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Abstract

We propose a new algorithm for estimating the absolute

and relative pose of a camera system composed of general

central projection cameras such as perspective and omni-

directional cameras. First, we derive a minimal solver for

the minimal case of 3 line pairs per camera, which is used

within a RANSAC algorithm for outlier filtering. Second,

we also formulate a direct least squares solver which finds

an optimal solution in case of noisy (but inlier) 2D-3D line

pairs. Both solver relies on Grobner basis, hence they pro-

vide an accurate solution within a few milliseconds in Mat-

lab. The algorithm has been validated on a large synthetic

dataset as well as real data. Experimental results confirm

the stable and real-time performance under realistic outlier

ratio and noise on the line parameters. Comparative tests

show that our method compares favorably to the latest state

of the art algorithms.

1. Introduction

Absolute pose estimation of a camera consists in deter-

mining its position and orientation with respect to a refer-

ence 3D world coordinate frame, while relative pose esti-

mation also aims to compute a rigid body transformation

but with respect to another device (e.g. a reference camera),

which is usually needed when a system of two or more sen-

sors is considered. These are fundamental problems in a

wide range of computer vision applications, such as visual
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odometry, simultaneous localization and mapping (SLAM),

image-based localization and navigation, augmented real-

ity(AR) or structure-from-motion (SfM). The classical so-

lutions focus only on a single perspective camera, and esti-

mate pose using point correspondences. However, multi-

camera systems containing a mixtture of perspective and

omnidirectional cameras are becoming more and more de-

sirable by many modern applications, since they fit well the

needs of special vision-based robotic and autonomous vehi-

cle localization and navigation applications, where a higher

field of view is often necessary for a robust interpretation of

highly complex urban scenes.

Computer vision methods rely on the image content to

establish correspondences needed to estimate the camera

pose. The visual information can be of different complexity

(e.g. points, lines, regions or even higher level semantic ob-

jects). Using n corresponding 2D-3D image points, called

the Perspective-n-Point (PnP) problem [7, 23, 24, 17, 15],

is the most common absolute pose estimation approach,

that can be solved with a minimum number of 3 corre-

spondences. Various solutions exist for both large n as

well as the n = 3 minimal case (see [17] for a recent

overview). However, point correspondences are less reli-

able in urban environment due to the repetitive structures

of road scenes. Using line features instead of points is

an attractive alternative in such scenarios, known as the

Perspective-n-Line (PnL) problem. A detailed overview of

the available solutions was recently presented in [42]. Al-

ternatively to point and line correspondences, there are also

pose estimation methods relying on matching sets of 2D-

3D regions [33, 32] or silhouettes [46]. More recently [29]

proposed a more complex pipeline relying on point-to-plane

mismatches, where image sets are registered to a 3D point-

cloud through the use of structured scenes and polynomial

sum-of-squares optimization framework. However, such

approaches cannot be used in real-time driving and navi-

gation applications due to their increased complexity.

The first globally optimal non-iterative solution for abso-

lute pose of a single camera (AlgLS), proposed by [28], for-

mulates the problem as a multi-variate polynomial system



with rotation parametrized by the Cayley-Gibbs-Rodriguez

(CGR) representation. Zhang et al. proposed RPnL [45]

which was further modified into the Accurate Subset-based

PnL (ASPnL) method [42], which is one of the most ac-

curate non-iterative methods. Another recent work from

Wang et al. deals with the P3L [38] as well as with the

PnL [39] problem. In [39], a fast and robust solution is

proposed (called SRPnL) and its superior performance is

confirmed by a comprehensive experimental comparison

with many state of the art PnL solvers, like AlgLS [28],

ASPnL [42]. Therefore in this work, we have validated

our method through various experiments comparing it with

SRPnL as it performed the best in [39] and AlgLS [28]. For

multi-view camera systems, one notable work is the mini-

mal NP3L solver of Lee [20], which deals with the 6 pose

parameter estimation for a fully calibrated multi-view per-

spective camera system. In [12], the same problem is ad-

dressed with known vertical direction which leads to two

fast and robust solvers, while in [1], absolute and relative

pose is estimated with known vertical direction. While there

are efficient solutions to line detection and matching in om-

nidirectional cameras [4], omnidirectional cameras are by

far less researched in the context of line-based pose estima-

tion. One solution with known vertical direction is proposed

in [11]. While robust minimal solutions based on line cor-

respondences for absolute pose [28, 45, 42, 20, 11, 39] or

absolute and relative pose with known vertical direction [1]

exists, none of these methods estimate full absolute and rel-

ative poses simultaneously in a multiview system including

both omnidirectional and perspective cameras.

