
Unsupervised Labeled Lane Markers Using Maps

Karsten Behrendt

Bosch Automated Driving

karsten.behrendt@us.bosch.com

Ryan Soussan

Bosch Automated Driving

ryan.soussan@us.bosch.com

Abstract

Large and diverse annotated datasets can significantly

increase the accuracy of machine learning models. How-

ever, human annotations can be cost and time intensive, and

generating 3D information and connectivity for image fea-

tures using manual annotations can be difficult and error

prone.

We therefore propose to automatically annotate lane

markers in images and assign attributes to each marker

such as 3D positions by using map data. Our method

projects map lane markers into image space for far dis-

tances and relies on a sample-based optimization to refine

projections and increase the accuracy of the labels.

As part of this work, we publish the Unsupervised

LLAMAS dataset of 100,042 labeled lane marker images

from about 350 km recorded drives which make this one of

the largest high-quality lane marker datasets that is freely

available. We estimate that manually annotating a dataset

of this size would take several person years.

The dataset contains pixel-level annotations of dashed

lane markers, 2D and 3D endpoints for each marker, and

lane associations to link markers. With the dataset, we

create and open source benchmark challenges for binary

marker segmentation, lane-dependent pixel-level segmen-

tation, and lane border regression to enable a straight-

forward comparison of different detection approaches at

https://unsupervised-llamas.com.

1. Introduction

Over the last few years, deep learning has significantly

increased the accuracy of classification [17], localization,

segmentation [22], and detection [25] tasks for computer vi-

sion. To reach the full potential of deep neural networks and

achieve the best generalization, large and diverse datasets

are needed. Some of the largest annotated datasets are the

ImageNet collection [17] and the COCO dataset [20] which

have led to many improvements in the field. Both of these

datasets were annotated by hand, which can be very chal-

lenging, time-consuming, and labor intensive.

(a) Auto-generated labels (b) Binary segmentation

(c) Multi-class segmentation (d) Spline regression

Figure 1: Image 1a shows a labeled lane image with lane

associations produced by our automated labeler pipeline.

Images 1b-1d show three models trained to output differ-

ent lane marker representations using our auto-generated

dataset.

Automatically generating datasets with limited human

input can lead to faster research and development cycles

for the computer vision community. Krasin, Duerig, and

Alldrin et al. [16] created the OpenImages dataset by using

a highly-accurate model to predict objects in images. They

then relied on an additional manually annotated validation

set to reduce the number of false positives. Another popular

approach for creating large labeled datasets without using

human annotations is to use simulation [26]. A promising

technique is training neural networks to post-process simu-

lated images that more closely resemble reality [7, 13, 27].

The resulting images are visually appealing, but may con-

tain noticeable differences compared with real images. Sim-

ulated datasets often need to be extended with real anno-

tated camera images, as is the case for automated driving.

In this work, we present the Unsupervised LLAMAS

dataset, a lane marker dataset of 100,042 images with la-

beled lane markers. We automatically annotate lane makers

in images using highly-accurate maps and an additional op-

timization step to improve labeling accuracy. Human effort

is limited to collecting lidar and camera data for the map

generation pipeline and finally removing faultily labeled

images from the labeling procedure, minimizing hands-on

labeling efforts. Our approach successfully labels 88% of

images, with the majority of faultily labeled images being

pruned due to errors in the mapping procedure.

With the Unsupervised LLAMAS dataset, we create and

open source benchmark challenges on binary marker seg-

mentation, multiclass segmentation, and lane regression.

2. Related Work

The absence of large publicly available lane marker

datasets makes comparing existing methods difficult, to the

point where often only limited quantitative analysis is per-

formed [14, 15, 21, 28, 32]. Other works rely on private

datasets for evaluation [3, 4, 12, 29].

There are different lane marker representations in a few

existing datasets. The Road Marking dataset, for exam-

ple, uses 2D boxes for lane marker annotations. Caltech

Lanes [2] and the CULane dataset [24] represent lanes with

2D splines. BDD100k [31] uses 2D lines in a large amount

of images but does not offer an evaluation method so far.

The Camvid [5] and KITTI ROAD [10] datasets offer pixel

level annotations, but are fairly small. For an overview of

different datasets sizes and marker representations, we refer

to Table 1.

