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Abstract

Monitoring of blood glucose levels is crucial for dia-

betics to manage their lives. However, the current gold-

standard requires taking invasive blood samples, which is

painful and can lead to infections. In this paper, we inves-

tigate the feasibility of using a regular camera (with silicon

image sensors) to estimate the blood glucose levels remotely

as claimed by recent studies. The physiological challenge

is the small volume fraction and low absorption of glucose

in the human body as compared to other absorbers. The

glucose-induced variations in light intensity from both the

non-pulsating and the pulsating part of the reflected opti-

cal signal are modeled in the visible to near-infrared wave-

length range. The simulation results suggest that it is un-

likely to detect the blood glucose based on either the DC or

AC component of skin reflected light. The optical responses

caused by glucose changes are minor as compared to other

physiological factors (e.g. skin temperature, SaO2, water

concentration). This, combined with the coarse sampling of

the light spectrum by regular cameras render the measure-

ment infeasible.

1. Introduction

In 2015, 415 million adults have been diagnosed as dia-

betics worldwide and the number of diabetics is estimated

to increase to 642 million in 2040 [8]. Diabetes has be-

come one of the most severe health treats in the 21st cen-

tury. Monitoring of blood glucose can help people to man-

age the life-style by adjusting their food intake or physical

exercises. Moreover, diabetics can verify the effectiveness

of the former insulin dose and make a decision for the next

insulin dose [16]. The approaches for glucose measure-

ment can roughly be divided into two categories: invasive

and non-invasive. The invasive approach draws blood from

a person’s body using a lancet device and applies it to a

“test-strip” to determine the blood glucose concentration by

measuring electrical characteristics [16]. Despite the fact

that the invasive approach can provide an accurate mea-

surement of blood glucose levels, it is very obtrusive and

painful, and can also cause infection. To solve this prob-

lem, non-invasive optical techniques have been proposed,

such as Fluorescence Spectroscopy [1, 19], Raman Spec-

troscopy [26] and NIR Spectroscopy [27, 23]. Although

these techniques reported promising results, most of them

require bulky and expensive equipment, rendering the daily

usage impossible. To reduce the cost, a machine-learning

approach using features extracted from the photoplethys-

mographic (PPG) waveform has been proposed by Monte-

Moreno [18] to estimate blood glucose levels, which was

combined with other features like age, weight and BMI.

Recent studies claim that it is possible to measure the

blood glucose levels from a smart-phone camera and a spec-

trophotometer [4, 5, 22]. Dantu et al. used 650 nm light and

a HTC One X Android phone camera to estimate blood glu-

cose levels based on the finger transmitted light [4, 5]. Their

study shows that the skin color changes are related to the

blood glucose changes. Uwadaira et al. studied the glucose-

linked wavelengths where the light intensity is strongly cor-

related with the glucose concentration in short near-infrared

spectra (700-1050 nm, 1 nm intervals) [22], which is within

the sensitivity of most silicon-based sensors. Based on 300

measurements from 30 volunteers, they found five glucose-

linked wavelengths according to the variations in the ab-

sorption of glucose in the spectra. They also mentioned that

the glucose-linked wavelengths fluctuate daily even for the

same person.

Because of the low concentration of glucose and its low

absorption in visible and near-infrared wavelengths [28],

we however question whether it is really possible to detect

changes in glucose-levels with a regular camera. We there-

fore perform a mathematical modeling on (optical) camera-

based blood glucose measurement to investigate its feasibil-



ity from a theoretic perspective, focussed on the more prac-

tical and common reflective mode measurement, rendering

its usage not limited to relative thin skin sites such as fin-

gers and ear lobes. The modeling consists of two parts: the

DC-component based glucose measurement and AC-based

glucose measurement. We expect the principal challenge to

be the minor optical responses caused by glucose changes

as compared to other physiological factors. Our hypothe-

sis is that the variations of other stronger absorbing compo-

nents in the visible to near-infrared wavelength range (e.g.

(oxy)hemoglobin, water) and body temperature can create

significant interference for in vivo glucose measurements.