Since multi-view solutions are getting increasingly pop-

ular, especially in the autonomous driving [21], driver assis-

tance with vehicle surrounding view [44, 43] and UAV map-

ping and monitoring domains, both the point and line based

approaches to the multi-view pose estimation problem have

been addressed (e.g. [27] uses the combination of the two).

Solutions to the PnP or PnL problem cover only single-view

perspective cameras, thus new methods were proposed that

can efficiently deal with generalized PnP (gPnP) [40] or

non-perspective PnP (NPnP) [5, 17, 21, 22] setups.

In this paper, we propose an universal solution for central

camera setups, that provides a direct least squares solution

to the absolute and relative pose problem. First, a mini-

mal direct solver using Grobner bases is proposed which

works with 3 line pairs, suitable for hypothesis testing in

RANSAC [7]. Then a direct least squares solver is proposed

which works for n ≥ 3 3D-2D line pairs. Both solvers run

efficiently due to the low-order polynomial system of equa-

tions obtained via Cayley parametrization of the rotation

matrix. The performance and robustness of the proposed

method have been evaluated on large synthetic datasets as

well as on real data with various camera systems, including

different combinations of omnidirectional and perspective

Figure 1. Projection plane of a line in the spherical camera model.

cameras.

2. Central Camera System

A unified model for central cameras was proposed by

Geyer and Daniilidis [8], which represents central omnidi-

rectional cameras as well as perspective cameras as a pro-

jection onto the surface of a unit sphere S . The camera

coordinate system is in the center of S , and the Z axis

is the optical axis of the camera which intersects the im-

age plane in the principal point. This formalism has been

adopted and models for the internal projection function have

been proposed by Micusik [26, 25] and subsequently by

Scaramuzza [31] who derived a general polynomial form

g(‖x‖) = a0 + a2‖x‖
2 + a3‖x‖

3 + a4‖x‖
4 which has

4 parameters representing the internal calibration parame-

ters (a0, a2, a3, a4) of the camera (only 4 parameters as a1
is always 0 [31]). Thus the nonlinear (but symmetric) dis-

tortion of central omnidirectional optics is represented by

placing this rotationally symmetric g surface between the

image plane and the unit sphere S [31] (see Fig. 1). Know-

ing the internal calibration of the camera allows us to work

directly with spherical image points xS ∈ S using the bi-

jective mapping of image points x �→ xS composed of 1)

lifting the image point x onto the g surface by an ortho-

graphic projection

xg =

[

x

a0 + a2‖x‖
2 + a3‖x‖

3 + a4‖x‖
4

]

(1)

and then 2) centrally projecting the lifted point xg onto the

surface of the unit sphere S:

xS =
xg

‖xg‖
(2)

Similarly, the image points of a perspective camera can

be represented on S by the bijective mapping x �→ xS :

xK = K−1x and xS = xK/‖xK‖ (see Fig. 1). Thus the

projection of a calibrated central camera is fully described



by means of unit vectors xS in the half space of R3. A 3D

world point X is projected into xS ∈ S by a simple central

projection taking into account the pose:

xS =
RX+ t

‖RX+ t‖
(3)

2.1. Projection of Lines and Camera Pose

Let us now see how a camera system composed of N
central cameras [17, 5, 30, 21] projects 3D lines. Note

that a central camera may or may not be perspective! Even

when a camera has a single effective viewpoint, its projec-

tion model may include non-linear distortions, like in the

case of central omnidirectional cameras [3, 8, 13, 31, 32].

Herein, we will consider an arbitrary mixture of perspec-

tive and non-perspective central cameras and derive uni-

fied equations for such a camera system. In this paper, 3D

lines will be represented as L = (V,X), where V is the

unit direction vector of the line and X is a point on the

line [34, 11, 1]. A 3D line L is centrally projected by a

projection plane πL = (n, d) onto the surface S. Since the

camera projection center is also on πL, d becomes zero and

thus πL is uniquely determined by its unit normal n. The

image of L is the intersection of the ray surface S and πL,

which is a great circle, while a particular line segment be-

comes a great circle segment on the unit sphere S with end-

points a and b (both are on S, hence they are unit length!).

The unit normal n to the projection plane πL in the camera

coordinate frame C is then given by n = a × b. Since L
lies also on πL, its direction vector V is perpendicular to n.