One large dataset of labeled lane splines in images was

created by [12] by projecting high intensity LIDAR points

from maps, but the resulting labels needed manual correc-

tions. A similar approach was performed by [3] where a

map is represented as curves and projected into the image.

Neither of these datasets are publicly available and have ac-

curacies limited to 80 meters without containing dashes for

lane markers.

The Unsupervised LLAMAS dataset is automatically an-

notated with high accuracy and contains labels up to 120

meters. A unique feature of our dataset is the variety of in-

formation provided with 2D and 3D lines, individual dashed

markers, pixel level segmentation, and lane associations.

3. Dataset Generation

We used 14 highway recordings of around 25 km each to

gather sensor data for labeling images in our dataset. Our

automated labeling pipeline creates annotations for lane

markers using highly accurate maps. It requires groundtruth

poses for the vehicle with respect to the map, which can

be provided by using sensor data recorded during mapping

or by localizing a new run against map data. Each step is

done automatically using either our mapping procedure or

an offline variant of localization, as described in section 3.1.

After projecting map markers into images, we further opti-

mize the projections using image space detections of mark-

ers, which we describe in section 3.2. This yields the high

accuracy that our dataset provides. Additionally, we create

an algorithm to generate lane associations for each marker

projected into an image, as our lane marker maps do not

contain lane associations, which is detailed in section 3.3.

3.1. Generating Labeled Data using Maps

In this section, we describe our automated labeling

pipeline used to generate labeled lane marker images from

our maps. We use the following notation for frames and

transforms throughout this paper: B

AT denotes the rigid body

transform from frame A to B ∈ SE(3) [23], where frame A

describes the space ∈ R
3 whose origin is at the position of

A.

Our mapping pipeline automatically creates highly accu-

rate maps for localization, including dashed lane markers in

3D, lidar intensity maps, and radar maps by fusing LIDAR,

radar, camera, odometry, and GPS data together from sev-

eral sensor recordings taken over the same area. We use a

GraphSLAM (simultaneous localization and mapping) ap-

proach similar to that used by Levinson and Thrun [19] to

generate these maps from the recorded data which we then

use during online localization for the automated vehicle.

The automated labeler pipeline in Figure 2 combines our

maps with sensor readings to create labeled data. Part A

represents the sensor recordings, containing sensor data and

transforms S

VT for each sensor, where S is the sensor frame

and V is the vehicle frame. The vehicle frame is the center

of the rear axle as this is preferred for state estimation for

odometry. The sensor transforms are generally dynamic, as

most sensors are mounted on the vehicle body which moves

with respect to the rear axle when driving, and therefore

they are estimated throughout sensor recordings and each

timestamp contains a different set of sensor transforms.

Part B shows the sources for localization estimates V

MT

where M is the global map frame. There are two different

methods of obtaining V

MT: (1) a highly accurate offline ver-

sion of our localization algorithm and (2) using localization

estimates from our mapping pipeline.

The offline version of our localization algorithm uses

more computational resources and denser sensor data than

the online version to generate a more accurate pose esti-

mate. It uses different combinations of sensor and map data

to generate corrections for the vehicle’s position, then com-

bines these estimates into a final pose.

Since our mapping pipeline generates localization es-

timates using SLAM, we can leverage these poses as

groundtruth for projecting our map lane markers into im-

age space. When using this option the automated labeler

is limited to using the subset of recordings used for map-

ping, whereas the offline localization algorithm works for

any recordings created in areas where we have map data but

Figure 2: Automated labeler pipeline

produces slightly less accurate localization estimates.

To combine map data with sensor data, the automated

labeler uses localization estimates from Part B to find the

transform bringing the map data from global coordinates to

vehicle coordinates (V

MT). It then uses S

VT from Part A to

transform the data from vehicle coordinates to sensor coor-

dinates. Then, for each 3D map element em in global co-

ordinates, it generates an element in sensor coordinates es

using (1).

es =
S

VT V

MT em (1)

em can be any type of map data, for example the 3D end-

points of lane markers or point cloud data. Once the map

data is in sensor coordinates, it can be combined with sen-

sor readings to generate labeled data. When using camera

images as sensor data, the camera calibration matrix is then

used to project map elements from the sensor frame to 2D

image space.

