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Abstract

This paper presents a contact-free method for physiolog-

ical parameter estimation in people with profound intellec-

tual and multiple disabilities (PIMD). We used an existing

state-of-the-art algorithm Plane-Orthogonal-to-Skin (POS)

in order to obtain an initial remote photoplethysmogram

(rPPG) reconstruction from facial videos. We enhanced this

signal by applying a long-short-term-memory (LSTM) neu-

ral network to the initial PPG reconstruction. Evaluation

of our method on a public database DEAP has shown heart

rate (HR) error of 8.09 beats-per-minute, suprpassing the

state-of-the-art POS algorithm implementation, which had

error of 13.36 BPM. More importantly, a good correlation

between our predictions and ground-truth HRs has been ob-

served. The method is currently being implemented as part

of a system which aims to monitor people with PIMD in

real time in order to obtain information about their physi-

ological and psychological state and in turn increase their

quality of life.

1. Introduction

Physiological signals offer valuable insights into a per-

son’s physical and psychological state and well-being. Tra-

ditionally, these signals are obtained using wearable de-

vices with embedded sensors, however, there are numerous

downsides to such devices. Many people experience dis-

comfort while wearing any device, especially during phys-

ical activity, which leads to decreased adherence towards

∗The first two authors should be considered as joint first author.

monitoring of physiological parameters. Another issue are

potential cables, which severely limit movement. In case of

wireless devices, battery life becomes a problem, as usabil-

ity time is limited and recharging requires removal of the

device.

The downsides of wearable sensor devices are even more

prominent in specific groups of people with disabilities,

such as people with profound intellectual and multiple dis-

abilities (PIMD). These people often reject or show extreme

displeasure towards any form of additional device on their

bodies. Additionally, due to their disability, they are often

nearly immobile and not capable of symbolic communica-

tion with other people. Consequently, these people are not

capable of understanding and properly using sensor devices

on their own. In this case, contact-free solutions are prefer-

able in order to avoid causing discomfort, while still obtain-

ing important information about physiological state.

Physiological state is typically determined by consider-

ing a set of common physiological parameters, such as heart

rate (HR), heart rate variability (HRV) and respiratory rate

(RR). One way to estimate these parameters, is to use a

photoplethysmogram (PPG). This physiological signal de-

scribes periodic changes of blood volume in the tissue in

accordance with heart beats. It is traditionally obtained with

a fingertip sensor that returns a high quality signal, or with

a wristband which gives a lower quality signal. Both de-

vices leverage a light source and a photodiode to measure

the changes in light absorption and reflection of the skin

containing different amounts of blood. In addition, PPG

can also be obtained from facial camera recordings, as it

is reflected in subtle changes in skin color that can be cap-

tured on video. This camera-based PPG is commonly re-



ferred to in related work as remote PPG (rPPG) or image

PPG (iPPG), and has become a prominent research field in

the past decade.

In this paper we present a prototype version of a sys-

tem for contact-free monitoring of HR using rPPG obtained

via the Plane-Orthogonal-to-Skin algorithm (POS) and en-

hanced using signal pre-processing, signal post-processing

and a long-short-term-memory neural network (LSTM). It

was developed and evaluated using the large open-source

DEAP database, however, the main aim is to use it as part of

a larger system aimed at helping people with PIMD. Know-

ing their physiological parameters can potentially give an

important insight into their mental state, as the connection

between physiological and psychological state is known to

exist in people without PIMD [20] and is subsequently pos-

tulated to also exist in people with PIMD.

The rest of the paper is organized as follows. Section 2

reviews the related work on rPPG reconstruction. The used

datasets and the developed approach for reconstructing the

rPPG signal and estimating the heart rate are described in

Section 3. Section 4 presents the experiments and the ob-

tained results. Finally, Section 5 concludes the paper with

discussion and ideas for future work.

2. Related Work

There are two main approaches for obtaining rPPG, each

relying on different underlying physiological phenomena.