Hence we get the following equation which involves only

the absolute pose (R, t) [11, 1]

n⊤RV = n⊤VC = 0, (4)

where R is the rotation matrix from the world W to the

camera C frame and VC denotes the unit direction vector

of L in the camera coordinate frame C. Furthermore, the

vector from the camera center C to the point X on line L is

also lying on πL, thus it is also perpendicular to n:

n⊤(RX+ t) = n⊤XC = 0, (5)

where t is the translation from the world W to the reference

camera C frame and XC denotes the point X on L in the

camera coordinate frame C.

When we have N central cameras, a 3D line L has up

to N images, one in each camera. These cameras may

be assembled into an ad-hoc multi-camera system or they

might originate from a single camera moving along a tra-

jectory [30, 5, 21, 2] – in either case, they form a camera

system with unknown relative poses (Ri, ti) : C → Ci with

respect to the reference camera coordinate frame C. The

projection of L in these relative cameras yield similar equa-

tions as (4) and (5) but the relative pose (Ri, ti) will also

be involved:

n⊤
i RiV

C = n⊤
i RiRV = 0 (6)

n⊤
i (RiX

C + ti) = n⊤
i (Ri(RX+ t) + ti) = 0 (7)

The pose (either absolute or relative) has 6 degrees of

freedom. Thus to solve for either the absolute pose us-

ing (4) and (5) or the relative pose using (6) and (7), we

need a minimum of 3 line correspondences. The solution

is obtained in two steps: first the rotation is solved us-

ing (4) (or (6)), which in general involves solving a sys-

tem of 8-th order polynomials [6]. Then translation is ob-

tained from (5) (or (7)) by backsubstituting the rotation,

which yields a linear system of equations in terms of the

translation [42, 20, 45, 38]. Clearly, the main challange

is the solution for rotation due to the nonlinearity of the

equations as well as the additional constraints to ensure a

valid rotation (i.e. orthonormal) matrix. Although for spe-

cial line configurations (e.g. orthogonal, parallel or inter-

secting lines) [42] or with additional knowledge of e.g. the

vertical direction [11, 1], a lower order polynomial may be

achieved, most of the P3L polynomials proposed in the lit-

erature will not be lower than 8 for general line configura-

tions [6, 42, 20].

2.2. Cayley Parametrization of 3D Rotations

Let us have a closer look at the parametrization of the

rotation matrix R. It is well known, that the rotation

group SO(3) has 3 degrees of freedom. The most popu-

lar parametrization is Euler angles, which defines a rotation

in terms of three consecutive elemental rotations around the

orthogonal axes X , Y , and Z of a Cartesian coordinate sys-

tem. Since it involves trigonometric functions, this repre-

sentation would yield trigonometric equations. To get rid of

these trigonometric functions, one common approach is to

letting these trigonometric functions to be two separate un-

knowns [24, 42, 45, 11], which –together with the trigono-

metric constarints– leads to polynomial equations. Alter-

natively, one can solve directly for the 9 elements of R in

(4) –as a linear system– and then enforce orthonormality on

the solution yielding again to (different) polynomial equa-

tions [39, 42].

Of course, these parametrizations directly influence the

type of equations one can derive from (4) for computing

R. Herein, we will use the Cayley transform to obtain a

parametrization of the rotation matrix R in terms of 3 pa-

rameters b = [b1, b2, b3]
⊤. Following [41, 9], The Cayley

transform of a rotation matrix is a skew-symmetric matrix

and vice versa. Therefore the correspondence R ↔ [b]× is

a one-to-one map between skew-symmetric matrices (rep-

resented as 3-vectors) and 3D rotations, excluding rotation



angles ±180◦. Thus we have

(1 + b⊤b)R = (1− b⊤b)I+ 2[b]× + 2bb⊤ =
[

1 + b
2

1 − b
2

2 − b
2

3 2b1b2 − 2b3 2b1b3 + 2b2

2b1b2 + 2b3 1− b
2

1 + b
2

2 − b
2

3 2b2b3 − 2b1

2b1b3 − 2b2 2b2b3 + 2b1 1− b
2

1 − b
2

2 + b
2

3

]

(8)

Note that in the equations (4) and (6), we only use the above

matrix, but to get the proper rotation matrix R from b, the

scale factor (1 + b⊤b) has to be used too!