2. Opto-physiological modeling of glucose

In this section, we use opto-physiological mathematical

modeling of the light propagation in tissues to investigate

the influence of glucose changes on both the DC and AC

components of the camera PPG waveform. In addition, the

influence of changes in body temperature, water concentra-

tion and SaO2 are studied through the model.

2.1. DC component modeling

Since the prior art based on DC measurement [4, 5] use

finger-transmitted light, our DC component modeling as-

sumes the skin transmission measurement. The principles

of PPG can be modeled by Beer-Lambert law, which states

that in a homogeneous medium, light intensity decays ex-

ponentially as a function of path length and light absorption

coefficient corresponding to medium properties at a specific

wavelength. The scattering coefficient has a much larger

influence than the absorption coefficient on the light prop-

agation in the tissue in the range of visible and short near-

infrared wavelengths. Based on the diffusion approxima-

tion [12] [7], we can use below equation to model in vivo

glucose measurements:

I(λ) = I0(λ)e
−

∑n
i=1 µ

(i)
eff

(λ)l(i) (1)

where

µ
(i)
eff (λ) =

√

3µ
(i)
a (λ)(µ

(i)
a (λ) + µ

′(i)
s (λ)), (2)

where I0(λ) is the intensity of incident light at the wave-

length λ, I(λ) is the intensity of transmitted light obtained

from a camera at the wavelength λ, µ
(i)
a (λ) and µ

′(i)
s (λ)

are the absorption coefficient and scattering coefficient for

seven layers at the wavelength λ, l(i) is the optical path

length in seven layers, and i denotes the skin-layer index.

A detailed description of the coefficients is provided in the

next subsection.

2.1.1 Skin layer structure

To perform opto-physiological model simulations, one first

needs to model the various skin layers. Skin presents a com-

Figure 1. The skin model used for modeling contains seven layers.

plex medium, because the distribution of blood and chro-

mophores vary with depth. The absorption and reduced

scattering coefficients of different skin layers are also dif-

ferent. According to [17], skin can be divided into seven

layers (see Fig. 1). The first layer is known as the stratum

corneum which is the outermost of epidermis layer. The

second layer is defined as living epidermis which contains

living cells such as melanosomes, columnar cells and small

melanin granules [7]. These two layers have no blood. The

distribution of blood is different in the dermal layer, which

is subdivided into four different layers. These are the pap-

illary dermis layer, upper blood net dermis layer, reticular

dermis layer, and deep blood net dermis layer [17]. The

bottom layer is the subcutaneous fat layer in our model.

Since the thickness and distribution of layers vary for the

different skin regions of a human body and different indi-

viduals, the skin modeling may not be realistic enough to

present the complex human skin structure and not accurate

enough for measurement calibration. We mention that the

main purpose of the skin modeling is to help us study the

light intensity changes caused by glucose variations com-

pared to that caused by variations of other factors such as

body temperature, water concentration and SaO2.

The volume fraction of glucose is expressed as:

Vg =
Cg

ρg
, (3)

where Cg is the concentration of glucose in the blood and

ρg is the density of glucose. The volume fractions of blood

(Vblood) and water (VH2O) are shown in Table 1 [17, 20]:

Moreover, the volume fraction of water in the dermis

layer and the subcutaneous fat layer have been split into

three parts: water in the interstitial fluid (IF), water in the

blood plasma, and water in the intracellular fluid (ICF). The

volume fraction of water in the IF is 4 times higher that of

plasma. The volume fraction of extracellular fluid (ECF)

which is composed by IF and blood plasma that is 33%

of human body [2]. We assume that water concentration

Cw = 540 g/l is identical in the three parts. Further-

more, the water concentrations in the IF and in the blood

plasma decrease when glucose increases. The concentration



Name of layer Vblood VH2O

Stratum corneum 0 0.05

Living epidermis 0 0.2

Papillary dermis 0.04 0.5

Upper blood net dermis 0.3 0.6

Reticular dermis 0.04 0.7

Deep blood net dermis 0.1 0.7

Subcutaneous fat 0.05 0.7

Table 1. The used volume fractions of blood and water in seven

different skin layers.

of water in ICF is not affected by the glucose concentration.

