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Abstract

Camera-based object detection and automated driving in

general have greatly improved over the last few years. Parts

of these improvements can be attributed to public datasets

which allow researchers around the world to work with data

that would often be too expensive to collect and annotate for

individual teams. Current vehicle detection datasets and

approaches often focus on axis-aligned bounding boxes or

semantic segmentation. Axis-aligned bounding boxes often

misrepresent vehicle sizes and may intrude into neighbor-

ing lanes. While pixel level segmentations are more accu-

rate, they can be hard to process and leverage for trajectory

planning systems. We therefore present the Boxy dataset for

image-based vehicle detection. Boxy is one of the largest

public vehicle detection datasets with 1.99 million anno-

tated vehicles in 200,000 images, including sunny, rainy,

and nighttime driving. If possible, vehicle annotations are

split into their visible sides to give the impression of 3D

boxes for a more accurate representation with little over-

head. Five megapixel images with annotations down to a

few pixels make this dataset especially challenging. With

Boxy, we provide initial benchmark challenges for bound-

ing box, polygon, and real-time detections. All benchmarks

are open-source so that additional metrics and benchmarks

may be added at https://boxy-dataset.com.

1. Introduction

Perception systems and especially vision-based object

detection systems are integral parts of self-driving cars.

Camera images generally offer a higher resolution com-

pared to various sensors such as lidar or radar. This allows

an understanding of a vehicle’s complete surrounding and

object detections over long distances. Color information

can additionally be used to deduce attributes, such as brake

lights and turn signals, which are not available in other sen-

sors.

A lot of advances in computer vision and vehicle de-

tection are possible because of public datasets and bench-

marks.

Figure 1. Top: Sample annotations in rainy weather. Bottom: De-

tections provided by our baseline method.

1.1. Vision Datasets

One of the most impactful datasets, the ImageNet Large

Scale Visual Recognition Challenge’s (ILSVRC) [25], saw

a top-5 classification error reduction from 28.2% to 3̃%

within only six years. Over the same time frame, object de-

tection accuracy on the Pascal Visual Object Classes (VOC)

Challenge [6] and the detection part of the ILSVRC also in-

creased significantly [25]. These datasets, containing tens

of thousands to millions of annotated images, allowed re-

searchers to train new, much larger, and more powerful neu-

ral network architectures such as Faster-RCNN [22], Single

Shot MultiBox Detector [15], You Only Look Once [20,

21], and various ensembles. In addition to bounding boxes

for object detection, the Pascal VOC [6] and Microsoft

Common Objects in Context (COCO) [14] offer pixel level

annotations. This enabled the creation of models which ac-

curately stimate object locations in images down to individ-

ual pixels [16, 23, 1]. One promising application for the



advances in object detection and semantic segmentation are

driver assistance systems and fully automated vehicles.

1.2. Vehicle Detection Datasets

Fast, accurate, and reliable detections of other traffic par-

ticipants are crucial for automotive applications. This de-

mand has already led to a number of datasets for vision-

based vehicle detection [7, 5, 32, 29, 2, 19, 24, 17, 31, 28,

29].

The KITTI Vision Benchmark Suite [7] is one of the

first large datasets to offer a variety of annotations for au-

tomated driving topics such as odometry, optical flow and

object detection. Vehicles are annotated as 3D boxes within

KITTI. Cityscapes [5] offers full-scene pixel-level annota-

tions for 5000 images with an additional 20,000 coarsely

annotated images. The BDD100k dataset contains 100,000

images with vehicles labeled with both 2D bounding boxes

and pixel-level annotations.

Additionally, there exist a few datasets with axis aligned

bounding box (AABB) labels for vehicles such as the Toy-

ota Motor Europe Motorway Dataset (TME) [2], two Udac-

ity datasets [31], the Nexar Challenge 2 [17], Mapillary Vis-

tas [19], and the Lisa Vehicle Dataset [28]. See Table 2 for

the respective dataset sizes.

In addition to manually annotated datasets, it is possible

to train detection models on simulated data. The Synthia

dataset [24], for example, contains 200,000 images with

pixel level annotations including vehicles. Another research

area focuses on creating photo-realistic images from simu-

lation [3].

We present the Boxy dataset for image-based vehicle de-

tection specific to freeway driving. All vehicles are split into

their visible sides which creates a 3D-like boxy impression

for a more detailed representation compared to AABB. To

our knowledge, the dataset is the largest public vehicle de-

tection dataset with 1,990,806 manually annotated vehicles

in 200,000 images. It includes different weather conditions

and high resolution, five megapixel images which make this

dataset especially challenging.