3. Minimal Solver

Given a set of 2D-3D putative line correspondences, first

an inlier set has to be determined in order to obtain a ro-

bust pose estimate. This can be done via RANSAC [7] or

the M-estimator sample consensus (MSAC) algorithm [35],

which relies on a minimal solver and a backprojection error

metric. In our case, the minimal set consists of 3 line-pairs,

providing 3 equations for the rotation only as in (4) and 3

equations for the translation as in (5). Using the Cayley

parametrization of the rotation matrix R, we get the follow-

ing second order polynomial equation from (4):

c⊤x =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

n1v1 + n2v2 + n3v3
2n1v2 + 2n2v1
2n1v3 + 2n3v1
2n2v3 + 2n3v2

n1v1 − n2v2 − n3v3
−n1v1 + n2v2 − n3v3
−n1v1 − n2v2 + n3v3

−2n2v3 + 2n3v2
2n1v3 − 2n3v1
−2n1v2 + 2n2v1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⊤ ⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
b1b2
b1b3
b2b3
b1

2

b2
2

b3
2

b1
b2
b3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0 (9)

where n = [n1, n2, n3]
⊤ and V = [v1, v2, v3]

⊤ are the

projection plane unit normal and the 3D line unit direction

vector, respectively. Given 3 such line-pairs, we obtain a

system of 3 equations of the form (9) in the 3 unknown ro-

tation parameters b = [b1, b2, b3]
⊤, which can be easily

solved by a solver using Grobner basis [18, 16, 19]. In our

experiments, we used the automatic generator of Kukelova

et al. [18] for a fair comparison in Matlab with compet-

ing methods, but we remark that we also succesfully used

Kneip’s generator [16] which produces a solver in C++, that

is an order of magnitude faster! The translation t is then ob-

tained by backsubstituting R into (5) yielding a system of

linear equations, which can be solved by SVD decomposi-

tion. Although (9) might have several solutions, the solver

will only return the real ones and then one has to select

the geometrically valid (R, t) based on the visibility of the

lines and the backprojection error (see Section 3.1). Note

that the relative camera poses (Ri, ti) are also obtained in a

similar way once the absolute pose (R, t) is computed and

backsubstituted into (6) and (7).

3.1. Line Backprojection Error on the Unit Sphere

RANSAC will iteratively sample a minimal line-set,

solve it via the minimal solver outlined above, and then clas-

sify the line-pairs into inliers and outliers based on the back-

projection error. Therefore the second component for our

robust pose estimation is the backprojection error. While

solutions exists for perspective cameras [20, 34], these met-

rics are not usable in our case as we are working on the

unit sphere S . Therefore, given an observed image line seg-

ment with its endpoint spherical coordinates (a,b) and the

corresponding 3D line backprojected to the unit sphere as

(A,B), let us define the backprojection error of the 3D line

w.r.t. its observed image line directly on S . First of all,

lines become great circles and a particular line segment be-

comes a great circle segment on the unit sphere. We will

derive an error function to characterize the line projection

error as the distance between (a,b) and (A,B). Points on

the observed spherical line (a,b) can be parametrized by a

scalar φ = 0, . . . , λ with λ being the geodesic length (or

great-circle length or orthodromic length of the observed

segment:

λ = arctan

(

‖a× b‖

|a · b|

)

. (10)

A simple metric is to compute the shortest orthodromic dis-

tance of the endpoints of the observed segment to the back-

projected line (A,B). Let δ(p) be the shortest orthodromic

distance of a point p on the observed segment to the back-

projected line (A,B):

δ(p) = arctan

(

|n · p|

‖n× p‖

)

(11)

= arctan

(

‖n‖‖p‖| sin θ|

‖n‖‖p‖| cos θ|

)

= θ

where n is the unit normal vector of the projection plane of

(A,B), i.e.

n =
A×B

‖A×B‖
, (12)

θ is the angle (in radian) between p and the plane with nor-

mal n, i.e. the plane passing through A, B, and the cen-

ter of the sphere. Thus the shortest distance of a and b to

the backprojected line are given by δ(a) and δ(b). Since

the error represented by these distances is inversely propor-

tional to the length of the line segment (same δ distance on a

longer line segment means a smaller backprojection error),

we used sum of squared distances weighted with the inverse

of the length λ of the line segment:

1

λ
(δ2(a) + δ2(b)). (13)