3.2. Correcting Lane Marker Map Projections

Small translational errors in V

MT or S

VT on the order of cen-

timeters can lead to misaligned map data for an entire im-

age, and errors in roll, pitch, and yaw can scale and deform

map data as shown in Figure 3a. An error of one degree

in pitch for example can cause markers 80 meters away to

be offset by roughly 1.4 meters. Therefore, we develop a

correction algorithm to fine-tune the lane map projections

used by the automated labeler pipeline described in Sec-

tion 3.1. We first estimate a correction F

CT, where F is the

corrected camera frame, to the camera to vehicle transform
C

VT by viewing a series of images from a recording and man-

ually testing different corrections to improve the map pro-

jection. We estimate a correction using the camera frame

since the camera is mounted on the car body, which enables

(a) Uncorrected

(b) Corrected

Figure 3: Magnified comparison of lane projections before

and after applying corrections to the camera pose. Pitch

errors are exaggerated for visibility in Figure 3a.

us to intuitively correct x, y, z, roll, pitch, and yaw errors.

Additionally, C

VT contains the highest amount of error of the

transforms needed for the labeling pipeline. Since we used

the same vehicle and sensor setup for all of our recordings,

we were able to apply this estimate to other recordings as

well without having to repeat this procedure.

For each image output by our labeler pipeline, the algo-

rithm samples 100,000 correction hypotheses F

CTi using F

CT.

We rely on a graph optimization procedure when matching

map elements with image space detections during online lo-

calization for performance reasons, but in our offline label-

ing pipeline we can produce better labels by relying on this

slower but more accurate sample-based algorithm. The al-

gorithm then creates a labeled lane image Ipi
for each sam-

ple after applying the correction F

CTi to the map data using

(1). It finally tests each Ipi
using the image heuristic de-

scribed in Equation 2 to find the best correction.

The heuristic in (2) compares Ipi
with an estimated lane

image Ie. We initially create Ie based on a simple top-hat

filter that roughly finds light patches in the image as shown

in Figure 4c. Since this filter only works for close mark-

ers, we disregard detections in the upper part of the image,

see Figure 4d. Once we have enough images to train a CNN,

we can improve the corrections by using the trained model’s

output for Ie. In theory, this approach can be run iteratively,

improving the corrections with increasingly accurate seg-

mentation models.

(a) Input image (b) CNN output

(c) Top-hat filter image (d) Lower top-hat image

Figure 4: Estimate images Ie based on CNN or initially,

a simple top-hat filter heuristic. A trained segmentation

model allows for more accurate corrections, but even the

simple filter significantly reduces projection errors

s(u, v) =

⎧

⎪

⎨

⎪

⎩

2 if Ie(u, v) = Ipi
(u, v) = 1

−1 if Ie(u, v) = 1, Ipi
(u, v) = 0

0 otherwise

(2)

The heuristic in (2) compares labels for each pixel u, v

in Ie and Ipi
. The first case rewards agreement for positive

lane labels in both the images whereas the second penalizes

the case where Ie contains a positive label that Ipi
does not.

This was done since Ie contained highly confident positive

lane labels as previously described, and thus the heuristic

encourages overlap between these labels and map markings.

Positive labels in Ipi
that are not present in Ie are not pe-

nalized since Ipi
contains many more labels from further

distances and wider ranges than Ie.

The output of running this procedure for each image in

a recording is a set of corrected labeled images Ipc
that are

then used for our dataset. Figure 3b illustrates the improve-

ment in the map projection after fine-tuning the correction

with this algorithm.

3.3. Generating Lane Associations

To generate lane associations for each marker, we use

their 3D endpoints contained in our maps.

The algorithm first transforms the lane markers to the 3D

camera frame using (1). It then creates lanes by first find-

ing the best matching markers (if they exist) in front of and

behind each marker with respect to the camera. Matching

markers are grouped into lanes and ordered based on their

position with respect to the camera. Lanes to the left of the

camera are labeled l0, l1, and so on, where l0 is the closest

left lane to the camera, and likewise for lanes to the right.

