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Abstract

Autonomous driving systems require huge amounts of

data to train. Manual annotation of this data is time-

consuming and prohibitively expensive since it involves hu-

man resources. Therefore, active learning emerged as an

alternative to ease this effort and to make data annota-

tion more manageable. In this paper, we introduce a novel

active learning approach for object detection in videos by

exploiting temporal coherence. Our active learning crite-

rion is based on the estimated number of errors in terms of

false positives and false negatives. The detections obtained

by the object detector are used to define the nodes of a

graph and tracked forward and backward to temporally link

the nodes. Minimizing an energy function defined on this

graphical model provides estimates of both false positives

and false negatives. Additionally, we introduce a synthetic

video dataset, called SYNTHIA-AL, specially designed to

evaluate active learning for video object detection in road

scenes. Finally, we show that our approach outperforms

active learning baselines tested on two datasets.

1. Introduction

For autonomous driving systems, the quality of object

detection is of key importance. Its progress in recent years

has been notable, partially due to the presence of large

datasets [15, 61]. However, pushing detectors to further im-

prove and finally be close to flawless, requires the collection

of ever larger labeled datasets, which is both time and labor

expensive. Active learning methods [49] tackle this prob-

lem by reducing the required annotation effort. The key

idea behind active learning is that a machine learning model

can achieve a satisfactory performance with a subset of the

training samples if it is allowed to choose which samples to

label. This contrasts with passive learning, where the data

to be labeled is taken at random without taking into account

the potential benefit of annotating each sample.

Active learning has been mainly investigated for the im-

age classification task [24, 34, 14, 46, 35, 55, 8]. Only few

works have investigated active learning for object detection,

even though the problem of active learning is more perti-

nent for object detection than for image classification since

the labelling effort also includes the more expensive anno-

tation of the bounding box [29]. For instance, in [59, 53]

the object detector is learned interactively in an incremental

manner using a simple margin approach to select the most

uncertain images. In [44], the active learning approach is

based on a ‘query-by-committee’ strategy.

In this work we focus on active learning for object de-

tection in videos. To the best of our knowledge, we are the

first to consider this scenario. Object detection in videos

has become of great interest ever since the introduction of

the large-scale video object detection challenge ImageNet-

VID [45]. The task has proven highly challenging due to

phenomena such as detector flicker [43, 23], i.e. the drastic

effects in the predicted outputs given by small changes in

the images. This has spawn a multitude of video-specific

approaches [26, 27, 63, 64, 54] that require comprehensive

video annotation. However, exhaustively annotating all ob-

ject instances in every frame is extremely costly. Possi-

bly because of this, recent datasets for autonomous driv-

ing [61, 40] only offer a small subset of frames with object

ground-truth annotations.

Video data has the inherent property of temporal coher-

ence, i.e. nearby frames are expected to contain the same in-

stances in nearby locations. This property can be exploited

to identify frames in which the detector might have wrongly

detected objects (there is no support in nearby frames) or

frames in which the detector failed to detect an object (there

is evidence of the object in the surrounding frames). These

frames are expected to be more beneficial to annotate than

others, leading to potentially more accurate models when

used for training.

In this paper, we confirm that annotating those frames

that contain detection errors leads to higher accuracy given

a limited annotation budget. We consider two types of er-

rors, false positives and false negatives, and show the ef-



fect of selecting either type. This exploratory experiment

suggests a potentially powerful approach for active learn-

ing. Motivated by this, we develop a novel method to esti-

mate detection errors in videos by exploiting the temporal

coherence in the videos. We track detections forward and

backward and define a graph on the detections that are tem-

porally linked. Minimization of an energy function defined

on this graphical model provides us with the detection of

false positives and false negatives. These we subsequently

use to select the frames to be annotated. In summary, the

contributions of this paper are:

• We propose a new method for active learning in videos

which exploits the temporal coherence.

• We propose a new synthetic dataset specially designed

for active learning in road scene videos.

• Our proposed method outperforms several baseline

methods both on synthetic and real video data.