Therefore:

Vwplasma
=

Cw

ρw
Vblood, (4)

VwIF
= 4

Cw

ρw
Vblood, (5)

VwICF
= 0.67Vw. (6)

The volume fraction of haemoglobin is defined as:

VHb = FHbFRBCHtVblood, (7)

where Ht is the haematocrit, FRBC is the volume fraction

of erythrocytes in the blood cells and FHb is the volume

fraction of haemoglobin in an erythrocyte. In the present

simulation, we assume that these parameters FRBC = 0.99,

FHb = 0.25 and Ht = 0.45 are the same for all the lay-

ers [21, 20].

Absorption coefficients of the skin layers The absorp-

tion coefficients for seven layers can be described by the

spatial distribution of blood vessels, water, glucose, and

melanin within the skin tissue [17]:

µa(λ) =
n
∑

i=1

(µ(i)
a (λ)Vi

i−1
∏

j=1

(1−Vj))+µ(0)(λ)
n
∏

i=1

(1−Vi),

(8)

where Vi is the volume fraction of the i-th absorber in the

given skin layer, n is the total number of absorbers present

in the layer, µ(i)(λ) is the absorption coefficient of the i-th
absorber, and µ(0)(λ) is the absorption caused by the in-

trinsic absorption of the layer without any absorbers [13],

calculated as:

µ(0)
a (λ) = 7.84× 107 × λ−3.255. (9)

The absorption coefficients for blood-free layers, such as

stratum corneum and living epidermis [17], are calculated

as:

µ(stratum)
a (λ) = ((0.1− 0.3× 10−4λ)

+ 0.125µ(0)
a (λ))(1− Vw)

+ Vwµ
(w)
a (λ),

(10)

and

µ(le)
a (λ) = (Vmelaninµ

(melanin)
a (λ)

+ (1− Vmelanin)µ
(0)
a (λ))(1− Vw)

+ Vwµ
(w)
a (λ),

(11)

where µ
(w)
a and µ

(melanin)
a are the absorption coefficients of

water and melanin, respectively. Vw and Vmelanin are the

volume fractions of water and melanin, respectively. The

absorption coefficients of the dermal layer µ
(dl)
a (λ) and sub-

cutaneous fat layer µ
(sf)
a (λ) can be represented by:

µ(dl)
a (λ) = (1− S)VHbµ

(Hb)
a (λ) + SVHbO2

µ(HbO2)
a (λ)

+ (1− VHbVblood)(Vgbloodµ
(gblood)
a (λ)

+ VgIF µ
(gIF )
a (λ)) + (1− VHbVblood)

(1− Vgblood − VgIF )(Vwplasma
µ
(wplasma)
a (λ)

+ VwIF
µ(wIF )
a (λ) + VwICF

µ(wICF )
a (λ))

+ (1− VHbVblood)(1− Vgblood − VgIF )

(1− Vwplasma
− VwIF

− VwICF
)µ(0)

a (λ),

(12)

and

µ(sf)
a (λ) =(1− S)VHbµ

(Hb)
a (λ) + SVHbO2

µ(HbO2)
a (λ)

+ (1− VHbVblood)(Vgbloodµ
(gblood)
a (λ))

+ (1− VHbVblood)(1− Vgblood)(Vwplasma

µ
(wplasma)
a (λ) + VwIF+ICF

µ(wIF+ICF )
a (λ))

+ (1− VHbVblood)(1− Vgblood)(1− Vwplasma

− VwIF+ICF
)µ(0)

a (λ),

(13)

where µa denotes the wavelength-dependent absorptivity

coefficient; µ
(Hb)
a (λ), µ

(HbO2)
a (λ), µ

(gblood)
a (λ), µ

(gIF )
a (λ),

µ
(wplasma)
a (λ), µ

(wIF )
a (λ), µ

(wICF )
a (λ) µ

(wIF+ICF )
a (λ) are

the absorption coefficients of deoxyhaemoglobin, oxy-

haemoglobin, glucose and water, respectively. The calcu-

lation of volume fractions can be found in Eq. 3 - 7.

Reduced scattering coefficients of skin layers In the

range from visible to short near-infrared wavelengths, the

scattering coefficient has a much larger influence than the

absorption coefficient on the light propagation in tissue.