Dataset # Images Resolution Labels

BDD100k [31] 100,000 1280x720 2D lines, no benchmark

Caltech Lanes [2] 1,224 640x480 lanes as 2D splines

Camvid [5] 701 920x720 pixel level

CULane Dataset [24] 133,235 1640x590 lanes as 2D splines

KITTI Road [10] 579 1392x512 pixel level, not markings

Road Marking [30] 1443 800x600 2D boxes

VPGNet [18] 21,097 1288x728 2D Splines, not public

Ours 100,042 1280x717

2D, 3D dashed lines

pixel level

lane associations

Table 1: Overview of lane marker datasets.

Two criteria make a candidate lane marker a marker’s

best match: the distance from the center of the candidate to

the lane marker is smaller than 1 meter, or its score using the

matching heuristic described in (3) is larger than any previ-

ous match. The first criteria forces lane markers that are

very close or even overlapping (possible due to map errors)

to match. The second filters out lane markers that are either

too far apart or whose orientations are not well aligned.

h = a|d|−1 (3)

Here d is the difference between marker endpoints, using

the start point of the marker longitudinally further from the

camera and the endpoint of the other. The value a is the

alignment score, calculated using:

a = d̂
T

· l̂ (4)

where l̂ is a unit vector oriented along the direction of the

lane marker and d̂ is the unit vector for d. The dot prod-

uct in (4) yields low alignment values for markers in adja-

cent lanes and large ones for markers that are longitudinally

aligned and therefore likely in the same lane.

The algorithm uses California highway lane spacing re-

quirements as a last filter to discard potential matches.

Since highway markers in the same lane in California are

separated by at most 10.98 meters [9], if the distance be-

tween the candidate and lane marker exceeds 11 meters the

candidate is not added as a match. Additionally, if the align-

ment of the markers is less than 0.95, the candidate is also

discarded. The alignment minimum was determined empir-

ically.

4. Dataset Evaluation

The Unsupervised LLAMAS dataset is one of the largest

lane public lane marker datasets. It offers a variety of

marker representations that regularly outperforms existing

datasets as shown in Table 1. The combination of 2D, 3D

lines, projected pixel level annotations, lane associations,

and calculated 2D splines enable the training and evaluation

of a variety of different approaches. With the public bench-

mark challenges, it has the potential to further research in

lane marker detections and semantic segmentation specific

to the properties of markers. For an overall impression of

our dataset and the trained models, we refer the reader to

our supplementary video.

4.1. Dataset and Projection Quality

(a) Map marker alignment error (b) Occluded underpass

(c) False lane in map (d) Bad projection

Figure 5: Fatal errors during dataset generation

Our automatically generated dataset generally offers

high accuracy with parts being accurate up to more than 100

meters. Having map information allows us to regularly an-

notate markers further than annotators would be able to con-

fidently do so. The very small number of pixels at greater

distances make lane markers not only harder to annotate but

also harder to detect by trained models.

We visually inspect the images generated by our labeling

pipeline and filtered out any images containing fatal errors.

Fatal errors are defined as samples with severe misalign-

ment in the map or image, containing faulty map elements,

or missing lane markers due to map errors. Our approach

does not account for 3D occlusions such as underpasses,

bridges, or dynamic objects. Approximately 12% of im-

ages contained fatal errors, primarily present in ordered se-

quences of images containing map errors. Some of the fatal

errors are displayed in Figure 5.

Labels that mostly overlap with their respective mark-

ings and showed no damaging orientation or translation er-

rors were kept. The final dataset does contain some inac-

curacies though with examples shown in Figure 7. There

are minor flaws in the map which were not removed such as

closely overlapping markers. Additionally, the lane marker

widths in the used map are not very accurate which is why

we set a fixed with of 12 cm for all markers.

(a) Image to annotate

(b) Manual and automated annotations for Figure 6a

(c) Distant markers are regularly missed within manual annota-

tions. For visibility, they are drawn without anti aliasing and are

still only two pixels wide in the original image size.

Figure 6: Comparison of manual (blue) and automated (red)

annotations. Pixels with manual and automated annotations

are drawn in green.

(a) Double lane markers (b) Ignoring occlusion

Figure 7: Inaccuracies in the dataset

LLAMAS only human only intersection negative

0.75% 0.36% 0.90% 97.98%

Table 2: Overlap of automatic and human annotations.

