects

or the activity being performed through the encoding func-

tions f(·) and g(·). Equivalently, training only with DSSA

negatives reduces to an activity-agnostic identity classifier,

while training with SSDA negatives leads the classifier to

only learn activities. A model trained exclusively on DSDA,

DSSA or SSDA negatives will not learn anything about

the actual synchronisation between the video and the ac-

celerometers, but it will merely compare the action or iden-

tity predicted from the video with the one predicted from the

accelerometers. This type of model is therefore expected to

fail when tested on unseen subjects or activities.

To overcome this limitation and truly associate visual

and acceleration features in the temporal domain, a non-

matching acceleration can be selected from the same sub-

ject while performing the same activity (SSSA). We call this

type of negative “hard-negative” (in contrast to the “easy-

negatives” DSDA, DSSA and SSDA), since a simple activ-

ity or subject classifier is unable to solve this problem and

it requires the network to encode information about the ac-

tual synchronisation between video and accelerations. In

addition to SSSA, a further type of negative sample that we

consider is an acceleration that is not synchronised with the

video but it is overlapping with it, as presented in Figure 3.

We call this type of negative, overlapping (OVLP), and we

refer to is as “very hard-negative”.
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Vid. Sub. 2
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Figure 3. Description of the different possibilities for the nega-

tive samples in the triplet. The anchor is the video clip marked

in orange, while the positive match is marked in green. A single

example of each different negative sample is marked in red.

Table 2. Description of training strategies.

Easy Hard Very Hard

DSDA DSSA SSDA SSSA OVLP

Easy/Hard 25% 25% 50%

Hard/VeryH 50% 50%

All 11% 11% 11% 33% 33%

3.4. Training strategy

As already highlighted in Section 3.3, different types of

negatives can be chosen to form the triplets used to train our

model. From an inference point of view, we wish to dis-

criminate between different subjects being monitored while

living in their own homes; since the same subject cannot

appear in multiple locations at the same time, the valida-

tion data only includes negative types of DSDA and DSSA,

while the SSSA and SSDA negative types are only used for

training. From a training point of view, we already men-

tioned that a learning strategy using exclusively “easy nega-

tives” would lead the network to become an activity/identity

classifier, with potentially poor performance on unseen ac-

tivities and subjects. In order to learn the actual synchro-

nisation between video and wearables, we tested a variety

of training strategies that include different combinations of

easy, hard and very-hard negatives, as described Table 2.

The data used in this study (described in detail in Sec-

tion 4) was split into training and testing based on subject

identities, so that the subjects used for testing were never

seen during training. Early stopping using this validation

data was used to prevent overfitting. Regarding the choice

of negative samples, a 50% balance between DSDA and

DSSA was chosen and was kept constant across all the ex-

periments.

3.5. Data Preprocessing

Each tracked silhouette bounding box in our video data

is resized to a constant value and truncated into short clips

of 100 frames (≈ 3 seconds) each. In order to avoid any

loss of information from the cropping process, bounding

box coordinates are also fed into our video encoder network

together with the silhouettes. The logic behind this is that

the human body can be seen as a deformable body that can

either translate or change its shape, and bounding boxes will

better capture large rigid displacements (e.g. walking) while

the cropped silhouettes will address smaller changes within

the body shape (e.g. wiping a surface).

The accelerometer data is composed of a 3-channel vec-

tor, including the IMU measurements in x, y and z. Typi-

cally, machine learning algorithms for audio analysis make

use of some transformation of the audio signal in the fre-

quency domain, for example using Perceptual Linear Pre-

dictive coefficients (PLPs) [10] or variations of the MFCC

[2, 7, 24]. However, since the accelerometer signal is sam-

pled at a frequency that is several orders of magnitude lower

than audio (50 Hz for IMU [6] and 32-48 kHz for audio

[14]), we decided to feed the raw amplitude of the ac-

celerometers into the network, leveraged by previous works,

such as [15], where it was observed that the direct convo-

lution of accelerometer amplitudes yielded satisfactory re-

sults. Conceptually, this leaves data transforms to be a re-

sponsibility of the network itself. We thereby effectively

avoid pre-processing.

3.6. Network Architecture

The most important elements of our algorithm are the

two encoders f(·) and g(·), which are represented by differ-

ent CNNs that process the video and accelerometer streams

independently to produce the feature vectors. In particular,

the video encoder f(·) is the sum of the silhouettes encoder

fsil(·) and the bounding box encoder fbb(·):

f(·) = fsil(·) + fbb(·). (7)

Our encoders fsil(·), fbb(·) and g(·) then constitute a three-

stream architecture that is able to take video and accelerom-

eter data in input and produce the distance between the two

in the latent space as an output. The architecture for fsil(·) is

presented in Figure 4, with fbb(·) and g(·) presenting a very

similar architecture with 3D operators replaced by their 1D

counterpart.