We publish Boxy with benchmark challenges on AABB

detections with and without runtime restrictions, and 3D-

like detections to allow comparing vehicle detection meth-

ods on a large amount of difficult annotations.

2. The Boxy Vehicles Dataset

2.1. Key figures:

• 200,000 images, full resolution about 1.1 TB

• 5 megapixel resolution of 2464x2056

• 3D-like and 2D bounding boxes

• 1,990,806 annotated vehicles

• Average vehicle annotation covers only 0.3% of an im-

age
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Figure 2. Distribution of annotated vehicle heights in pixels.
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Figure 3. Distribution of vehicle heights for annotations smaller

than 100 pixels.

• Sunny and rainy conditions at daytime, dawn, and dusk

• Traffic jams and empty freeways

2.2. Dataset Overview

Boxy is a large and challenging computer vision dataset

for vehicle detection.

One challenging aspect is the fairly small object annota-

tions compared to the image size, which results in a large

search space. The average annotation only covers approx-

imately 0.3% of its respective image and the majority of

annotations are less than 50 pixels in height as displayed

in Figures 2 and 3. We also note that Boxy also contains



Figure 4. Number of vehicles that occupy each pixel. A large per-

centage of vehicles is represented by small annotations towards the

center of the image close to the vanishing point.

annotations that are larger than the complete image resolu-

tion of most existing datasets. Especially for realtime de-

tections, there need to be input resolution, runtime, and ac-

curacy trade-offs.

Generally, vehicles are visible within every part of the

image. An overall majority, however, are clustered around

the vanishing point with a distinct distribution around the

average location of neighboring lanes as visualized in Fig-

ure 4. Vehicles outside the densest regions also need to be

reliably detected, especially because large annotations re-

fer to close and therefore safety critical ones. The camera

view cannot only be optimized for vehicle detection, but

also needs to be able to, for example, capture traffic signs,

traffic and metering lights.

2.3. Image and Sensor Specifications

All images are collected using a mvBlueFOX3-2051

with a Sony IMX250 chip using a global shutter [10]. The

data is stored at 15Hz as 8 bit color images at a resolution of

2464×2056 pixels. At 3x8 bits per pixel value, each image

array requires approximately 15.2 MB or 228 MB per sec-

ond per camera which may need to be streamed, processed,

and stored. As part of Boxy, we provide the images lossless

portable graphics files at about 5.5 MB per image. For faster

downloads and easier handling, we also provide equalized

and downsampled versions.

2.4. Recordings and Environment

All sequences were recorded on San Francisco Bay Area

freeways, namely the California state routes 85 and 92,

and interstates 101 and 280. Despite its limited regional

scope, the different traffic scenarios, 3D-like annotations,

their sizes, times of day, and weather conditions should en-

sure that Boxy is a challenging dataset.

Sequence # Frames Conditions

Training:

2016-09-30-14-41-23 9313 sunny

2016-09-30-15-03-39 6349 sunny

2016-09-30-15-19-35 6199 sunny

2016-10-04-13-52-40 12854 sunny

2016-10-04-14-22-41 6494 sunny

2016-10-10-15-17-24 2779 sunny

2016-10-10-15-24-37 3126 sunny

2016-10-10-15-32-33 373 sunny

2016-10-10-15-35-18 4940 sunny

2016-10-10-16-00-11 835 sunny

2016-10-10-16-12-20 11054 sunny

2016-10-10-16-43-45 7456 sunny

2016-10-10-18-25-04 5592 sunny

2016-10-10-18-41-33 7898 sunset to dark

2016-10-26-12-49-56 178 sunny

2016-10-26-13-00-25 1031 sunny

2016-10-26-13-04-33 16045 sunny

2016-10-26-17-55-06 191 sunset

2016-10-26-17-57-22 1890 sunset

2016-10-26-18-03-11 3375 sunset

2016-10-26-18-22-27 2380 sunset to dark

2016-10-26-18-38-03 1423 dark

2016-10-30-09-53-48 3559 rain and traffic jam

2016-10-30-10-01-47 1224 rain and traffic

2016-10-30-10-04-51 7956 rain

2016-10-30-10-24-32 83 rain

2016-11-01-10-07-39 5239 sunny, different lens

2016-11-01-10-20-23 5562 sunny, different lens

Validation:

2016-09-27-14-43-04 21475 sunny

2016-11-03-15-40-30 7271 sunny, light traffic

Testing:

2016-11-02-18-05-08 12767 sunny to dark

2016-11-03-15-03-15 11180 sunny and traffic

2016-11-03-15-28-03 5614 sunny and traffic

2016-10-30-10-26-40 6295 rain

Table 1. Overview of the individual sequences within Boxy. There

are 135,398 training, 28,746 validation, and 35,856 test images.