3.2. Normalization

The 2D image data is normalized by definition as we

work on the unit sphere. However, the 3D lines are given

in an arbitrary world coordinate system W , which needs

to be normalized for numerical stability [10]. Herein, we

thus transform our 3D line segments into a unit cube around

the origin of W: First a uniform scaling factor s is calcu-

lated using the maximum domain of the coordinates along

all three axes, practically the height h, width w and depth

d of the data, then choosing the maximum of these as the

uniform scaling measure s = 1
max(|h|,|w|,|d|) . We also cal-

culate the centroid [u, v, z]T of the 3D scene points. Then

the normalization matrix N is composed of the translation

−[u, v, z]T followed by a uniform scaling by s. We used

uniform scaling to avoid changeing the direction vector of

the 3D line. This way, the rotational part of the pose is

not affected by this normalization. Normalization is then

applied to the 3D line points NX used in (5) and (7). The

solution is then obtained in this normalized space, hence the

result (R̃, t̃) need to be denormalized. Since the equations

used to solve for the rotation are unaffected by this normal-

ization (thanks to uniform scaling!), R̃ is the final rotation,

while the translation t̃ needs to be corrected by applying
[

I t̃

0 1

]

N.

4. Direct Least Squares Solver

Let us now focus on the general case, when we have n >
3 inlier but noisy 2D-3D line pairs. We also start from (4)

and (5). Each line pair generates one such pair of equations,

yielding a system of n > 3 equations, which is solved in the

least squares sense. For this purpose, let’s take the sum of

squares of the nonlinear system constructed from (9):

E(b) =
n
∑

i=1

(c⊤i x)
2 (14)

and then find argminb E(b). The first order optimality

condition is

∇E(b) =

⎡

⎢

⎣

∂E(b)
∂b1

∂E(b)
∂b2

∂E(b)
∂b3

⎤

⎥

⎦
=

⎡

⎣

∑n
i=1 db1

⊤
i xb1

∑n
i=1 db2

⊤
i xb2

∑n
i=1 db3

⊤
i xb3

⎤

⎦ = 0 (15)

where for each line pair db1
, db2

, and db3
can be expressed

in terms of the coefficients c of each line pair. Thus the solu-

tion of the system of 3 polynomial equations (each of them

is third order) in (15) provides the rotation parameters b.

We succesfully used the solver generator of [18] to gener-

ate a Matlab solver for the above polynomial system. The

translation t is then obtained by backsubstituting R into (5)

yielding a system of linear equations, which can be solved

by SVD decomposition. Multiple solutions are eliminated

in the same way as for the minimal solver. Relative camera

poses (Ri, ti) are also obtained in a similar way once the

absolute pose (R, t) is computed and backsubstituted into

(6) and (7).

Algorithm 1 Summary of the proposed robust pose estima-

tion algorithm for N central cameras

Input: 3D-2D putative line matches from N cameras

Output: The absolute pose (R, t) : W → C and the rela-

tive poses (Ri, ti) : C → Ci
1: Calculate N as in Section 3.2 and normalize the 3D line

endpoints X.

2: Calculate the normal n of the projection plane for each

2D line and the unit direction vector V for each 3D line

L as described in Section 2.1.

3: Filter outliers using the Cayley minimal solver pro-

posed in Section 3 with MSAC.

4: Using the obtained inlier set of 2D-3D line pairs es-

timate the absolute (R̃, t̃) and relative (R̃i, t̃i) poses

with the Cayley-LS solver presented in Section 4.

5: Return the denormalized (R, t) and (Ri, ti) poses.

5. Experimental Results

Quantitative evaluation was performed on synthetically

generated datasets. Since for both the perspective and om-

nidirectional cameras we used the calibration parameters of

real cameras, with available physical parameters such as the

sensor size, we calculated an estimated pixel-to-meter ratio,

thus being able to represent our 3D scene in an equivalent

metric space. Multiple sets of 1000 samples were gener-

ated containing 3D-2D line pairs. The 3D scene was created

with a typical road scene in mind, where only a few planar

surfaces are usually visible in a camera, thus we created 3
planes randomly placed (with a rotation of ±30◦ around all

3 axes, ±[1 − 2] m horizontal and vertical translation, and

±[0.5 − 1.5] m in depth) in the 3D space, each containing

20 random line segments, with a minimum length of 0.5 m.

For the 2D side we generated images of the scene by pro-

jecting the lines with perspective and omnidirectional cam-

eras as well, using the parameters of a standard commercial

camera with APS-C size sensor, 2378x1580 pixel resolution

and 16 mm normal lens, respectively an 8 mm fisheye lens.

Each camera was placed in the scene with a random rota-

tion of ±50◦ around all 3 axes, and random translation of

±1 m in the horizontal and vertical direction, while in the

optical axis’ direction the perspective camera was placed

at [4 − 6] m from the scene, the omnidirectional camera at

[2−3] m. Each of the 1000 test cases contains 2+1 cameras,

both in the omni-perspective and perspective-omni config-

uration to cover all possible variations of reference and rel-

ative cameras.
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Figure 2. Comparison to State-of-the-Art methods with 7% 2D

(left) and 7% 3D noise (right) using the minimum number of line

matches with each method.