2. Related Work

Active learning for object detection. A critical aspect

for an active learner is represented by the strategy used

to query the next sample to be labeled. Four main query

frameworks exist, which rely mostly on heuristics: in-

formativeness [58, 13, 17, 4], representativeness [46, 48],

hybrid [22, 57], and performance-based [47, 16, 12, 56].

Among all these, informativeness-based approaches are the

most successful ones. A comprehensive survey of these

frameworks and a detailed discussion can be found in [49].

Active learning has been successfully applied to a series

of traditional computer vision tasks, such as image classi-

fication [28, 24, 14] (including medical image classification

[46] and scene classification [35]), visual question answer-

ing (VQA) [37], image retrieval [62], remote sensing [8],

action localization [19], and regression [11, 25].

With a strong emphasis on image classification, active

learning for object detection has received less attention than

expected due to the difficulty to aggregate several object hy-

pothesis at frame level. Recently, [60] employed a loss

module to learn the loss of a target model and select the im-

ages based on their output loss. However, in hybrid tasks

such as object detection learning the loss is challenging. In

[44], the active learning approach is based on a ‘query-by-

committee’ strategy. A committee of classifiers is formed

by the last convolutional layer of the base network together

with the extra convolutional layers of the SSD architec-

ture [39]. The disagreement between them for each can-

didate bounding box in an image is used as query strategy.

In [53], the authors propose a system that learns object de-

tectors on-the-fly, by refining its models via crowd-sourced

annotations of web images. As active learning criterion,

they use a simple margin approach which selects the most

uncertain images which should be annotated. A similar idea

is reported in [59], where an object detector is learned in-

teractively, in an incremental manner. The system selects

the images most likely to require user input based on an es-

timated annotation cost computed in terms of false positive

and false negative detections. Other approaches to reduce

the annotation cost for object detection are based on domain

adaptation [20] or transfer learning [52].

In the current work, we introduce a novel active learn-

ing approach for object detection in videos, which exploits

the temporal coherence of the found detections. The query

strategy is based on the number of false positives and false

negatives detections identified using a graphical model.

Temporal coherence in video object detection. Several

video object detection approaches [18, 26, 27, 38, 63, 64,

54] have attempted to use temporal information to enhance

single-image object detectors [41] for multi-class video ob-

ject detection. There are two main types of approaches.

First, temporal information can be used to refine the detec-

tions output by the detector as a post-processing step. For

example, Seq-NMS [18] re-scores detections using highly

overlapping detections from surrounding frames. Some

approaches [26, 27] are based on the concept of tubelet,

i.e. spatio-temporal bounding boxes that span consecutive

frames. T-CNN [27] uses tubelets, generated by tracking

high confidence detections across frames, to re-score de-

tections and recover false negatives. The second type of

approaches introduces temporal coherence while learning

the features used by the model in an end-to-end manner.

FGFA [63] uses optical flow to estimate the motion between

frames, which is employed to learn features that aggregate

information from surrounding frames, while [64] uses it

for efficiency reasons, extracting features only for selected

frames and propagating them to nearby frames. Contrary

to the pixel-level approaches, Motion-Aware network [54]

introduces instance-level feature aggregation by estimating

the movement of proposals across frames and combining

them. All these approaches use temporal information to im-

prove object detection in videos, whereas we exploit it to

select sets of samples in the context of active learning.

3. Active Learning for Video Object Detection

We describe here the general process of active learning

applied to video object detection. Given a large pool of un-

labeled data DU (video frames) and an annotation budget b,
the goal of active learning is to select a subset of b samples

to be annotated as to maximize the performance of an object

detection model (e.g. Faster R-CNN [41]). Active learn-

ing methods generally proceed sequentially by splitting the

budget in several cycles. Here we consider the batch-mode

variant [49], which annotates multiple samples per cycle,

since this is the only feasible option for CNN training. At
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Figure 1. Overview of our active learning framework exploiting temporal coherence. The detector outputs detections (green) for each

frame in the unlabeled data. Considering the relationships between the detections of neighboring frames (both forward and backward), our

temporal coherence acquisition function predicts false positive (red) and false negative (yellow) errors. Based on these predictions, each

frame is given an aggregated score and ranked for selection. Finally the frames with top scores are annotated and added to the labeled data.

the beginning of each cycle, the model is trained on the la-

beled set of samples DL
1. After training, the model is used

to select a new set of samples to be annotated at the end of

the cycle via an acquisition function. The selected samples

are added to the labeled set DL for the next cycle and the

process is repeated until the annotation budget b is spent.