The reduced scattering coefficients of epidermal layer and

the subcutaneous fat layer can be expressed as [14]:

µ′

s(λ) = a′(fRay(
λ

500(nm)
)−4

+ (1− fRay)(
λ

500(nm)
)−bMie),

(14)



where the scaling factor a′ is 66.7 for the epidermal layer

(stratum corneum and living epidermis) and 34.2 for sub-

cutaneous fat; scattering power bMie is 0.689 for epidermal

layer and 0.567 for subcutaneous fat [14]. When glucose

concentration is increased in the plasma and IF in the skin

layers, the light scattering will be changed because of the

mismatch of the index of refraction between the ECF and

the membranes of the cells. In our model, we neglect the

scattering changes caused by blood cells and other chemi-

cal compositions of blood, as previous works suggest that

the light scattering is not influenced by red cells and other

chemical composition of blood [24, 3]. Furthermore, the

glucose concentration in the dermal IF is the closest to the

blood glucose concentration based on the research of Groe-

nendaal et al. [10]. We assume the reduced scattering co-

efficient to be affected only by the glucose concentration in

the dermal layers, while the scattering coefficients of four

layers in the dermal layer are identical. Based on a simple

model of scattering dielectric spheres, we can express the

reduced scattering coefficient in the dermal layer as [9]:

µ′

s(dermal)(λ) = 3.28πr2ρs(
2πr

λ
)0.37(

ncell

nIF

− 1)2.09,

(15)

where r is the sphere radius; ρs is the volume density of the

spheres and ncell and nIF are the refractive indexes of cells

and surrounding medium (IF), respectively. As mentioned

above, the reduced scattering coefficient of tissues is depen-

dent on the refractive index (n) mismatch between the IF

and the cellular components. The increase of glucose con-

centration in the IF reduces the refractive index mismatch

in the dermal layer, hence the reduced scattering coefficient

is also reduced:

µ′

s(dermal)(λ) = 3.28πr2ρs(
2πr
λ
)0.37( ncell

nIF+δnglucose
− 1)2.09,

(16)
where δnglucose is the glucose-induced increase of sur-
rounding medium (IF). The glucose induced change in re-
fractive index is equal to 2.73× 10−2M−1 [25]. Moreover,
the reduced scattering coefficient of tissue is also effected
by the temperature [15]:

µ
′

s(dermal)(λ) = 3.28πr2ρs(
2πr

λ
)0.37(

ncell

nIF + δnglucose

− 1)2.09

+ (4.7e−3
×∆T ),

(17)

and

µ′

s(subcutaneousfat)(λ) = a′(fRay(
λ

500(nm)
)−4

+ (1− fRay)(
λ

500(nm)
)−bMie)

− (1.4e−3
×∆T ),

(18)

where ∆T denotes the increase of temperature.

2.1.2 Modeling results

We will now study the light intensity variations caused by

glucose changes as compared to that caused by the changes

of body temperature, water concentration and SaO2. Using

the described skin model, our simulation results show that

the light intensity is increased by 7.95×10−7 when the glu-

cose concentration changes from 0.9 g/l to 1.5 g/l at 660 nm,

i.e. the wavelength used in [4]. We also find that (i) 1◦C in-

crease of temperature leads to 6.28×10−5 decrease of light

intensity; (ii) 1% SaO2 change leads to 2.28 × 10−6 light

intensity changes; and (iii) 1% water concentration change

leads to 5.28 × 10−8 light intensity changes. Based on the

simulation results, we conclude that the light intensity vari-

ations caused by temperature and SaO2 changes can easily

interfere that caused by glucose changes at 660 nm.

Since glucose absorption is higher in the short near-

infrared range than in the visible range, we perform the

same model simulation for the short near-infrared wave-

lengths. Our model simulation shows that the relative maxi-

mum difference in the light intensity is at 970 nm. The light

intensity change is 2.23×10−5 when glucose concentration

increases from 0.9 g/l to 1.5 g/l, which is much larger than

that at 660 nm. However, the light intensity change caused

by 1% water concentration change is 6.30× 10−5, which is

larger than that caused by glucose. This is because that the

water absorption is the maximum at around 970 nm. More-

over, 1◦C temperature change leads to 6.83 × 10−4 light

intensity change.