To evaluate the robustness of the proposed algorithm for

noisy line detections, se simulated noise by corrupting one

endpoint of the line (similarly in 2D and 3D), essentially

adding a random number to each coordinate of the point up

to the specified percentage of the actual coordinate value.

The unit direction vector was also modified in the same

manner. We show results for 7% and 15% 2D and 3D noise

levels, with the only exception that on the omnidirectional

images the 2D noise was limited to 10% instead of 15%
because of the high nonlinear distortion of the camera that

accentuates these errors. These error levels translate to a

shift on the image with an average of 55 − 51px (with 7%

omni and perspective noise), 79px (with 10% omni noise)

and 110px (with 15% perspective noise) respectively.

5.1. Comparison with State-of-the-Art

The proposed Cayley minimal solver and Cayley least

squares solver (Cayley-LS), were compared to two State-

of-the-Art methods: AlgLS, one of the most accurate non-

iterative methods, which estimates the camera’s pose by di-

rectly solving the corresponding least-squares problem al-

gebraically, and SRPnL, a novel closed-form solution to the

PnL pose problem that solves univariate polynomials and

includes a Gauss Newton refinement. Comparisons were

performed in two different setups, first using the minimum

number of line matches that each algorithm requires, then

using all 60 line pairs of the scene, only on a single per-
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Figure 3. Comparison to State-of-the-Art methods with 15% 2D

noise on the left and 15% 3D noise on the right, using n = 60 line

pairs.

spective camera, since the formulation of the other methods

doesn’t support omnidirectional cameras, neither a multi-

view setup was presented with them.

The minimum number of lines required is n=3, except

for AlgLS, that uses n=4. Based on Fig. 2 we can conclude

that all the methods perform very similar in terms of me-

dian errors of the pose parameters, only AlgLS produces

slightly lower median errors due to the higher number of

line-pairs it is using (n=4), but it is also the least robust of

all tested methods, producing higher than 20◦ rotation error

in 25% of the cases, compared to 15% with Cayley Mini-

mal Solver, and 5% with SRPnL and Cayley-LS. None of

the methods are handling well this level of noise, median

angular distance is above 3.5◦ and 4.2◦ and translation error

above 35 cm and 60 cm for 3D and 2D noise respectively.

In terms of runtime, the proposed Cayley minimal solver is

the fastest with 2 ms, followed by SRPnL with 3 ms, then

AlgLS with 8 ms and Cayley LS 10 ms.

We also performed comparisons in case of n = 60 line

pairs, where we also obviously excluded from the compar-

isons shown in Fig. 3 the Cayley Minimal Solver, since we

are using n = 60 lines. The error plots in Fig. 3 show that

AlgLS and Cayley-LS have the best results with lowest me-

dian rotation and translation errors, robust for up to 15%
noise with median angular distance below 1.5◦, but AlgLS

favors the noise in 2D domain. SRPnL shows lack of preci-

sion, producing much higher pose errors, already with 7%
noise. Cayley-LS has the same characteristic as AlgLS in

every test setup, the only difference noticeable is in case of

15% 3D noise where Cayley-LS is more robust in terms of

translation error (see Fig. 3), while practically having the

same execution time of 9 ms as AlgLS. With 60 lines the

runtime of the algorithms keep the same characteristic and

very similar median value, the number of lines not affecting
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Figure 4. Comparison of Cayley-LS results between different cam-

era compositions in terms of median pose errors with 7% 2D noise

on the left and 7% 3D noise on the right.

significantly the runtime.

We remark, that for the purpose of a fair evaluations we

used the Matlab solver generated by [18], while also a C++

solver generated by the automatic tool from the Polyjam

software [16] is available, which is much faster.

5.2. Multi-view Setup Composition

Since we are dealing with perspective and omnidirec-

tional cameras in the same framework, we have to test the

sensibility of the proposed algorithms to different composi-

tions of the camera setup. Due to the way our equations are

formalized, we always have a selected reference camera that

can propagate errors to the other cameras due to the abso-

lute and relative pose formulation. In Fig. 4 we can see the

two relevant configurations with 7% noise, setup 1 referring

to 2 perspective and one omni (2p+1o) cameras while setup

2 referring to 2 omni and 1 perspective (2o+1p) cameras.