Fig. 1 presents the active learning framework with our tem-

poral coherence acquisition function, described in sec. 3.2.

Note how each sample corresponds to an entire frame and

thus all objects in the frame are annotated simultaneously.

The acquisition function is the most crucial component

and the main difference between active learning methods

in the literature. In general, an acquisition function ϕ re-

ceives a sample x and outputs a score ϕ(x) indicating how

valuable x is for training the current model. More sophis-

ticated acquisition functions may consider additional data

such as the samples already selected for the current batch,

the previously labeled samples DL, or the unlabeled pool

DU (see [49] for details). In the remainder of this sec-

tion, we introduce our two proposed acquisition functions

for video object detection in road scenes. Sec. 3.1 presents

an exploratory function that approximates a performance

upper bound. Sec. 3.2 describes our main contribution: a

practical acquisition function based on temporal coherence

and specialized for video object detection.

1Most methods start with a small initial labeled set selected at random.

3.1. Oracle-based acquisition

The underlying assumption of active learning is that

some data samples provide more valuable information than

others, so that when labeled and used for training, they im-

prove the model performance by decreasing the number of

errors. A suitable acquisition function would select those

samples in which the network commits the greatest number

of errors so they can be remedied. Assuming perfect gener-

alization from training to test data, such function would be

an upper bound for all active learning methods.2 Motivated

by this and in order to study the potential of active learning

for video object detection, we propose here an oracle-based

acquisition function to implement this desirable behavior.

Our oracle-based active selection uses ground-truth in-

formation to quantify the number of errors in a given im-

age, and selects those images that have the greatest number

of errors. Note this is not a useful active learning func-

tion in practice, as we would not have access to the ground-

truth annotations in a real scenario. We consider two types

of errors that directly affect the usually employed object

detection metric of Average Precision (AP) [9, 36]: False

Positives (FP) and False Negatives (FP). Let us consider a

detection as correct if it overlaps a ground-truth bounding

box more than 0.5, using the Intersection-over-Union (IoU)

2In practice, a decrease in errors in the training set may not necessarily

lead to better performance in a separate test set, making this acquisition

function an approximation to the upper bound.
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Figure 2. Error estimation using temporal coherence. (a) Detections (green) across different frames are linked depending on the overlap

with their corresponding tracks (red). (b) Candidate detections (red) are obtained by clustering tracked detections that do not overlap

any local detection. (c) Example of detections, candidates, and their links for four consecutive frames. (d) Nodes of the generated graph

using detections and candidates corresponding to figure (c). Once the graph is created, we minimize its energy via graph-cut to obtain and

estimation of the errors in terms of FP and FN. In this example, we only track up to two surrounding frames, but in practice we use three.

measure for overlap [9]. FPs are detections that are not cor-

rect (i.e. have little or no overlap with any ground-truth) or

are duplicated, while FNs are those ground-truth instances

that have not been detected. We consider two different ac-

quisition functions, one which considers the number of FPs

in a frame and the other which considers the number of FNs

in a frame3. Since the acquisition scores of these functions

are integer numbers, it is frequent to have ties between im-

ages. We disambiguate between ties by random selection.

3.2. Temporal coherence for error estimation

Video data has the inherent property of temporal coher-

ence, i.e. nearby frames are expected to contain the same

instances in nearby locations. Based on this, we propose

a method to estimate the errors of a video object detector

by exploiting the expected temporal coherence, and then

use the estimates with the oracle-based acquisition function

proposed in sec. 3.1, but using estimations as oracle.