An overview of the different sequences in the training,

validation, and test sets is given in Table 1. The record-

ings consist of mostly sunny conditions with non-negligible

parts of overcast, heavy rain, dusk and nighttime driving.

Traffic conditions range from light to heavy congestion and

should reflect typical freeway driving.

2.5. 3D Boxes and Annotation Specifications

Axis aligned bounding boxes (AABB), 3D bounding

boxes, and pixel level segmentation are the current standard

in vehicle detection. AABB often do not tightly capture

vehicles and may intrude into neighboring lanes (as dis-



Figure 5. The difference in accuracy between 2D and 3D annota-

tions. The 2D axis-aligned bounding box clearly includes parts of

a neighboring lane.

Figure 6. Left: Typical annotation of a car using a rear rectangle

and a trapezoid for the side. Note the shared edge reduces the

number of required points to six. Right: Visible difference in ori-

entation of the upper side edge.

played in 5) and therefore may impede planning capabil-

ities. Pixel-level segmentations can be computationally in-

tensive to process for planning methods and may be noisy.

Boxy contains 3D-like annotations with visible sides

split into individual quadrilaterals. The annotations are im-

age only and do not contain 3D points. For a simplified an-

notation process and quality control, we label vehicle rears

with AABB and sides with trapezoids. Figure 6 displays

example annotations. This simplification works for all ve-

hicles within the dataset but does not for corner-cases such

as vehicles positioned orthgonal to driving lanes.

One difficulty in the annotation process is the definition

of the upper front. The upper side edge is supposed to align

with the roof of the car, but with a variety of vehicles this

can be ambiguous. Figure 6 displays different side anno-

tations for the same car. 3D information is not accurate

enough to fix the height for distant cars and having the upper

and lower side edge parallel is not accurate. One possible

fix could be to incorporate the images’ vanishing points.

2.6. General Annotation Requirements

All vehicles going in the same direction as the camera

have to be annotated. This includes on-ramps, off-ramps,

and parallel roads. Most of the sequences are recorded on

fully divided freeways which makes it unlikely for oncom-

ing traffic to affect our trajectory.

Dataset # Images # Vehicles Resolution Label

[32] BDD100k 100,000 1,095,289 1280x720 pixel

[29] BoxCars 116,286 27,496 <200x200 3D-like

[5] Cityscapes 25,000 88,305 2048x1024 pixel

[7] KITTI 15,000 32,750 1392x512 3D

[28] Lisa Vehicles 2,200 8,217 704x480 AABB

[19] Mapillary 25,000 <175,000 >1920x1080 AABB

[17] Nexar 55,000 148,000 1280x720 AABB

[24] Synthia 200,000 pixel-level 960x720 pixel

[2] TME 31,850 135,100 1024x768 ABBB

[31] Udacity 1 9,423 72,064 1920x1080 AABB

[31] Udacity 2 15,000 93,086 1920x1080 AABB

Boxy 200,000 1,990,806 2464x2056 3D-like

Table 2. Overview of vehicle detection dataset sizes.

Boxy

TME

COCO

Synthia

Kitti

Udacity

Cityscapes

ImageNet

Figure 7. Visualization of different dataset resolutions.

All vehicles within the freeway are annotated as a single

vehicle class. This includes passenger cars, trucks, campers,

boats, car carriers, construction equipment, and motorcy-

cles. The rear bounding box should contain the complete

rear without containing the sides or front mirrors. For vehi-

cles that carry or contain other vehicles, see Figures 5 and 9,

only the larger vehicle has to be annotated.

Partially occluded vehicles have to be labeled with an

estimate of their complete size and position. Finally and

importantly, only vehicles that can clearly be seen and iden-

tified as vehicles are annotated. Especially tiny, blurry ob-

jects where it is unclear if they are vehicles are not added.

2.7. Dataset Evaluation and Comparison

Boxy is one of the largest vehicle detection datasets in

terms of number of images, annotated vehicles, and vehicles

per image, as displayed in Table 2. To our knowledge, only

general datasets like the ILSVRC Detection [25], OpenIm-

ages [13], and COCO [14] surpass it in terms of number of

images.