3.7. Baseline methods

In order to show the advantages of our method, we im-

plemented two algorithms from the literature to use for

baseline comparison. The first is the recent work by

Cabrera-Quiros et al. [3] where they estimate accelerometer

data from the video stream using dense optical flow and then

compare it with the actual accelerometer stream. The wear-

able devices adopted in their experiment also included an

embedded proximity sensor that they used to cluster neigh-

bouring devices. Since the target of our study is matching



Table 3. Results of auROC for our Proposed Method trained with the Standard Triplet loss and our novel Reciprocal Triplet Loss, together

with the baseline methods.
Standard Triplet Loss Reciprocal Triplet Loss

DSDA DSSA SSSA OVLP AVG DSDA DSSA SSSA OVLP AVG

Easy/Hard 61.2 58.6 56.9 55.4 58.0 82.9 76.8 73.6 72.0 76.3

Hard/VeryH 59.7 59.5 57.3 55.5 58.0 79.7 78.1 75.0 72.1 76.2

All 60.9 58.6 56.8 55.0 57.8 81.4 77.8 73.5 69.8 75.6

Baseline

DSDA DSSA SSSA OVLP AVG

Shigeta et al. 56.6 56.7 56.9 57.9 57.0

Cabrera-Quiros et al. 55.8 53.2 51.0 50.6 52.6
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Figure 4. Architecture of the video branch fsil(·) for the three net-

works tested in this work. The other branches fbb(·) and g(·)
present the same architecture with 3D operators replaced by the

1D counterpart.

video and accelerometer streams without any further sensor

input, we implemented their algorithm without the hierar-

chical approach for the Hungarian method.

In addition to Cabrera-Quiros et al., we also imple-

mented a method inspired from Shigeta et al. [20]. In their

work, accelerations are estimated using the centroid of each

bounding box detected in the video stream and are com-

pared with low-pass filtered version of the accelerometer

stream. While implementing this work, our experiments

showed that better results were achieved using a high-pass

filtered version of the acceleration. Moreover, Shigeta et al.

use Normalised Cross-Correlation to compare the video and

accelerometer signal because their target is streams that are

temporally not synchronised. Since we are dealing with a

case where the video and accelerometer streams are always

synchronised, we compared the signals using Euclidean dis-

tance, as per our work.

4. Dataset

Our dataset is a modified version of the SPHERE-

Calorie dataset [22] which includes RGB-D images, bound-

ing boxes, accelerations and calorie expenditure measures

obtained from a Calorimeter, from 10 different individu-

als doing a set of 11 activities in two different sessions.

In this work, we discarded the calorie data and converted

the RGB-D images into silhouettes. Silhouettes were gen-

erated by processing the RGB images with OpenPose [5] to

extract the skeleton joints for each frame of the dataset and

then, by running GrabCut on the depth images using a mask

initialised with detected skeletons. The dataset included

11 different activities, from which we only kept those ac-

tions that involved movement (i.e. walking, wiping a sur-

face, vacuuming, sweeping, exercising, stretching, clean-

ing).

The data from the SPHERE-Calorie dataset was

recorded one subject at a time, which enabled us to au-

tomatically pair the correct matches between videos and

wearables. To simulate the presence of multiple people in

each room, we followed the widely adopted strategy of vir-

tual streams [23, 3] whereby the video and accelerometer

streams were split into smaller intervals and treated as if

they were occurring at the same time. While this approach

might be limiting in that subjects never interact with each

other, it allows us to push the number of subjects present in

a frame beyond the actual capacity of a room, assessing the

limits of our method.

5. Experiments and Results

We present a series of experiments and ablation tests

that are targeted at understanding the advantages and per-

formances of our novel method compared to the state of the

art.

5.1. Implementation Details

All the networks tested were trained end-to-end using the

silhouette video and accelerometer streams in input and the

triplet of distances over the embedding in output. The code

was implemented using Keras and Tensorflow in Python.

Training was performed using the optimiser Adam [13] with

a learning rate of 10−4 and a batch size of 16. We monitored

the area under the ROC curves (as later detailed in Sec-

tion 5.2) after each epoch using the validation data and we

stopped training when none of the auROC scores improved

for more than 50 epochs. In order to improve performances

on the validation data, we implemented some data augmen-

tation strategies. Both the streams of video and accelerom-

eter data were truncated to short clips of ≈ 3 seconds each

using 95% overlap. In addition to that, video silhouettes

were randomly flipped (horizontally), dilated (up to 5 pix-



(a) (b) (c)
Figure 5. Receiver Operating Characteristic curves for (a) Shigeta et al. [20], (b) Cabrera-Quiros et al. [3] and (c) our Proposed Method,

computed for 4 different negative types.

els), eroded (up to 5 pixels) and corrupted with salt-and-

pepper noise (3%). This strategy, combined with a spatial

dropout employed after each convolutional layer, was de-

signed to reduce overfitting of the models on the training

data.