Let us consider a video v composed of a sequence of

L frames {I1, ..., IL}. An object detector outputs a set of

detections Di = {d0i , ..., d
K
i } for each frame Ii

4. Tem-

poral coherence induces a bijective mapping between sets

of detections in nearby frames when corrected for minor

localization changes. In order to correct such changes we

employ an object tracker, of which details follow later. For-

mally, given a detection dki in frame Ii, the tracker estimates

the location of the contents of this region in frame Ij , which

we refer to as dki→j . The tracking can be performed in the

direction of time (i < j) or in the reverse direction. The set

of all tracked detections Di→j = {di→j} can be thought

of as weak detections obtained via temporal coherence us-

ing another frame’s detections, rather than being directly

3We experimented with combining both FP and FN in the acquisition

function but found this to not improve results.
4Here we consider object detectors that process each frame indepen-

dently, such as Faster R-CNN [41].

predicted by the object detector based on the frame’s con-

tent. We can now link detections of the same class across

frames based on their tracked detections. More concretely,

we link detection dki in frame Ii with detection dlj in Ij if

IoU(dki , d
l
j→i) > θ or IoU(dlj , d

k
i→j) > θ (Fig. 2a). That is,

if any of the tracked detections (forward or backward) over-

laps the other detection in the corresponding frame. Note

how there might be tracked detections that are not matched

with any local detection (Fig. 2b). Such tracked detections

could indicate the presence of an instance in that frame that

has been missed by the detector. We cluster groups of un-

matched tracked detections in the same frame based on their

overlap. We term these groups as detection candidates and

use the notation cki for the k-th candidate of frame Ii.

Each detection di can either be a True Positive (TP) if it

correctly localizes an object instance in the image, or a FP

if it erroneously predicts the presence of a particular object.

On the other hand, a detection candidate ci can be a True

Negative (TN) if no object instance is present in its location,

or a FN if it corresponds to a missed detection. We now

estimate the type of every detection and detection candidate

by formalizing our approach as a graphical model.

Graphical model. Let us express all detections and

candidates as a set of binary random variables V =
{v1, ..., vN}, where vn = d if it corresponds to a detec-

tion dki and vn = c for a candidate cki . Let G = (V, E) be

an undirected graph with vertices V and edges E between

connected detections across different frames (via the links

previously introduced) and candidates connected with their

originating detections (see Fig. 2). Each vn can take one

of four possible labels: TP, FP, TN, or FN. We consider the

following energy function on label assignment L:

E(L) =
∑

v∈V

φv(lv) +
∑

v1,v2∈C

ψv1,v2(lv1
, lv2), (1)



where φv(lv) is the unary cost of assigning label lv to v and

ψv1,v2(lv1
, lv2

) is the pairwise cost of assigning the label

pair (lv1
, lv2) to a pair of connected variables (v1, v2) ∈ E .

We define the unary cost for detection variables as

φv=d(lv) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if lv = TP

∞ if lv = TN

1 if lv = FP

∞ if lv = FN

(2)

This indicates that in principle we trust the outputs of the de-

tector and that assigning a contradicting label should incur

some cost. By definition, detections are ‘positives’ and thus

assigning a ‘negative’ label is strongly discouraged. Analo-

gously, the unary cost for candidate variables is

φv=c(lv) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∞ if lv = TP

0 if lv = TN

∞ if lv = FP

1 if lv = FN

(3)

In this case, candidates can only be negatives as they are not

part of the original outputs of the detector and hence cannot

be positives.

We specify the pairwise cost using the following matrix

ψv1,v2(lv1
, lv2

) =

⎛

⎜

⎜

⎝

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎞

⎟

⎟

⎠

, (4)

where the considered label assignment order is lv = (TP,

FP, TN, FN). This indicates that TP should be connected

with other TP or FN, whereas FP are preferably connected

with other FP or with TN. Intuitively, the pairwise cost en-

forces temporal coherence between the detections and the

candidates, propagating the correctness to connected vari-

ables and collaboratively determining the errors.