Lane markers are projected into the image for some dis-

tances where they can no longer be clearly identified by hu-

man annotators anymore. Figure 6 shows example cases

where annotations are created at far distances and contain

a lane boundary that we missed to annotate in our exper-

iments. Table 2 gives an impression of the differences

between human and automatic annotations. Overall, only

about two percent of all pixels are annotated as markers.

The additional automatically annotated pixels are a combi-

nation of markers on dynamic objects, far out annotations,

and additionally marked pixels with only little overlap in the

projection. Given the 3D information of pixels, it is easily

possible to remove pixel level annotations beyond a fixed

distance if that is advantageous.

During our experiments, we on average needed about 9

minutes to manually annotate a single image. To annotate

the complete dataset, we would need about 375 40-hour

weeks. Even if the annotation time can be reduced, auto-

matic annotations still have the potential to drastically re-

duce development times and cost.

5. Benchmark Challenges and Baselines

Depending on the application, different marker represen-

tations are useful for driver assistance and automated driv-

ing systems, and there exist a variety of different modeling

options for lane markers [2, 12, 14, 21, 29].

We focus on pixel-level segmentation and regressed lane

borders which are represented by curves, such as splines.

Pixel-level segmentation can be very accurate but is com-

putationally expensive to create and use, whereas curves are

faster to create and provide the user with a higher level rep-

resentation of lanes.

For this, we provide a pre-defined dataset split into

58,269 training, 20,844 validation, and 20,929 test sam-

ples. We open source the benchmarks, evaluation scripts,

and website, so that adding additional metrics, and chal-

lenges is possible. In the following sections, we cover the

initial benchmark challenges.

5.1. Binary Pixel-level Segmentation

Pixel level segmentation is useful for automated driving

as it enables the comparison of image data to map data and

the acquisition of semantic information in the current envi-

ronment. It can be used for localization, mapping, and envi-

ronment sensing purposes. The binary segmentation prob-

lem is scored based on average precision (AP) on a per pixel

basis. One challenging aspect of this dataset is the low num-

ber of positive pixels which account for less than 2% of the

image.

As our baseline method for detecting lane marker pixels,

we train a DeepLabv3+ [6] model with Xception [8] back-

bone. Overall, it achieves an AP of 0.43 at an inference

time of about 200 ms in native Tensorflow [1] on an Nvidia

GeForce GTX 1080 Ti.

5.2. Pixel-level Segmentation with Lane Association

In addition to only detecting marker pixels, some appli-

cations such as localization may benefit from lane associ-

ations. This multiclass segmentation problem is evaluated

based on mean average precision (mAP).

As a baseline, we again train the DeepLabV3+ [6] but

also classify a marker’s associated lane. For simplicity, we

limit the lane associations to the neighboring two lanes,

l1, l0, r0, and r1 as described in Section 3.3. Overall, we

mAP l1 l0 r0 r1

0.50 0.211 0.751 0.706 0.335

Table 3: Average precisions of the multi-class marker seg-

mentation problem on the test set.

Mean Deviation l1 l0 r0 r1

17.8 19.8 14.0 15.5 23.6

Table 4: Mean deviation in pixels between predicted and

annotated curve in x-axis.

achieve a mean average precision of 0.50. The closer mark-

ers of lane borders l1 and l2 are detected at significantly

higher accuracy which is shown in Table 4.

5.3. Lane Border Regression

To generate smooth trajectories, driver assistance and au-

tomated driving systems benefit from knowledge of lane

structure. The farther lanes can be detected, the more these

systems can plan ahead even without map information. In

theory, lane borders can even be estimated farther than there

are visible lane markers by looking at other traffic partici-

pants and the general road structure.

This benchmark focuses on the four closest lane borders

l1, l0, r0, and r1, as described in Section 3.3.

LLB =

∑

lj∈l1,l0,r0,r1

∑n

i teli |txlji
− pxlji

|

4n
(5)

It is scored on the mean horizontal distance between the

estimated and actual lane border for each pixel i along the

y-axis as in Equation 5. The network prediction value pxli

estimates target values txli
along the x-axis for a given lane

lj and step i. telji is set to 1 if a target exists for a given

vertical pixel i for a given lane lj . Extensions could also

take the absolute distance in 3D coordinates, missing lane

borders, or different weightings into account.