Moreover, we select the wavelength 797 nm in the near-

infrared for modeling, which is the isosbestic point for oxy-

haemoglobin and deoxyhaemoglobin (i.e. not affected by

SaO2 change) and has low influence of water. The model

simulation shows that the light intensity change caused by

glucose is 5.01 × 10−6, which is larger than 8.18 × 10−7

caused by 1% water concentration change. However, 1◦C
temperature change leads to 2.97 × 10−4 light intensity

change, i.e., the effect of temperature is still significant.

Based on the above model simulation on DC measure-

ment, we find that the light intensity change caused by the

glucose change can easily be interfered by other factors, es-

pecially the change in body temperature.

2.2. AC Component Modeling

The PPG signal contains the light intensity variations

from blood volume changes due to pulsating arterial blood.

An increase of blood glucose concentration will lead to a

change in the PPG amplitude. However, how these glucose-

induced amplitude variations relate to the amplitude varia-

tions of other absorbers in the visible to near-infrared range

are unknown yet. We build a model to simulate the relation

between the ratios of PPG amplitudes (i.e., to be indepen-

dent of the actual pulse-strength) and blood glucose levels.

As we mentioned before, the glucose concentration affects
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Figure 2. Absorption properties of skin tissues used in the simu-

lation: oxyhaemoglobin (red line), deoxyhaemoglobin (blue line),

water (black line) and glucose (green line).

both the absorption and scattering coefficients of arterial

blood. It is still unknown how glucose affects the light scat-

tering of blood for in vivo glucose measurements, because

most current works focus on the analysis of the correlation

between light scattering of blood and glucose concentration

in in vitro experiments. In our model, we focus on studying

the changes in light absorption, regardless of the light scat-

tering.

Glucose exhibits several absorption bands in the near-

infrared spectrum (700-2500 nm). Within this band,

there are strong water absorption band at 1450 nm and

1920 nm [11]. Since we focus on wavelengths within the

sensitivity of silicon-based sensors, we limit our analyses to

short near-infrared wavelengths (700-1000 nm). The calcu-

lation of the PPG amplitude, according to the Beer-Lambert

law, can be approximated by:

PPG(λ) ≈

n
∑

i=1

εi(λ)ci∆lλ, (19)

where εi(λ) is the extinction coefficient of the i-th ab-

sorber at the wavelength λ; ci is the concentration of the

i-th absorber in the arterial blood. The ∆lλ is the opti-

cal path difference at the wavelength λ due to pulsation.

The main absorbers in the blood are oxyhaemoglobin, de-

oxyhamoglobin and water (see Fig. 2). It can be observed

that the absorption coefficients of oxyhaemoglobin, deoxy-

hamoglobin and water are much larger than glucose in the

range 660−1000 nm. The variations from these three com-

ponents may easily interfere with the glucose change.

In our model, we simplify the calculation of the PPG

amplitude by assuming four absorbers: oxyhaemoglobin,

deoxyhaemogblobin, water and glucose, leading to:

PPG(λ) = (εw(λ)cw + εg(λ)cg + εHbO2(λ)cHbO2+

εHb(λ)cHb)∆lλ,

(20)

where εw, εg , εHb and εHbO2 are extinction coefficients

of water, glucose, deoxyheamoglobin and oxyhaemoglobin

at the wavelength λ, respectively. cW , cg , cHb and cHbO2

are the concentrations of water, glucose, deoxyheamoglobin

and oxyhaemoglobin, respectively.
We assume that the optical paths at the evaluated wave-

lengths are equal, so the calculation of the ratio of PPG am-
plitude is:

R =
εw(λ1)cw + εg(λ1)cg + εHbO2(λ1)cHbO2 + εHb(λ1)cHb

εw(λ2)cw + εg(λ2)cg + εHbO2(λ2)cHbO2 + εHb(λ2)cHb

.