The first approach for PPG reconstruction from video an-

alyzes small head movements that are induced by the blood

being pumped into the head, as proposed by Balakrishnan

et al. [1]. They extracted HR by tracking movement of

the head. Afterweard, principal component analysis (PCA)

was applied to obtain the component that best corresponds

to heartbeats in the frequency domain. It should be noted

that such head movements are very subtle and might not be

detectable with a low-quality camera, imposing additional

hardware requirements on this approach. Additionally, it is

quite common for people with PIMD, for example, to have

continuous head movements due to their condition, which

typically obscure the slight movements due to the influx of

blood at each heartbeat.

The second, more common approach focuses on varia-

tions in blood volume, which is reflected in the changes of

the skin color, as described earlier. To detect the variations

of blood volume, tiny changes in color of skin pixels be-

tween two sequential video frames are analyzed. For ex-

ample, Poh et al. [15, 16] applied independent component

analysis (ICA) on RGB color signals, which were computed

as the average of the red, green and blue intensity of all the

skin pixels over time. They then chose the most PPG-like

resulting signal returned by ICA.

Lewandowska et al. [11] used PCA instead of ICA to

obtain the independent components and subsequently the

rPPG signal.

Haan et al. [4] proposed a chrominance-based method,

which helps with the motion problems that hinder the sepa-

ration techniques such as PCA and ICA. They reconstructed

the PPG signal by calculating a specific linear combination

of normalized RGB traces. The proposed algorithm was

shown to work regardless of the color of the illuminant as

well as being very robust against motion.

Other approaches do not calculate the average of all skin

pixels, but treat each skin pixel independently. For exam-

ple, Wang et al. [26] tracked the variation of color in each

skin pixel independently and individual traces were then

overlap-added to obtain rPPG.

Petil et al. [13] reported using basic RGB signals as in-

puts to ICA to obtain independent components. The average

of pixels in the red plane were taken and a set of features

was computed from the resulting waveform. These features

were then fed to a very simple feed-forward neural network

with a single hidden layer to estimate blood pressure, which

is a very challenging task even with traditional contact sen-

sors.

Wang et al. [25] introduced a new mathematical model

that incorporates pertinent optical and physiological prop-

erties of skin reflections. They used the model to design a

rPPG method, where a projection plane orthogonal to skin

(POS) tone is used for rPPG extraction. This algorithm is

explained in more detail in Section 3.1.2.

Chen et al. [2] presented a novel end-to-end deep learn-

ing approach, which takes raw video frames as input and es-

timates rPPG. They proposed a convolutional attention neu-

ral network, which features a new motion represention and

attention mechanism. It is reported to be robust under het-

erogeneous lighting and major motions, and to significantly

outperform all current state-of-the-art methods. In an ef-

fort to replicate this approach as a foundation for us to build

upon, we contacted the authors regarding the availability

of either their model, or the code to train such a model, in

2018. The authors said that both the code and the data will

be released in the future, however, it was not made avail-

able to the time of writing of this paper and the communi-

cation has since stopped from the authors’ side. We have

thus tried to replicate this work by following the paper in

detail, however, we were unable to reproduce their results

on MANHOB-HCI dataset.

Although the presented methods seem promising, an in-

dependent evaluation conducted by Heusch et al. [7] on a

publicly available dataset showed that they are not accurate

enough to be used in real-world scenarios. More precisely,

their evaluation re-implemented three state-of-the-art meth-

ods for reconstructing PPG from RGB cameras, and the re-

sults showed that there is a very low correlation between the

reconstructed and ground-truth PPG. Nonetheless, we chose

to use the POS algorithm as a starting point of our work, as



it is state-of-the-art and was reported to outperform all other

traditional methods, such as ICA, PCA, CHROM, etc. [25].

In order to additionally improve the accuracy of the rPPG

reconstruction, we then developed a deep-learning-based

approach described in the following sections.

3. Materials and Methods

In this section we present the data used as input to our

pipeline and the developed deep-learning-based approach

for reconstructing rPPG and calculating physiological pa-

rameters. Schematic representation of our pipeline is given

in Figure 1 and is discussed in more detail in the subsequent

sections.

3.1. Materials

Here, we describe the dataset on which the developed

approach was evaluated, and the POS algorithm, an existing

state-of-the-art algorithm for rPPG reconstruction, which is

incorporated in our approach as one step of the pipeline.