We optimize the energy function in (1) via graph

cut [30], which finds the globally optimal solution by solv-

ing the dual max-flow problem. In fact, the problem can

be reduced to a binary labelling problem, considering only

two possible labels (True or False) with different meanings

depending on the type of input variable, i.e. positives for de-

tections and negatives for candidates. We use the graph-cut

implementation in the Python library PyMaxflow [2].

Acquisition function. Once all variables in V have been

assigned their optimal labels, we record the estimated num-

ber of FPs and FNs contained in each frame. We revert

now to the oracle-based acquisition function described in

sec. 3.1, but using error estimates instead of actual errors,

which makes the function is useful in practice as it does

not require any ground-truth information. We refer to this

acquisition function as Temporal Coherence (TC). Experi-

mental results show similar performance when considering

only FP, only FN, or both FP and FN. Therefore, we use

only the number of FP for the acquisition function of TC.

Subset Name Seq. Frames Area Conditions P(Pe/Cy/Ca/Wh)

Default 150 74K C,H S,W,F,R 30/20/35/0

Town 36 17K T S,W,F,R 30/20/35/0

Night 6 3K C,H N 0/0/35/0

Wheelchair 5 2K C,T S 20/20/0/100

Test (no WC) 85 40K C,H,T S,F,R,N 30/20/35/0

Test (WC) 12 5K C,T S 20/20/0/100

Table 1. SYNTHIA-AL data distribution. Seq. indicates the

number of videos. Environment conditions are Fall (F), Winter

(W), Spring (S), Rain (R), and Night (N). Areas are City (C), Town

(T), and Highway (H). The spawning probabilities are given for

pedestrians (Pe), cyclists (Cy), cars (Ca), and wheelchairs (Wh).

Object tracker. In order to temporally link detections and

construct connections between graph nodes, we considered

two types of object trackers, namely Optical Flow (PWC-

NET) [51] and SiamFC tracker [1]. To utilize optical flow

for the purpose of object tracking, we first compute a dense

2D real-valued vector map of the motions between all pairs

of consecutive frames in the dataset. Then, we translate the

box coordinates using the motion vector corresponding to

the box center to obtain the tracked box in the next or previ-

ous frame. As an alternative to track detections we employ

SiamFC [1], a state of the art Siamese-based object tracker.

The bottleneck of this tracking method in the context of ac-

tive learning is that, despite its efficiency, it imposes a huge

computational burden when tracking detections every cycle,

given the vast amount of detections. On the contrary, opti-

cal flow is only computed once at the beginning and can be

used throughout all cycles with a negligible overhead.

4. Synthetic Dataset
Most active learning methods [13, 48, 49] are evaluated

on simple image classification datasets such as MNIST [32]

or CIFAR [31]. Approaches specific for object detec-

tion [3, 44, 53, 60] mainly use PASCAL VOC [9], covering

various scene types. In the context of autonomous driving,

only [44] uses a dataset depicting road scenes, KITTI [15].

Similarly to several other image datasets for autonomous

driving [6, 61], KITTI is manually curated to mostly contain

relevant knowledge usable to train object detection models.

This process is performed by human annotators that select

interesting data samples containing cars, pedestrians, etc.

The goal of active learning, however, is automatizing this

process, making existing datasets not suitable for a proper

evaluation. Ideally, a good dataset for evaluating active

learning contains a more raw version of the data, in which

the image distribution is unbalanced towards the uninterest-

ing (e.g. empty road scenes) and highly redundant. Such

dataset would better represent the type of data collected in a

real setting, for example, video captured from a driving car.

For this reason, and following recent trends [42, 50], we

have created a new synthetic dataset to evaluate active learn-

ing for object detection in road scenes. In particular, we

modified the SYNTHIA environment [42] to generate the



SYNTHIA-AL dataset5 using Unity Pro game engine. The

aim is having an unbalanced foreground/background distri-

bution, simulating the real collection scenario of a driving

car. Moreover, a set of object classes and conditions should

be predominantly present, while other classes and condi-

tions must appear less frequent.