(21)

In this ratio, the wavelength λ1 is the most glucose-

sensitive, resulting in the largest change in PPG amplitude

when glucose increases from “Fasting level” to “Maximum

glucose level”. The wavelength λ2 has relatively low ab-

sorption of glucose, which is selected as the reference wave-

length. In the next paragraph we describe how we can esti-

mate the camera-based measurement based on this model.

2.2.1 Model in vivo glucose measurement

The above approximation of the PPG amplitude does not

take the setup, e.g. camera and illumination, into account.

The relative blood volume pulse amplitudes (�Pbv) for the

different wavelengths of a camera can be calculated by [6]:

�P ci
bv =

∫ 1000

λ=400
Hci(λ)

I(λ)
Ih(λ)

PPG(λ)dλ
∫ 1000

λ=400
Hci(λ)

I(λ)
Ih(λ)

ρs(λ)dλ
, (22)

where Hci corresponds to the product of the spectral re-

sponse of the camera and the response of the applied opti-

cal filter of i-th channel; I(λ) is the spectrum of the illu-

mination; Ih(λ) is the emission spectrum of the tungsten-

halogen illumination; ρs(λ) is the skin reflectance spec-

trum of the tungsten-halogen illumination. The calculation

of the ratio of the normalized blood volume pulse signa-

tures, known as “ratio-of-ratios” commonly used in pulse-

oximetry, is as follows:

R =
�P c1
bv

�P c2
bv

. (23)

2.2.2 Oral Glucose Tolerance Test

In order to induce large variations in glucose, we performed

an Oral Glucose Tolerance Test (OGTT), where the camera-

based PPG signal was continuously extracted from a fore-

head region-of-interest (ROI) at four wavelengths in the

VIS-NIR range. The experimental setup consisted of four

monochrome CCD cameras (AVT Manta G-283B, Allied

Vision GmbH, Stadtroda, Germany) equipped with four

identical 50 mm lenses and optical bandpass filters with

CWLs of 661 nm, 760 nm, 800 nm and 842 nm. The cam-

eras were externally triggered at a stable frame rate of 15 Hz



Predicted ratios Values

661nm/760nm (blue line) 0.78

661nm/800nm (red line) 0.62

661nm/842nm (yellow line) 0.51

760nm/800nm (purple line) 0.80

760nm/842nm (green line) 0.65

800nm/842nm (turquoise line) 0.81

Table 2. Predicted ratios of relative amplitudes from the model

(SaO2=96%).

Changes in ratios caused by

Ratios Glucose

(×10−7)

SaO2

(×10−3)

661nm/760nm (blue line) -28.73 -18.26

661nm/800nm (red line) -13.23 -43.22

661nm/842nm (yellow line) -2.97 -49.83

760nm/800nm (purple line) 12.58 -12.12

760nm/842nm (green line) 20.57 -15.96

800nm/842nm (turquoise line) 13.25 -3.18

Table 3. Calculated changes in the PPG-amplitude ratios caused

by glucose changes and SaO2 changes.

661nm/800nm 661nm/842nm

760nm/800nm 0.63 0.71

760nm/842nm 0.64 0.87

800nm/842nm 0.51 0.87

Table 4. Correlation between experimental results.

and were horizontally spaced by 9 cm. The frames from the

four cameras were registered using an affine transformation.

Illumination was provided by 2 armatures (Falcon Eyes,

Hong Kong, China), each equipped with 9 incandescent

lamps (Philips 60 W) at a distance of about 1.5 m from the

subject. A current-limited DC power supply set to 210 V,

3.95 A (SM330-AR-22, Delta Elektronica, Zierikzee, The

Netherlands) powered the lamps. The participant was asked

to drink 300 ml water with 75 g glucose within 5 minutes in

the morning after overnight fasting. A finger pulse-oximeter

was used to measure variations in SaO2 during the test. The

first row of Fig. 3 shows the experimental results during

a 120 minutes OGTT. The six lines represent the temporal

variations of the possible ratios from the four wavelengths

during the OGTT. The average SaO2 level of the subject

is stable, which is measured around 96% during the exper-

iment. The calculated PPG-amplitude ratios between the

two wavelength channels, when the SaO2 level is 96%, are

shown in Table 2:

The calculated PPG-amplitude ratios, R, are similar to

the experimental results in the Fig. 3. We can see some

small deviations between the experimental results and the
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Figure 3. The temporal change of PPG-amplitude ratios measured

during the 120 minutes OGTT (661nm/760nm, 661nm/800nm,

661nm/842nm, 760nm/800nm, 760nm/842nm, 800nm/842nm).

simulation results but no major variations. This is to be ex-

pected because the changes in PPG-amplitude ratios caused

by SaO2 are small, which can be influenced by the noise

from the experimental device (e.g. sensor noise). In gen-

eral the model simulation is in line with the experimental

results.