3.1.1 The INSENSION and DEAP datasets

The presented approach for reconstructing rPPG is part of

the INSENSION project1, which aims at detecting non-

symbolic behaviour signals, including physiological param-

eters, of people with PIMD, in order to determine their men-

tal state and communication attempts. The project is cur-

rently collecting data of people with PIMD who will be used

for evaluating and tuning the developed algorithms. An ex-

ample of already collected video of a person with PIMD is

shown in Figure 2. Since the database of videos of target

users and their corresponding PPGs is currently under col-

lection, we had to use an already available database.

We evaluated our approach on a public multimodal

dataset for analysis of human affective states called

”Database for Emotion Analysis using Physiological sig-

nals” (DEAP) [10]. This dataset is commonly used in re-

lated work on physiological signal analysis and emotion de-

tection (see, for example, [6, 12, 27]). For the evaluation of

our approach, facial videos of recorded subjects together

with their ground-truth PPG were used. These videos were

recorded with a SONY DCR-HC27E camcorder on a tri-

pod placed behind a computer screen. In addition, the PPG

signal was recorded with a BioSemi fingertip device. The

recorded subjects were watching excerpts of music videos

that aimed at eliciting specific emotions. In total, videos

of 22 persons watching 40 one-minute music videos were

used in the presented experiment. Example frames from the

DEAP dataset are shown in Figure 3.

1http://www.insension.eu/

3.1.2 The POS algorithm

The presented approach applies a neural network to enhance

the reconstructed rPPG obtained with the chosen state-of-

the-art algorithm, i.e., the Plane-Orthogonal-to-Skin algo-

rithm (POS) [25]. This algorithm computes rPPG in two

steps. In the first step, (XS , YS) is calculated as:

XS = GN −BN

YS = −2RN +GN +BN ,

where [RN , GN , BN ] are zero-mean-scaled, detrended and

filtered color signals R, G and B. In the second step, rPPG

is obtained as:

rPPG = XS + αYS

α =
σ(XS)

σ(YS)
,

where σ is the L-point standard deviation with L corre-

sponding to the number of samples contained in 1.6 sec-

onds of video. Such a number of samples was empirically

selected in order to contain at least one heart beat.

Figure 4 shows an example of the ground-truth PPG

from the DEAP database, together with rPPG, reconstructed

by POS. This example shows that POS does not accu-

rately reconstruct rPPG during the entire signal. This is

also confirmed by the evaluation results presented in Sec-

tion 4. To improve the rPPG reconstruction, we enhanced

the methodology with pre-processing of the RGB signals,

post-processing of the POS output and a neural network de-

scribed in Section 3.2.

3.2. Methods

Our enhancement approach consists of the following

steps:

1. Face detection and skin segmentation

2. Signal pre-processing

3. The POS algorithm for obtaining rPPG (described in

Section 3.1.2)

4. Neural network rPPG enhancement

5. Physiological parameter calculation

These steps are described in the following sections.

3.2.1 Face detection and skin segmentation

The face, more precisely, its bounding box was detected

with a pre-trained cascade object detector based on the

Viola-Jones algorithm [24]. However, due to time con-

strains, it was infeasible to apply this algorithm on each



DEAP

Insension

Video and PPG data

Face detection

RGB extraction

Skin segmentation

Obtain region of
interest (ROI)

Detrending

Preprocessing

Filtering

Plane Orthogonal to Skin (POS)
algorithm

Filtering and deep
learning enhancement

Postprocessing

PPG peak
detection

Heart rate evaluation

Figure 1. Schematic representation of our pipeline. The x axes on all graphs denote time, while y axes denote RGB value on the top three

graphs and rPPG amplitude on the bottom three.

Figure 2. An example of a frame in a video of the target users,

i.e., people with PIMD. Informed consent was obtained from legal

guardians of all the participants in the project for this data to be

used in both research and publications related to this project.

frame. Therefore, only the initial three frames were pro-

cessed by this algorithm. If the algorithm did not detect the

face in one of these initial frames, the given trial video was

discarded. On the other hand, when the face was detected,

its bounding box was slightly extended and used for the en-

tire video. Note that the recorded subjects did not move sig-

nificantly, but only sightly, therefore the extended bounding

box was able to handle such small movements and contain

the entire face in every frame. More precisely, the bounding

box was increased by 10 % on its top, left and right sides,

and by 20 % at the bottom. A larger extension at the bottom

also enabled to capture the neck skin, which was useful for

the POS algorithm.