These setups contain all 4 possible combinations of refer-

ence and relative camera. Based on Fig. 4 we can conclude,

that there is no clear advantage of using one type of camera

or the other as a reference, since setup 1 has slightly better

results with 2D noise, while setup 2 is better with 3D noise.

5.3. Robustness to Outliers

Since the proposed Cayley minimal solver proved to be

the fastest of the tested methods and robust to noise, it is

well suited for outlier detection in a RANSAC algorithm.

In our experiments we used the built in M-estimator sam-

ple consensus (MSAC) algorithm function of Matlab [35]

together with the backprojection error presented in Sec-

tion 3.1. The synthetic dataset previously defined was ex-

tended by adding a specific number of outlier 2D-3D line-

pairs with randomly generated coordinates, to obtain the

outlier ratio of: 30% and 60% (26, 90 outliers respectively).

0 200 400 600 800 1000

Test cases 

0

2

4

6

8

10

R
o
ta

ti
o
n
 a

n
g
u
la

r 
d
is

ta
n
c
e
 (

d
e
g
)

C1 persp, r=0%, m=1.32

C2 persp, r=0%, m=2.01

C3 Omni,  r=0%, m=2.07

C1 persp, r=30%, m=1.34

C2 persp, r=30%, m=2.01

C3 Omni,  r=30%, m=2.07

C1 persp, r=60%, m=1.48

C2 persp, r=60%, m=2.14

C3 Omni,  r=60%, m=2.16

0 200 400 600 800 1000

Test cases 

0

2

4

6

8

10

R
o
ta

ti
o
n
 a

n
g
u
la

r 
d
is

ta
n
c
e
 (

d
e
g
)

C1 Omni, r=0%, m=1.42

C2 Omni, r=0%, m=2.1

C3 persp,r=0%, m=2.09

C1 Omni, r=30%, m=1.43

C2 Omni, r=30%, m=2.13

C3 persp,r=30%, m=2.1

C1 Omni, r=60%, m=1.65

C2 Omni, r=60%, m=2.3

C3 persp,r=60%, m=2.25

0 200 400 600 800 1000

Test cases 

0

0.2

0.4

0.6

0.8

1

T
ra

n
s
la

ti
o

n
 e

rr
o

r 
(m

)

C1 persp, r=0%, m=0.162

C2 persp, r=0%, m=0.367

C3 Omni,  r=0%, m=0.29

C1 persp, r=30%, m=0.166

C2 persp, r=30%, m=0.372

C3 Omni,  r=30%, m=0.295

C1 persp, r=60%, m=0.204

C2 persp, r=60%, m=0.398

C3 Omni,  r=60%, m=0.328

0 200 400 600 800 1000

Test cases 

0

0.2

0.4

0.6

0.8

1

T
ra

n
s
la

ti
o

n
 e

rr
o

r 
(m

)

C1 Omni, r=0%, m=0.0941

C2 Omni, r=0%, m=0.17

C3 persp,r=0%, m=0.225

C1 Omni, r=30%, m=0.0958

C2 Omni, r=30%, m=0.171

C3 persp,r=30%, m=0.227

C1 Omni, r=60%, m=0.112

C2 Omni, r=60%, m=0.181

C3 persp,r=60%, m=0.248

0 200 400 600 800 1000

Test cases 

0

0.5

1

1.5

2

2.5

T
im

e
 (

s
)

Cayley LS, r=0%, m=0.0277

Cayley LS, r=30%, m=0.126

Cayley LS, r=60%, m=1.2

0 200 400 600 800 1000

Test cases 

0

0.5

1

1.5

2

2.5

T
im

e
 (

s
)

Cayley-LS, r=0%, m=0.0273

Cayley-LS, r=30%, m=0.144

Cayley-LS, r=60%, m=1.21

setup 1 with (2p+1o) setup 2 with (2o+1p)
Figure 5. Cayley-LS pose estimation results on the inlier line-pairs

provided by RANSAC with 15% noise and r = 30%, r = 60%

outlier ratio, compared to the baseline results without RANSAC

on the inlier set r = 0%.