To investigate whether the small fluctuations are only

caused by the changes in SaO2 during the experiment,

we calculated the changes in the PPG-amplitude ratios

caused by 1% SaO2 change and the changes in the PPG-

amplitude ratios when glucose increases from 0.9 g/l to

1.5 g/l are shown in the Table 3. The changes in the PPG-

amplitude ratios from 661 nm/760 nm, 661 nm/800 nm,

and 661 nm/842 nm caused by SaO2 are different from that

caused by glucose.

Moreover, we calculate the correlation between experi-

mental results in Table 4. The PPG-amplitude ratios from

661 nm/760 nm are not used to calculate the correlation,

because the PPG-amplitude within this wavelength range is

relatively small and thus signal quality is worse, i.e. the cor-

relation is performed for the PPG-signals obtained at longer

wavelengths. It shows that the correlation between experi-

mental results is positive, which is contradictory to the sim-

ulation results of glucose. It suggests that the fluctuations

are more likely to caused by SaO2 rather than induced by

variations in glucose during the experiment.

According to the above simulation results, we ob-

serve that even the smallest PPG-amplitude ratio changes

(800 nm/842 nm) caused by 1% SaO2 change is around 774

times larger than the largest PPG-amplitude ratio changes

(661 nm/780 nm) caused by glucose change (i.e. when glu-

cose increases from 0.9 g/l to 1.5 g/l). In the next section,

we calculate the changes in ratios caused by glucose, SaO2

and water concentration, to verify the possibility of using

the AC component of the PPG waveform for in vivo glu-

cose measurement.



2.2.3 Model simulation for short NIR wavelengths

Figure 4 shows that the largest relative PPG-amplitude

change is at 700 nm when blood glucose level is raised from

“Fasting level” to “Maximum glucose level”, and the small-

est relative PPG-amplitude change is at 936 nm. There-

fore, we selected these two wavelengths to calculate the ra-

tio of relative pulse amplitudes R. This ratio increases by

1.87× 10−6 when glucose increases from 0.9 g/l to 1.5 g/l.

We also find that the changes in ratios caused by 1% SaO2

change is 1.33 × 10−2, caused by 1% water concentration

change is 4.60 × 10−5. Consequently, the variations in

SaO2 create significant interference for in vivo glucose mea-

surement in short near-infrared wavelengths, rendering the

feasibility of PPG-based glucose monitoring unlikely, espe-

cially for the generally more noise camera PPG signals.
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Figure 4. The relative change in PPG amplitude when the glucose

changes from 0.9 g/l to 1.5 g/l for the short near-infrared wave-

lengths.

2.3. Future work

In this paper we focus on elaborating the theoretical pos-

sibility of camera-based glucose monitoring by mathemat-

ical modeling. A set of preliminary tests are conducted

to verify our hypothesis and expectations as the first step.

As for the future work, we shall implement a thorough ex-

periment/benchmark to further conclude the feasibility of

camera-based glucose monitoring.

3. Conclusion

In this paper we investigated the theoretical feasibility

of remote glucose measurement with a regular camera by

modeling. Model simulations based on the DC compo-

nent suggest the glucose-induced intensity variations are

so small that even the effect of body temperature changes

are larger. For the AC component, the light intensity varia-

tions caused by glucose changes are easily masked by even

minute SaO2 changes due to the high absorption and con-

centration of (oxy-)hemoglobin. Our study shows that it is

unlikely to measure the blood glucose levels using a reg-

ular silicon-based camera in the range of visible and short

near-infrared wavelengths.
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