Usually, cameras for automotive systems have a resolu-

tion of one to two megapixels [5, 7, 17, 2, 31]. With five

megapixel images, we provide a higher resolution than most

datasets, see Table 2. Some of the annotated vehicles are

larger than the complete images in competing datasets. Fig-

ure 7 gives a visual comparison of the different image reso-



lutions. Additionally, the ratio of object to image size is on

average only 0.3% compared to 1.0% in Cityscapes, 1.65%

in Kitti, and 17% in Imagenet.

Another distinct feature of our dataset is the 3D-like

bounding boxes. The Kitti annotations exceeds these by

having real 3D points, but do not reach the same annota-

tion distance.

However, we group all types of vehicles into a single

class, do not offer annotations in urban environments, sim-

plify the annotations slightly, and do not have 3D informa-

tion. Boxy also does not offer the highly accurate calibra-

tions and sensor-set that Kitti has to offer or the pixel-level

semantic segmentations that are available in Cityscapes and

BDD100k. A small subset of our annotations are incorrect

and the level of detail in the annotations may slightly vary

between images. Overall, the dataset should be one of the

largest and most challenging for object detection and espe-

cially vehicle detection.

3. Vehicle Detection Baselines

For our benchmarks, we split the dataset into training,

validation, and test sets such that no recordings are split and

a variation of conditions is reflected in the test set, see Ta-

ble 1. The starting benchmarks will cover 2D, 3D-like, and

real-time detections with the test set’s annotation being pri-

vate. All benchmarks are initially evaluated based on aver-

age precision.

3.1. AABB Baselines

Over the last years a variety of object approaches, for ex-

ample, Overfeat [27], R-CNN [9], Fast R-CNN [8], Faster

R-CNN [22], the YOLO architectures [20, 21] and the Sin-

gle Short Detector (SSD) [15] were developed. For these

general methods, the underlying base networks can be se-

lected based on accuracy, speed, latency, convience and

memory requirements. The different base networks can

range from a MobileNet [26] over the ResNet familiy [11]

up to the Inception [30] and NASNET architectures [33].

Additionally, there are a number of image-based 3D box

specific methods [18, 4].

As our baseline methods, we select an SSD [15] with

MobileNet V2 [26] for speed and a Faster R-CNN [22] with

NASNET-A (6@4032) for a higher accuracy. We train both

networks using the Tensorflow Object Detection API [12]

and initialize them using models pretrained on COCO [14].

3.2. Refinement by Keypoint Regression

A second step optimizes the axes-aligned bounding

boxes to better represent the real shape of vehicles. We train

a MobileNet V2 [26] to detect the eight visible corner points

of a 3D box for each detected vehicle. For this, all detected

objects are scaled to an input resolution of 256×256 pix-

els and used as input to the second network. We pose the

Figure 8. Left: Sample detections within image at dusk. Right:

The trained model incorrectly classified the left side as visible

regression problem as a classification problem by sampling

the bounding box corners uniformly over the image. For the

baseline model, we use 50 bins and add a random margin

of 10% to 30% to account for inaccuracies in the detection

step. During inference, a constant margin of 20% is added.

The geometric representation of the annotations, de-

scribed in Section 2.5, namely that each vehicle is repre-

sented by a rectangle with connected trapezoid allows us to

reduce the number of values to regress. The rear can be rep-

resented by two points at opposing corners of the rectangle,

totaling in four scalar values. The sides are added to the rear

by two additional points that share a common axis, resulting

in three additional scalar values.

L = LV + LR (1)

LV = −

V
∑

vi

log(vi)vil (2)

LR = −

R
∑

ri

v(ri)ril log

(

e
ri

∑

R

rs
ers

)

(3)

We minimize the overall loss L (1) which is the sum of a

visible side classification loss LV (2) and the regression loss

LR. For each corner point bin ri ∈ R, the cross-entropy

loss is calculated and summed up if the corner point belongs

to a visible side, i.e., v(ri) is 1.

We add a classifier to determine which of the sides are

visible for a given object. The visibility of each vehicle side

V is posed as a binary classification problem and evaluated

using binary cross-entropy as part of the visible side classi-

fication loss LV in (2).

3.3. Baseline Results

We evaluate the detection methods based on the aver-

age precision (AP) based on several thresholds for intersec-

tion over union (IOU). Table 3 shows the accuracies and

frames per second (FPS) on an Nvidia GTX 1080 TI for

the different models on the test set. Each model receives

a downscaled image with an input resolution of 1232x1028

and only is evaluated against objects that are larger than 225

pixels at the original resolution.