The data is generated by driving a car in a virtual world

consisting of three different areas, namely town, city, and

highway. These areas are populated with a variety of pedes-

trians, cars, cyclists, and wheelchairs, except for the high-

way which is limited to cars. These dynamic objects are ar-

bitrarily spawned at predefined positions with a given prob-

ability and follow randomly predefined paths without leav-

ing each area. Several environmental conditions can be set:

season (winter, fall, spring), day time (day or night), and

weather (clear or rainy). By default, we always use spring

and clear during the day, and only change one condition at

a time. Objects with no lights can be hard to visualize dur-

ing the night, so we only use cars for the night condition.

Figure 3 shows examples of images in the dataset.

Table 1 provides the specification of the dataset. The

video sequences are captured at 25 fps with a random length

between 10 and 30 seconds. We have generated one sub-

set with the default parameters and three smaller subsets

with altered conditions. The first subset consists of 150 se-

quences, which amounts to 75% of all the data, with the de-

fault settings, i.e. containing cars, pedestrians, and cyclists,

under different daily conditions, but only in the city and

highway areas. The second subset contains 36 sequences

(20% of the dataset) captured in the town area instead. The

night condition only represents 3% of the whole data (6 se-

quences) and it is fully contained in the third subset. Finally,

we have added wheelchairs and removed cars in the fourth

subset, which represents the 2% of the dataset with only

5 sequences. The test set contains 85 sequences with bal-

anced distributions on areas and conditions (except winter)

on the three main classes plus another 12 sequences includ-

ing wheelchairs. All images are automatically annotated

with 2D bounding boxes and class labels for every object

that can be reasonably seen (more than 50 pixels).

5. Experimental Setup

5.1. Active learning procedure
All considered active learning methods follow the same

procedure and employ the same state-of-the-art object de-

tector based on Faster R-CNN [41]. We start with the

model pre-trained on COCO [36], which contains 80K im-

ages from 80 different object categories. The initial labeled

set DL consists of 2% of train dataset that is selected ran-

domly once for all the methods. At each cycle, we fine-tune

the latest model of the previous cycle, as we have experi-

mentally observed that this leads to faster convergence than

5Available at http://www.synthia-dataset.net

fine-tuning the initial model or from scratch as in [5]. We

have also seen that in order not to get stuck in local min-

ima, the learning rate should be high enough. Once the new

model is fine-tuned, we use it with the corresponding acqui-

sition function to select b/C frames, which are then labeled

and added to DL. We continue for C cycles until budget b
is completely exhausted. In all experiments, the budget per

cycle is 2% of the dataset.

Evaluation. For each cycle, we evaluate the model

trained with the updated labeled set for that cycle on the

test set. Detections are processed using Non-Maxima Su-

pression [10] and thresholded by score, rejecting all detec-

tions below 0.5. We use AP averaged over all classes using

a detection threshold of IoU> 0.5.

Implementation details. We used Tensorflow’s Object

Detection API [21] as the base code to develop our exper-

iments. We trained all models with the momentum opti-

mizer with value 0.9 and the initial learning rates 0.02 and

0.001 for SYNTHIA-AL and ImageNet-VID [45] datasets,

respectively. We train for 10 epochs and reduce the learn-

ing rate by a factor of 5 once after 5 epochs and again at 7

epochs for SYNTHIA-AL. In the case of ImageNet-VID we

reduce the learning rate at epochs 3 and 5, training a total

of 6 epochs. For efficiency reasons, we resize all images to

fixed height of 300 pixels and preserve the aspect ratio. We

use a batch size of 12 for all the experiments. Finally, to ob-

tain more stable results we repeat the experiments 3 times

and report the mean and standard deviation in our results.