As a base architecture, we use a MobileNet v1 [11] with

200 output units that represent 50 pixels along the y-axis

in the image for each lane. The model aims to closely ap-

proximate the label splines by regressing uniformly sam-

pled points vertically along the image. In (6), the regression

loss LR to minimize is defined as a weighted L2 loss for all

points where a target is specified, i.e., if teli = 1.

RL =
∑

lj∈{l1,l0,r0,r1}

n=50
∑

i

teli(pxli
− txli

)2 (6)

For this baseline model, the mean deviation for each

point between the predicted and target curve is approxi-

mately 17.8 pixels. As expected, the accuracy for the closer

lane borders is higher than for the outer ones. The results

for each lane border are displayed in Table 4.

6. Conclusion

In this paper, we presented the Unsupervised LLAMAS

dataset consisting of dashed lane markers with pixel-level

annotations, endpoints of individual markers in 3D and im-

age space, and lane associations for each marker. Our

pipeline for generating the labeled images utilizes automat-

ically created maps to project markers into camera images

and relies on a further optimization procedure to increase

the accuracy of the labels. We use this method to create the

largest annotated lane marker dataset with over 100,000 an-

notated images. A manually annotated dataset of this size

would likely take multiple person years to annotated.

With the dataset, we publish a benchmark and baseline

methods for lane marker detection. The challenges pre-

sented are a pixel-level binary segmentation, a segmenta-

tion problem with lane association, and a lane estimation

task. For a qualitative impression of the dataset and baseline

methods, we encourage the reader to view the supplemen-

tary video. We look forward to new approaches, metrics,

and challenges based on this dataset.

Future work may focus on objects beyond lane markers,

even larger datasets, different sensors, urban environments,

different weather conditions, and optimizing segmentation

methods for lane marker segmentation.

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. Tensor-

flow: A system for large-scale machine learning. In 12th

{USENIX} Symposium on Operating Systems Design and

Implementation ({OSDI} 16), pages 265–283, 2016. 6

[2] M. Aly. Real time detection of lane markers in urban streets.

In Intelligent Vehicles Symposium, 2008 IEEE, pages 7–12.

IEEE, 2008. 2, 4, 6

[3] K. Behrendt and J. Witt. Deep learning lane marker seg-

mentation from automatically generated labels. In Intelligent

Robots and Systems (IROS), 2017 IEEE/RSJ International

Conference on. IEEE, 2017. 2

[4] R. F. Berriel, E. de Aguiar, V. V. de Souza Filho, and

T. Oliveira-Santos. A particle filter-based lane marker track-

ing approach using a cubic spline model. In 2015 28th SIB-

GRAPI Conference on Graphics, Patterns and Images, pages

149–156. IEEE, 2015. 2

[5] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla. Seg-

mentation and recognition using structure from motion point

clouds. In European conference on computer vision, pages

44–57. Springer, 2008. 2, 4

[6] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.

Encoder-decoder with atrous separable convolution for se-

mantic image segmentation. In ECCV, 2018. 6

[7] Q. Chen and V. Koltun. Photographic image synthesis

with cascaded refinement networks. CoRR, abs/1707.09405,

2017. 1

[8] F. Chollet. Xception: Deep learning with depthwise sepa-

rable convolutions. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1800–1807.

IEEE, 2017. 6

[9] Department of Transportation. Traffic manual chapter 6 -

markings. Technical report, State of California, July 1996. 4

[10] J. Fritsch, T. Kuehnl, and A. Geiger. A new performance

measure and evaluation benchmark for road detection algo-

rithms. In 16th International IEEE Conference on Intelli-

gent Transportation Systems (ITSC 2013), pages 1693–1700.

IEEE, 2013. 2, 4

[11] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017. 6

[12] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song,

J. Pazhayampallil, M. Andriluka, P. Rajpurkar, T. Migimatsu,

R. Cheng-Yue, F. Mujica, A. Coates, and A. Y. Ng. An

empirical evaluation of deep learning on highway driving.