5.2. Area under the ROC curves

We first evaluate our method on the matching verifica-

tion task: given a video clip Vi and an acceleration Aj ,

the Euclidean distance between the two embedding f(Vi)
and g(Aj) is compared with a threshold τ to determine the

outcome of “matching” or “not matching”. While the true

matching pairs P are unequivocally defined by the correct

pairs of video and accelerometer, the true non-matching Q

can be any of the possibilities1 described in Table 1, result-

ing in a different score for each negative type. We define

the correct true positive matches TP, as a function of the

threshold τ , such that:

TP(τ) =
{

(Vi, Aj)
∣

∣f(Vi)
2 − g(Aj)

2 < τ,

(Vi, Aj) ∈ P
} , (8)

and the false matches FP as:

FP(τ) =
{

(Vi, Aj)
∣

∣f(Vi)
2 − g(Aj)

2 < τ,

(Vi, Aj) ∈ Q
} , (9)

where P and Q are the sets of all positives and all negatives,

respectively. By varying the threshold τ , we can plot the

true positive rate TPR against the false positive rate FPR,

defined as:

TPR =
TP

P
, and FPR =

FP

Q
, (10)

1The reader is reminded that a negative of the “Same Subject” type can

never occur in reality, since the same person cannot appear simultaneously

in multiple locations. However, we report results for this type of negative

because it is useful for our discussion to understand peculiar behaviours of

the models trained.

resulting in a ROC curve. The auROC tested with each

training strategy (Section 3.4) and the average across nega-

tive types (AVG) is presented in Table 3.

Results shows that the best model is achieved by training

with a combination of Easy and Hard negatives, employing

our novel RTL function. The best model presents an AVG

auROC of 76.3%, which constitutes a large improvement

over the baseline from Shigeta et al. and Cabrera et al. who

achieve 57.0%s and 52.6%, respectively. In spite of Cabr-

era et al. being designed to deal with crowded events, the

lack of the proximity sensor from their implementation and

the application to very short clips contribute to the drastic

drop in performance in their work. The full ROC curves for

the best model are reported in Figure 5, together with the

baselines. Once again, the ROC curves confirm the valid-

ity of our method and its robustness with a single universal

threshold.

If we only consider models trained with the Standard

Triplet Loss, the best model only achieves an AVG auROC

of 58.0%. Although this result is still better than the base-

line, our novel Reciprocal Triplet Loss was found to be

essential to guarantee the use of a universal threshold to

solve the Video-Accelerometer Matching problem. In addi-

tion to that, we also experienced much faster training when

using our proposed loss, reaching maximum performances

in fewer iterations when compared to the Standard Triplet

Loss.

5.3. Temporal results

Temporal results for our algorithm are presented in Fig-

ure 6 for two example subjects (Subject 10 and Subject 9)

from the testing data. We illustrate the situation where both

subjects appear in front of the camera but only one of them

is wearing a wearable, the other being a guest; the objec-

tive is to find which short video clip from each sequence

matches the monitored accelerometer. The experiment is

even more challenging, since both subjects are simultane-

ously doing the same sequence of activities. We encoded

both the video and accelerometer sequences using the f(·)



Figure 6. Temporal results for our best model showing the distance between an acceleration sequence and its matching video and the video

sequence of a potential guest. The silhouettes shown in the figure are only a subset, sampled for illustration purposes, while the accelerations

are presented in (x, y, z) components. The distance plot is highlighted in light green when the matching distance is (correctly) lower than

the non matching distance, light red otherwise.

and g(·) deep encoders from the best model we found and

we evaluated the Euclidean distances between the two pairs

of features:

dMatching =

√

√

√

√

N
∑

i=1

[f (V9)− g (A9)]
2
, (11)

and

dNon-matching =

√

√

√

√

N
∑

i=1

[f (V9)− g (A10)]
2
. (12)

The results for this experiment are presented in Figure 6,

showing the detailed temporal performances for the best

model from Table 3. A very different behaviour can be seen

between activities that involve movement (i.e. walking, ex-

ercising) and those that do not (i.e. sitting, reading). In fact,

active movements involve a variety of gestures that produce

a strong motion signature which can be exploited to match

video and accelerometers. On the other hand, the output

signal of the accelerometers while resting is almost identi-

cally nil, no matter which person is wearing it, hindering the

ability to match different accelerometers to different video

streams.

6. Conclusions

Video monitoring for AAL imposes ethical restrictions

that can be overcome by using silhouettes instead of colour

images. Silhouette anonymity is a double-edged sword that

both prevents identification of the household and hinders

the ability to identify and track the progress of monitored

subjects amongst others. We developed a deep-learning

algorithm that encodes short video clips of silhouette and

accelerometer streams into a latent space, where the Eu-

clidean distance between the two can be used to discrimi-

nate matching and not-matching pairs. We also propose a

novel triplet loss function, namely the Reciprocal Triplet

Loss, that improves our performances and speeds up the

convergence. We demonstrate the validity of our results

in a series of experiments and ablation studies, presenting

and average auROC of 76.3%. With our results, we show

that a deep-learning algorithm largely outperforms tradi-

tional methods based on tailored features when tackling the

Video-Accelerometer Matching problem. Not only we im-

proved over previous previous results, but we also enabled

a solution that allows the use of very short clips down to

3 seconds, compared to several minutes of observation re-

quired by previous works. Future work will include further

tests on non-scripted datasets and the application to real-life

monitoring data for clinical use.
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