The next step consisted of segmenting the skin. This step

Figure 3. Example frames from the DEAP dataset.

filtered out common things, such as glasses or facial hair,

as well as the recording devices and their cables (see Fig-

ure 3). The segmentation was done with a HSV (hue, sat-



Figure 4. Result of the POS algorithm compared to the ground truth.

uration, value) masking approach, as is common in related

work [23]. Acceptable ranges were set to [0, 46] for hue,

[23, 123] for saturation, and [88, 255] for value. All pixel

values outside these ranges was discarded. An example of

face detection and skin segmentation result can be seen in

Figure 5.

These approaches work well for the DEAP dataset where

the subjects are alone, well-exposed and stationary, how-

ever, there are some issues when working with our real-life

data from people with PIMD. First is the fact that Viola-

Jones algorithm detects the face quite well, but we of-

ten have scenarios on our recordings where there is heavy

movement or there are more people in the frame, typically

caregivers alongside the PIMD person. Thus, we must han-

dle detection of several faces and, more importantly, identi-

fication of people, so more sophisticated approaches are al-

ready being considered – Histogram of Oriented Gradients

proposed by Dalal et al. [3] for face detection and FaceNet

neural network [17] for encoding and recognizing faces.

Additionally, the skin detection thresholds did not work that

well on our recordings, especially because the color of the

wall behind the person with PIMD is very similar to their

skin, as seen in Figure 2. We will thus also investigate addi-

tional skin segmentation methods as part of our future work.

3.2.2 Signal pre-processing

The initial signals were computed as spatial average of the

skin pixels at every frame. This was done for the red, green

and blue color channels independently. These signals were

noisy thus the following pre-processing steps were applied.

Firstly, each RGB signal was processed by a zero-mean-

and-scaling technique [4], which is a common step in signal

pre-processing since it helps alleviating some edge effects

with certain filters. These occur due to the filter window

passing the edge of the signal and padding with zeros (by

default). If the signal is made to be zero-mean, this padding

usually represents less of an issue since it does not devi-

ate very much from the signal values, and the shape of the

Figure 5. An example of the result of the face detection and skin

segmentation steps.

waveform is better preserved. Another way to resolve this

is to simply repeat the final value of the signal for some

samples or extrapolate the signal, then do the filtering, and

finally cut away the added extra samples.

Secondly, the scaled RGB signals were detrended us-

ing the Smoothness Prior Approach (SPA) [19]. More pre-

cisely, the signals were detrended piece-wise using over-

lapping windows with 50% overlap and glued using Ham-

ming windows. This step is useful when short segments are

sometimes above the mean and sometimes bellow, as in the



dataset that we used.

Finally, the scaled and detrended RGB signals were fil-

tered using a moving average filter with window length of

five samples and a fourth-order Butterworth band-pass filter

with cutoff frequencies at 0.5 Hz and four Hz.

3.2.3 Calculation of rPPG with POS

The pre-processed RGB signals were processed by the POS

algorithm as described in Section 3.1.2 in order to obtain

the POS rPPG signal.

3.2.4 Signal post-processing

Finally, since the POS algorithm reconstruction also con-

tains some artefacts and frequency noise, we have applied

some post-processing. As no baseline drifting or larger

trends were observed, we have applied normalization to [0,

1] range and then filtered the resulting signal with an adap-

tive band-pass filter. More precisely, a two-step wavelet

filter was applied. First we performed continuous wavelet

transform of rPPG and filtered wavelet coefficients with a

wide Gaussian window centred at scale corresponding to

the maximum of squared wavelet coefficients averaged over

a running window of 15 seconds. Then we applied a usual

Gaussian filter. The filtered signal was reconstructed by per-

forming the inverse continuous wavelet transform. Details

are given by Unakafov [22].

3.2.5 Enhancing POS rPPG with LSTM and CNN

neural networks

Two neural network architectures have been tested for rPPG

enhancement. First, a Long-Short-Term-Memory neural

network (LSTM) [14] was tested, as it is known to be good

for capturing temporal dependencies in the data. Addition-

ally, a convolutional autoencoder [14] was also tested, as it

is developed specifically to learn shapes and encode them

into an embedding.