CoRR, abs/1504.01716, 2015. 2, 6

[13] P. Isola, J. Zhu, T. Zhou, and A. A. Efros. Image-to-image

translation with conditional adversarial networks. CoRR,

abs/1611.07004, 2016. 1

[14] S. Kammel and B. Pitzer. Lidar-based lane marker detection

and mapping. In Intelligent Vehicles Symposium, 2008 IEEE,

pages 1137–1142. IEEE, 2008. 2, 6

[15] T. Kasai and K. Onoguchi. Lane detection system for ve-

hicle platooning using multi-information map. In Intelli-

gent Transportation Systems (ITSC), 2010 13th International

IEEE Conference on, pages 1350–1356. IEEE, 2010. 2

[16] I. Krasin, T. Duerig, N. Alldrin, A. Veit, S. Abu-El-Haija,

S. Belongie, D. Cai, Z. Feng, V. Ferrari, V. Gomes, et al.

Openimages: A public dataset for large-scale multi-label

and multi-class image classification. Dataset available from

https://github.com/openimages, 3, 2016. 1

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet clas-

sification with deep convolutional neural networks. In Ad-

vances in Neural Information Processing Systems 25: 26th

Annual Conference on Neural Information Processing Sys-

tems 2012. Proceedings of a meeting held December 3-6,

2012, Lake Tahoe, Nevada, United States., pages 1106–

1114, 2012. 1

[18] S. Lee, J. Kim, J. Shin Yoon, S. Shin, O. Bailo, N. Kim, T.-H.

Lee, H. Seok Hong, S.-H. Han, and I. So Kweon. Vpgnet:

Vanishing point guided network for lane and road marking

detection and recognition. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 1947–1955,

2017. 4

[19] J. Levinson and S. Thrun. Robust vehicle localization in

urban environments using probabilistic maps. In Robotics

and Automation (ICRA), 2010 IEEE International Confer-

ence on, pages 4372–4378. IEEE, 2010. 2

[20] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. In European conference on computer

vision, pages 740–755. Springer, 2014. 1

[21] P. Lindner, E. Richter, G. Wanielik, K. Takagi, and A. Iso-

gai. Multi-channel lidar processing for lane detection and

estimation. In 2009 12th International IEEE Conference on

Intelligent Transportation Systems, pages 1–6. IEEE, 2009.

2, 6

[22] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 3431–3440, 2015. 1

[23] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry. An invitation

to 3-d vision: from images to geometric models, volume 26.

Springer Science & Business Media, 2012. 2

[24] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang. Spatial as

deep: Spatial cnn for traffic scene understanding. In AAAI

Conference on Artificial Intelligence (AAAI), February 2018.

2, 4

[25] J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger.

arXiv preprint arXiv:1612.08242, 2016. 1

[26] S. R. Richter, V. Vineet, S. Roth, and V. Koltun. Playing

for data: Ground truth from computer games. In European

Conference on Computer Vision, pages 102–118. Springer,

2016. 1

[27] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang,

and R. Webb. Learning from simulated and unsupervised

images through adversarial training. CoRR, abs/1612.07828,

2016. 1

[28] L.-W. Tsai, J.-W. Hsieh, C.-H. Chuang, and K.-C. Fan. Lane

detection using directional random walks. In Intelligent Ve-

hicles Symposium, 2008 IEEE, pages 303–306. IEEE, 2008.

2

[29] Y. Wang, E. K. Teoh, and D. Shen. Lane detection and track-

ing using b-snake. Image and Vision computing, 22(4):269–

280, 2004. 2, 6

[30] T. Wu and A. Ranganathan. A practical system for road

marking detection and recognition. In 2012 IEEE Intelligent

Vehicles Symposium, pages 25–30. IEEE, 2012. 4

[31] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madha-

van, and T. Darrell. Bdd100k: A diverse driving video

database with scalable annotation tooling. arXiv preprint

arXiv:1805.04687, 2018. 2, 4

[32] S. Zhou, Y. Jiang, J. Xi, J. Gong, G. Xiong, and H. Chen. A

novel lane detection based on geometrical model and gabor

filter. In Intelligent Vehicles Symposium (IV), 2010 IEEE,

pages 59–64. IEEE, 2010. 2