5.2. Baselines
Random. Random sampling selects an arbitrary subset of

frames from all unlabeled frames. Given the extreme imbal-

ance inherent to video data due to varying video length, uni-

form random sampling selects most frames from the longer

videos while under-representing shorter videos, which dam-

ages the performance. Moreover, video data is redundant

due to the high similarity between nearby frames, which

makes annotating the surrounding frames of an already an-

notated frame wasteful. For these reasons, we also con-

sider an improved random sampling procedure that includes

temporal representativeness, which prevents selecting the

k neighbors in both directions of already labeled frames.

In the experiments, we set the k to 3 for ImageNet-VID

dataset and 1 for SYNTHIA-AL dataset for all the meth-

ods. This criterion naturally increases the diversity of the

selected batches at each cycle by limiting the similarity be-

tween data samples. We call this baseline Random+R.

Uncertainty. We consider three other baselines based on

uncertainty measures used in recent active learning ap-

proaches for object detection [3, 44]. Least confidence [33,

44] considers the score of the most probable class and se-

lects those samples that have the lowest score on it. En-

tropy [7] is an information theory measure that captures the



Figure 3. Examples of errors detected by our temporal coherence approach on SYNTHIA-AL (top, middle) and ImageNet-VID [45]

(bottom). We show ground-truth boxes in yellow and output detections in red. After solving our graphical model based on temporal

coherence, some of the detections are considered as false positives (purple), while other boxes are added as false negatives (green).

average amount of information contained in the predictive

distribution, attaining its maximum value when all classes

are equally probable. In both cases, we use the average

score of all detections in the image to obtain a single score

per image. Margin sampling [49, 3] uses the difference be-

tween the two classes with the highest scores as a measure

of proximity to the decision boundary. Following [3], we

sum all margin sampling scores of individual detections to

aggregate them into an overall image score.

5.3. Datasets

Besides our SYNTHIA-AL dataset (sec. 4), we also

perform experiments on a real-image dataset, ImageNet-

VID [45], which is commonly used as video object detec-

tion benchmark. Since the focus of this paper is video ob-

ject detection in road scenes, we select 3 classes that are

likely to be encountered in the context of autonomous driv-

ing, namely: car, bike, and motorcycle. Selecting all videos

that contain these classes amounts to 795 videos in the train-

ing set and 87 videos in the validation set, which we use for

test. The length of the videos varies between a few frames

to over 1000. We have cleaned this dataset by manually

discarding all those frames that had missing annotations,

which amounts to 20K frames in the training set and 5K

frames in the validation set. The final dataset contains 129K

frames for training and 14K frames for validation.

6. Results
We present active learning results using performance

(mAP) curves as a function of the number of selected sam-

ples, as usually reported in the literature [13, 48]. This al-

lows us assess the benefit of each active learning method for

different total number of samples used to train the model.

For each method, we plot the average performance for all

runs with vertical bars to represent the standard deviation.

We first validate the ability of our graphical model

(sec. 3.2) to estimate detection errors using temporal co-

herence. Fig. 3 presents some resulting predictions on both

datasets. We can see how many FP (purple) are correctly

detected, including those corresponding to double detec-

tions (top row, rightmost column). Moreover, FN (green)

are discovered due to the forward and backward tracking of

surrounding detections (middle row, third column).

6.1. SYNTHIA-AL

Fig. 4 presents all quantitative results on our SYNTHIA-

AL dataset. We start by evaluating the difference between

the two random baselines: uniform and our enhanced Ran-

dom+R baseline (Fig. 4a). We can observe how the addition

of representativeness is clearly beneficial for active learning

in video object detection. In the remainder of the paper, we

always include temporal representativeness and per-video

sampling for all evaluated methods.

Next, we evaluate the effect of the two types of trackers

considered in our temporal coherence method, SiamFC [1]

and Optical Flow [51], within the active learning cycles.

Fig. 4b presents the quantitative evaluation of temporal co-

herence with either tracker. The results show that there is

no improvement gained by using the more sophisticated

SiamFC tracker compared to Optical Flow. Furthermore,

Optical Flow can significantly speed up the active learning

process. In this case, the motion vectors are computed once

at the beginning of the process, whereas SiamFC needs to

perform expensive computations at every cycle.
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Figure 4. Results on SYNTHIA-AL. (a) Random baselines with and without representativeness. (b) Our Temporal Coherence using either

Optical Flow or SiamFC. (c) Baselines, oracle-based acquisition, and Temporal Coherence. All curves are the average of 3 runs.