The LSTM-POS method that includes LSTM layers for

improving the rPPG signal obtained with the POS algorithm

was our initial attempt. This network consists of two LSTM

layers combined with dropout layers [18]. On top of them,

a fully-connected layer combines the data from the lower

layers into the enhanced rPPG. The input to the network is

a window of 50 samples of the POS rPPG signal, which

corresponds to one second. The output is a single enhanced

rPPG sample, so the window advances by one sample. The

network architecture is shown in Figure 6.

We also designed the CNN-POS method that consists

convolutional layers for enhancing POS rPPG. This convo-

lutional neural network (CNN) combines encoding layers

with their mirrored version, i.e., decoding layers. More pre-

cisely, the encoding layers consist of 3 convolution layers,

while the decoding layers contain 3 deconvolution layers.

Similarly to the LSTM, this neural network takes as input a

window of 50 samples, i.e. one second. The output of the

network is the improved rPPG for the entire window of 50

samples, which is in contrast to LSTM, which outputs only

a single enhanced rPPG sample. The encoding-decoding

network architecture is shown in Figure 7.

To accelerate training, every other frame of a training in-

stance was discarded, i.e. 25 frames were used per instance

instead of 50. Our experiments have shown that this does

not lead to a decrease in the network’s accuracy, while re-

ducing training time by more than 50%. For evaluation, all

50 frames of each instance were used. All networks were

trained with MSE loss. The optimizers used were RMSprop

[21] for LSTM and Adam [9] for CNN, with a learning

rate of α = 0.001. The dropout rate for the LSTM was

p = 0.2. Batch normalization [8] with standard parameters

was added to the convolutional layers of the CNN.

Figure 6. Architecture of the LSTM neural network as part of the

LSTM-POS method.

3.2.6 Physiological parameter calculation

The last step of the presented approach estimates the heart

rate from the reconstructed rPPG. Additional physiological

parameter estimation will be attempted in the future, such

as HRV and RR. Note that all these parameters (including

the HR) require precise waveform reconstruction or heart

beat detection.

The HR was estimated with a robust peak detection al-



Figure 7. Conceptual architecture of the convolutional autoencoder

as part of the CNN-POS method.

gorithm customized for the PPG signal obtained under chal-

lenging conditions [5]. This algorithm counts the number of

dominant systolic peaks, corresponding to the systole in the

cardiac cycle, within a window of PPG of such length that

at least a few cycles are captured. In our case, it was applied

to one minute windows, directly giving the HR in beats per

minute (BPM).

4. Results

We evaluated our approach by comparing the enhanced

signals obtained from the LSTM and CNN neural networks,

and the signals reconstructed by applying the POS algo-

rithm, against the ground-truth PPG measured with a pro-

fessional fingertip PPG sensor. The same peak detection

algorithm was applied to all four signals and the mean ab-

solute error (MAE) between the number of detected peaks

in the reconstructed signals and in the ground truth was

calculated. In addition, we visually inspected the perfor-

mance of the peak detector on the ground truth signals,

where it worked almost perfectly, except for some edge

cases in which it sometimes detected both systolic and dias-

tolic peaks. These cases were excluded from further evalu-

ation. Moreover, we also computed the correlation between

the predictions and ground truth HRs, as MAE itself does

not convey the full story. Good correlation is important, as

it shows that LSTM-POS does not simply predict absolute

HR but also predicts the changes correctly, demonstrating

that the system did not only overfit to the dataset mean HR,

but is capable of reconstructing the shifts away from the

mean.

16 subjects of the 20 considered from the DEAP dataset

were used for training, 2 were used for validation and the

final 2 for testing. Due to aforementioned reasons (incor-

rect ground truth peak detections) the remaining 2 subjects

in were not used in the evaluation. The split by subject en-

sures that instances corresponding to the same subject never

appeared in more than one of the subsets in order to prevent

overfitting. A baseline was established by using a dummy

regressor that always predicted the mean HR of the training

set. The errors and correlations are given in Table 1. These

results show that using the POS signal as input into the

LSTM network has the highest correlation with the ground

truth, and close to the lowest error.