Model IOU mAP AABB mAP Polygon

SSD 0.6 0.39 0.38

MobileNet V2 0.7 0.30 0.29

13.2 fps 0.8 0.19 0.18

Faster R-CNN 0.6 0.64 0.63

NASNet-A 0.7 0.53 0.52

0.5 fps 0.8 0.39 0.38

Faster R-CNN 0.6 0.65

NasNet + Refinement 0.7 0.55

0.4 fps 0.8 0.41

Table 3. Accuracy of the classifiers on objects larger than 225 pix-

els.

Figure 9. Detection examples on a few interesting cases. Depend-

ing on the required IOU, the first three larger vehicles may be cor-

rectly detected, but their sides are not classified correctly.

For a qualitative impression of the baseline results, we

refer the reader to the supplementary video. Visually, the

3D detections tend to be far more appealing and lead to a

noticeable improvement in detection accuracy.

There are some reoccurring deficiencies in the detections

such as incorrectly classified visible sides as displayed in

Figure 8, detections in oncoming traffic, and false positives

at greater distances. A few more challenging samples are

shown in Figure 9.

Future work includes looking into different approaches,

underlying models, increasing overall accuracy, and inves-

tigating speed/accuracy trade-offs.

4. Conclusion

We presented the Boxy vehicles dataset, the largest pub-

licly available dataset for vehicle detection with almost 2

million annotated objects in 200,000 images. The small,

3D-like detections within 5 megapixel images in differ-

ent weather and traffic conditions make for a challenging

dataset. The average annotation only covers approximately

0.3% of its camera image.

With the dataset, we presented benchmarks for AABB,

3D-like, and real-time detections. The benchmark evalu-

ation and website are fully open source so that additional

metrics and challenges can be added. With enough feed-

back and submissions, we plan to extend the different ob-

jectives and metrics. We encourage all kinds of benchmark

suggestions.

For future datasets, we would look into annotating ob-

jects in multiple sensors and additionally urban environ-

ments.

There are a number of research directions to explore with

this dataset such as speed, accuracy trade-off analyses, test-

ing different input resolutions, combining different datasets,

inferring vehicle control based on camera images, domain

adaptation, and better metrics than average precision for au-

tomotive applications.
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bounding box estimation using deep learning and geometry.

In Computer Vision and Pattern Recognition (CVPR), 2017

IEEE Conference on, pages 5632–5640. IEEE, 2017. 5

[19] G. Neuhold, T. Ollmann, S. Rota Bulo, and P. Kontschieder.

The mapillary vistas dataset for semantic understanding of

street scenes. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 4990–4999, 2017. 2, 4

[20] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 779–788, 2016. 1, 5

[21] J. Redmon and A. Farhadi. YOLO9000: better, faster,

stronger. In 2017 IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July

21-26, 2017, pages 6517–6525, 2017. 1, 5

[22] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

Advances in neural information processing systems, pages

91–99, 2015. 1, 5

[23] O. Ronneberger, P.Fischer, and T. Brox. U-net: Convolu-

tional networks for biomedical image segmentation. In Med-

ical Image Computing and Computer-Assisted Intervention

(MICCAI), volume 9351 of LNCS, pages 234–241. Springer,

2015. (available on arXiv:1505.04597 [cs.CV]). 1

[24] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and

A. Lopez. The synthia dataset: A large collection of syn-

thetic images for semantic segmentation of urban scenes. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2016. 2, 4

[25] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge.

International Journal of Computer Vision, 115(3):211–252,

2015. 1, 4

[26] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.

Chen. Mobilenetv2: Inverted residuals and linear bottle-

necks. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4510–4520, 2018. 5

[27] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,

and Y. Lecun. Overfeat: Integrated recognition, localiza-

tion and detection using convolutional networks. In Interna-

tional Conference on Learning Representations (ICLR2014),

CBLS, April 2014, 2014. 5

[28] S. Sivaraman and M. M. Trivedi. A general active-learning

framework for on-road vehicle recognition and tracking.

IEEE Transactions on Intelligent Transportation Systems,

11(2):267–276, 2010. 2, 4

[29] J. Sochor, A. Herout, and J. Havel. Boxcars: 3d boxes as cnn

input for improved fine-grained vehicle recognition. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2016. 2, 4

[30] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.

Inception-v4, inception-resnet and the impact of residual

connections on learning. In AAAI, volume 4, page 12, 2017.

5

[31] Udacity. Udacity self-driving car. https:

//github.com/udacity/self-driving-car/

tree/master/annotations, 2016. 2, 4

[32] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madha-

van, and T. Darrell. Bdd100k: A diverse driving video

database with scalable annotation tooling. arXiv preprint

arXiv:1805.04687, 2018. 2, 4

[33] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning

transferable architectures for scalable image recognition. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, 2018. 5