Methods
SYNTHIA-AL ImageNet-VID

mAP Rel. mAP Rel.

All data 0.628 100% 0.839 100%

Random+R 0.578 92.0% 0.821 97.8%

Least Confidence 0.595 94.7% 0.818 97.4%

Margin sampling 0.586 93.3% 0.820 97.7%

Entropy 0.597 95.0% 0.821 97.8%

Oracle (FP) 0.607 96.6% - -

Oracle (FN) 0.601 95.7% - -

Temporal Coherence (SiamFC) 0.591 94.1% - -

Temporal Coherence (Opt. Flow) 0.599 95.3% 0.830 98.9%

Table 2. Active learning results. The first row shows the perfor-

mance (mAP) obtained when using the entirety of the dataset. All

other rows show the performance of all methods using 12% of all

data in SYNTHIA-AL and 10% of ImageNet-VID [45], both in

absolute performance and relative to using all data.

Finally, we compare Temporal Coherence (TC) with all

baselines. To explore an upper bound for TC, we also

consider the oracle-based methods of section 3.1, selecting

those frames with the highest number of FP or FN based

on ground-truth information. These methods are designated

by Oracle (FP) and Oracle (FN), respectively. The results

in Fig. 4c show that our TC method outperforms all three

uncertainty based methods and the random baseline. The

narrow gap between our TC method and the oracle-based

methods implies that FP and FN predictions of the graphi-

cal model are effective estimates of the actual errors that the

model can learn from. Moreover, TC enables us to achieve

more than 95% of performance of the model trained on en-

tire dataset by annotating only 12% of the data. Table 2

shows the effectiveness of active learning methods in videos

by using a small portion of datasets.

6.2. ImageNet-VID

To evaluate our temporal coherence method on a dataset

of real images, we perform experiments on ImageNet-

VID [45]. Fig. 5 compares TC with Optical Flow against

uncertainty and random baselines. The results illustrate that

TC is superior to all the baselines for all cycles. Addition-

ally, Table 2 shows that TC manages to attain almost the
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Figure 5. Results on ImageNet-VID [45]. Average of 3 runs.

full performance of a model trained with the entire dataset

by using only 10% of the data, which is a significant reduc-

tion in the annotation effort.

7. Conclusions

In this paper, we introduced a novel active learning ap-

proach for object detection in videos which exploits the

temporal coherence. Our approach is formulated in terms

of an energy minimization function of a graphical model

built on tracked object detections. Additionally, we intro-

duced a new synthetic dataset specially designed to evalu-

ate active learning for object detection in the context of au-

tonomous driving. Experimental results conducted on two

datasets showed that our approach outperformed major ac-

tive learning baselines. A drawback of temporal coherence

based active learning is that it is computationally more de-

manding than the baselines. We plan to minimize the com-

putational overhead of our system in future research.

Acknowledgements. The authors thank Audi Electronics Venture

GmbH for their support during the development of this work, the

Generalitat de Catalunya CERCA Program and its ACCIO agency,

Unity for the support in the synthetic dataset generation, the EU

Project CybSpeed MSCA-RISE-2017-777720 and CYTED Net-

work (Ref. 518RT0559). Antonio thanks the financial support

by ICREA under the ICREA Academia Program, and the Spanish

project TIN2017-88709-R (MINECO/AEI/FEDER, UE).



References

[1] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and

P. H. Torr. Fully-convolutional siamese networks for object

tracking. In ECCV, pages 850–865, 2016. 5, 7

[2] Y. Boykov and V. Kolmogorov. An experimental comparison

of min-cut/max-flow algorithms for energy minimization in

vision. IEEE Trans. on PAMI, 26(9):1124–1137, 2004. 5
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