The LSTM-POS method as the best-performing method

was further evaluated in terms of its predictions of HR for

all instances of the DEAP dataset, barring those excluded

due to incorrectly detected peaks in the ground truth. The

obtained predictions and the corresponding HR from the

ground truth were ordered from the lowest ground-truth HR

to the highest. These data are shown Figure 8. Addition-

ally, a linear regression line was computed from the pre-

dicted HR and included in this figure. These results visu-

alize a significant correlation between the predictions and

the ground truth. In addition, the linear approximation of

the predicted HR matches the ground truth HR accurately,

showing that the LSTM-POS method captured changes in

HR adequately and is able to output sensible predictions in

a large range, not just around the mean.

Figure 8. Ground-truth HR sorted from lowest to highest along-

side corresponding HR predictions of our LSTM-POS method. A

linear regression line computed from the predictions is also drawn,

which shows a good correlation.

An example of the enhanced LSTM-POS rPPG along-

side its pre-enhanced POS version and the ground truth is

shown in Figure 9. One can observe some incorrectly recon-

structed peaks from the POS algorithm getting suppressed

by the LSTM network. Additionally, the temporal align-

ment of peaks from the enhanced signal with those from the

ground truth has improved compared to the peaks from POS

rPPG. Correct alignment is crucial for HRV, which will also

be evaluated in future work.



Method Mean of predictions [BPM] MAE [BPM] Correlation

Baseline 70.42 8.36 Inapplicable

POS 81.58 13.36 0.27

CNN-POS 71.72 7.92 0.24

LSTM-POS 73.50 8.09 0.40

Table 1. Results of evaluated methods for HR estimation from rPPG. The LSTM-POS method obtained the best results due to the highest

correlation with the ground truth, which outweighs the slight disadvantage in MAE compared to CNN-POS.

Figure 9. rPPG obtained with the LSTM-POS method and the POS algorithm, and ground-truth PPG. The green rectangular areas show a

notable improvement as it suppresses some incorrect peaks in the rPPG obtained with only the POS algorithm. Better temporal alignment

of LSTM-POS peaks with the ground truth can be seen in most cases.

5. Discussion and Conclusion

The results presented in Section 4 show that the LSTM-

POS method outperforms the existing POS algorithm as

well as the CNN-POS method. More precisely, Table 1

shows that HR obtained with the LSTM-POS method has

the highest correlation with the ground truth HR, and close

to the lowest error. It should be noted that a high correla-

tion of HR is crucial for assessment of a person’s physical

and psychological state and well-being. Such an assessment

will not require an exact prediction of HR, but rather the

recognition of increase or decrease of HR. The ability of

LSTM-POS to detect changes of HR is shown in Figure 8.

More precisely, the linear regression line in this figure was

computed from the LSTM-POS HR predictions and illus-

trates that the system is capable of reconstructing shifts in

HR away from the dataset mean.

The ability of the LSTM-POS method to recognize

changes in HR is very promising for the purposes of deter-

mining the psychological state of people with PIMD within

the INSENSION project. Note that people with PIMD are

often not capable of symbolic communication with their en-

vironment. As a consequence, detection of nonsymbolic

communication such as changes of psychological state is

of key importance for understanding the needs, wishes and

preferences of people with PIMD. This recognition will en-

able us to provide better assistance to these people, which

will include, for example, timely detection of uncomfort-

able situations and personalized actions to make the person

with PIMD feel comfortable again. As a result, the quality

of life of people with PIMD will increase. In addition, the

INSENSION system will be also accessible to caregivers

who will get better insights in peoples’ nonsymbolic com-

munication in order to provide better care and further in-

crease patients’ quality of life.

However, we have not yet been able to evaluate the

LSTM-POS methods on people with PIMD due to the fact

that their data are still being collected. Therefore, our future

work will include the evaluation of the developed method

on the INSENSION dataset and further method develop-

ment in case of a decrease in performance with respect to

the DEAP dataset. Similar to HR, we will attempt to es-

timate other physiological parameters from rPPG, such as

HRV and RR. Based on these parameters, we will develop

an approach for the determination of psychological state of

people with PIMD, which will aim at understanding their

needs, wishes and preferences.
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