The threshold for RANSAC was experimentally determined

as the average between the maximum of the inliers’ and

minimum of the outliers’ backprojection error calculated

with the reference pose. In our tests RANSAC with the

Cayley minimal solver was able to robustly filter out all

outliers, since there was a clear separation between the in-

liers and outliers, but we found that a smaller inlier set can

only be obtained if the outlier lines are taken from the same

planes as the inliers, thus they are not different enough from

the correct lines. Pose estimation errors of the Cayley-LS

solver on the inlier sets, using the two camera configura-

tions presented previously with 15% noise and 30%, 60%
outlier ratio, are shown in Fig. 5. We can see that the algo-

rithm is robust up to 15% noise with 60% outliers where the

angular distance or the translation doesn’t change too much

compared to the Cayley-LS solver run only on inliers. The

runtime plots in the last row of Fig. 5 show that, while a

higher than 50% outlier ratio can be filtered out robustly, it

drastically increases the execution time of the algorithm. If

a reduced number of outliers can be assumed (< 30% out-

lier ratio) a 5 folds increase in runtime is to be expected,

that could still fit in many applications’ requirements.

5.4. Real Data

To evaluate the proposed algorithm on real data, we have

used a set of 17 2D perspective and omnidirectional im-



ages captured in an outdoor urban environment, where the

dense 3D point cloud of the scene was captured with a Riegl

VZ400 Lidar scanner with an angular resolution of 0.05◦.

The perspective images were captured by a flying drone in

4K resolution, while the omnidirectional images were taken

with a Canon DSLR camera with a 8mm fisheye lens. The

ground truth pose if each camera images was estimated with

UPnP [17] using highly reflective markers placed on the

building surface, that were automatically scanned by the

scanner, and detected and matched with 2D manually. Re-

lying on these markers we can compute a metric forward

projection error to evaluate the precision of the estimated

camera pose. For the reference poses the maximum forward

projection error was 10 cm, and the median was 3 cm. To

provide the necessary input to our algorithm, we detected

2D lines on the perspective images using the OpenCV LSD

detector [37], while on the omnidirectional images we used

the automatic line extraction toolbox of Bermudez [4]. The

corresponding 3D lines were produced by relying on the

images captured with the camera attached to the scanner,

that has a very precise pose calibrated in laboratory envi-

ronment. We used these to project 2D lines detected on

the reference images into the 3D pointcloud, then manually

matching the 2D lines from our evaluation set of 17 images

with the lines on the reference images, we directly obtained

the 2D-3D matches. This could also be done by calculating

line segment descriptors like [36] and using them to auto-

matically match lines.

We evaluated the Cayley-LS solver on the 17 images of

the real dataset by choosing randomly a reference camera.

The results show, that despite the fact that we used only

a relatively small number of lines (an average of 15 lines

and maximum 22 lines per image, compared to e.g. [27],

where they used 130 lines and 50 points per image) the

proposed Cayley-LS solver can estimate the absolute and

relative poses quite robustly, even independently of the se-

lection of the reference camera. In 16 out of the 17 con-

figurations all cameras have a correct pose estimated with a

maximum forward projection error of less than 30 cm, ex-

cept one camera, that might have had too much noise on

the 3D lines. Obviously in the 17th configuration, when

this camera is chosen as reference, the errors propagate over

to multiple other cameras, thus only a total of 12 cameras

have lower than 30 cm maximum forward projection error.

In the other 16 cases median rotation errors are below 1◦

along all three axes, while median translation errors below

40 cm. Considering the distance of the cameras from the

scene walls is between 10 − 25 meters, these results prove

the precision and robustness of the proposed method, even

for low number of lines in different multi-view setups.

Fusion Based on the calculated camera poses the 2D-3D

fusion can be performed by colorizing the scene pointcloud

Figure 6. Fusion result shown as colorized pointcloud with esti-

mated omni (red) and perspective (green) camera positions illus-

trated.

from all the available cameras. An important step of this is

checking the visibility of the surfaces from each given view-

point, since in a complex urban environment occlusions can

easily happen. For this purpose we used the hidden point

remove tool of [14] to obtain only the visible scene-points

from each camera, then we averaged out the color values

proposed by multiple cameras for each vertex. The resulting

colorized pointcloud for the dataset can be seen in Fig. 6,

including the estimated camera poses.

6. Conclusion

We proposed a novel robust pose estimation method for

central perspective and omnidirectional cameras using line

correspondences. Due to the Cayley representation of the

rotation, our approach yields a low-order polynomial sys-

tem both for the minimal as well as for the general n-line

case, which can be efficiently solved using Grobner basis

solvers. The proposed method is able to deal with outliers

as well as noise on the line parameters. It compares fa-

vorably to State-of-the-Art methods, being more robust to

3D noise than AlgLS and SRPnL. The efficiency of the pro-

posed solution was validated both on synthetic and real data

with omnidirectional and perspective camera setups.
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