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Abstract

Radar has been a key enabler of advanced driver

assistance systems in automotive for over two decades.

Being an inexpensive, all-weather and long-range sensor

that simultaneously provides velocity measurements, radar

is expected to be indispensable to the future of autonomous

driving. Traditional radar signal processing techniques often

cannot distinguish reflections from objects of interest from

clutter and are generally limited to detecting peaks in the

received signal. These peak detection methods effectively

collapse the image-like radar signal into a sparse point

cloud. In this paper, we demonstrate a deep-learning-based

vehicle detection solution which operates on the image-like

tensor instead of the point cloud resulted by peak detection.

To the best of our knowledge, we are the first to implement

such a system.

1. Introduction

As advanced driver assistance systems (ADAS) and

autonomous driving systems mature, so does the range

of solutions to automotive perception diversify. A variety

of sensors such as LiDAR, short-range radars, long-range

radars, RGB and infrared cameras, and sonars have been

used for perception. The most prevalent sensor to provide

detail-rich 3D information in automotive environments is the

LiDAR.

Radar presents a low-cost alternative to LiDAR as a

range sensor. A typical automotive radar is currently

considerably cheaper than a LiDAR due to the nature of

its fundamental design. In addition, radar is robust to

different lighting and weather conditions (e.g., rain and

fog) in comparison to LiDAR. However, owing to the
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Figure 1: An example of the radar signal with the

corresponding camera and LiDAR images. The radar signal

resides in polar coordinate space: Vertical axis is range,

horizontal axis is azimuth (angle). The Doppler (velocity)

channel values for the marked points are plotted in Figure 2.

Each of these points are also marked in the camera frame.

specular nature of electromagnetic reflection at wavelengths

employed by the radar, the resulting signal is not nearly as

easy to interpret as LiDAR or camera (see e.g. Figure 1), so

algorithm development is also more difficult.

The radar data is a 3D tensor, with the first two

dimensions making up range-azimuth (polar) space, and

the third Doppler dimension which contains velocity

information. This tensor is typically processed using a

Constant False-Alarm Rate (CFAR) algorithm to get a sparse

2D point-cloud which separates the targets of interest from

the surrounding clutter. This processing step removes a

significant amount of information from the original signal.

In this paper, we focus on performing object detection using

the radar tensor for an autonomous driving platform.



Figure 2: Example Doppler plots for the highlighted points in

Figure 1. The center part between the black lines shows the

original signal; the dashed lines repeat the center signal and

demonstrate the aliasing nature of the Doppler dimension.

Our contributions are the following:

1. An object detection system tailored to operate on the

radar tensor, providing bird’s eye view detections with

low latency.

2. Enhancing the detection quality by incorporating

Doppler information.

3. Devising a method to solve the challenges posed by the

inherent polar coordinate system of the signal.

4. Extending object detection to enable estimation of

object velocity.

2. FMCW Radar Background and Signal

Description

We use Frequency Modulated Continuous Wave (FMCW)

radar to produce the input tensor to the deep learning model.

FMCW radar uses a linear frequency modulated signal

to obtain range. The received signal is mixed with the

transmitted signal to obtain the beat frequency between the

two. This beat frequency is a function of the round-trip

time to the reflecting target, and therefore can be mapped

directly to its range. Multiple receiver channels are used in

a horizontal uniform line array (ULA) configuration. The

azimuthal location of targets can be obtained by appropriate

digital beamforming of these RX channels. Multiple pulses

are transmitted in a train of equally spaced pulses in time.

Radial motion occurring between pulses within a range

resolution cell induces a phase shift over the pulses, which

is used to compute the Doppler radial velocity in that cell.

The sampling rate of the ADC (analog to digital converter)

determines the Nyquist limited maximum frequency that

can be measured without aliasing and hence determines the

maximum range. The elements of the receiver array are

spaced at half wavelength, so the entire space from 90o to

90o may be imaged without spatial aliasing. For Doppler,

the Nyquist limit is dependent upon the pulse repetition rate.

For ease of calculation, beat frequency, channel, and

pulse are mapped, using a three-dimensional Fast Fourier

Transformation operation, into a range-azimuth-Doppler

tensor. Last, we discard the phase information, and the

resulting tensor is the input to the machine learning model.

Attribute Value

Max. range 46.8m

Range resolution 0.094m

Max. Doppler 2.5m/s

Doppler resolution 0.25m/s

Max. azimuth π
2

Azimuth resolution 5

Frame rate 125 Hz

Table 1: The description of the range-azimuth-Doppler

tensor. Azimuth resolution decreases at higher off-angles.

See Section 4.2 and Figure 4.

An example of the range-azimuth tensor (with the

Doppler channel summed over) can be seen in Figure 1.

Examples of the Doppler values at marked points are

presented in Figure 2. The signal properties (i.e. the

description of the 3D radar tensor) can be seen in Table 1.

For the radar configuration parameters and their relationship

to the resulting signal properties please refer to the appendix.

Further details about FMCW can be found in [8, 11].

3. Prior Work

In the automotive radar space, Dickmann et al. [2] extract

peaks from the radar tensor using traditional processing. The

peaks are clustered, tracked over time and classified by a

single layer neural network. Lombacker et al. [18] aggregate

radar peaks over a 2D grid, i.e. a top-view of the local world.

Both Random Forest and a Convolutional Neural Network

(CNN) are used to detect static objects, the CNN coming

out favorably. These types of works come closest to ours,

but they either rely on building a map of peaks over time to

aggregate details or operate on just the peaks for dynamic

scenes.

Lien et al. [13] describe a small radar that could be

embedded in consumer electronics (e.g. smart watch) to

recognize hand gestures. They run Random Forest on hand-

crafted features, citing power-concerns for picking such a

solution over e.g. deep learning.

Zhao et al. [24] use a 6GHz FMCW radar to detect human

pose, even through walls. The radar has both a vertical and

a horizontal antenna array, resulting in range-azimuth and

range-elevation radar tensor. Each tensor is processed by a

separate encoder before fusion, then further processed by the

pose decoder module.

Kim and Moon [9] use a 7.25 GHZ Doppler radar

to record Doppler-time spectrograms of humans. They

apply a CNN to perform both human detection and human

activity detection. Without range, azimuth or elevation

dimensions, their works does not spatially detect the human,

but only detect the presence or absence of a human in the

signal. Similarly, Angelov et al. [1] feed Doppler-time



spectrograms to 77GHz FMCW radar to various neural

network architectures such as VGG and ResNet to classify

between car, person and bicycle. Again, locating the object

in the world is not considered.

Furukawa [4] applies deep learning to synthetic aperture

radar (SAR) data. SAR data is collected by sweeping a

radar, mounted on an airplane or satellite, across a scene

and combining the data as if it was recorded by a radar

with a very large antenna. This results in relatively high-

resolution images of static targets that is not comparable to

the resolution of automotive radar. Furukawa shows that a

fully convolutional neural network approach works well for

the automatic target recognition problem.

4. Architecture Overview

In this section, we will present how the radar perception

system is composed. Each section corresponds to a

consecutive block in the model: feature extraction, spatial

transformation, temporal module, and detection heads. The

all-encompassing solution can be seen in Figure 3.

4.1. Backbone network and radar input formats

As described in Section 2, the radar tensor is three

dimensional: it has two spatial dimensions, range and

azimuth, accompanied by a third, Doppler dimension, which

represents the velocity of objects relative to the radar, up

to a certain aliasing velocity. We propose two solutions to

process the full 3D tensor.

The first approach is to remove the Doppler dimension by

summing the signal power over that dimension. The input

of the model is a range-azimuth tensor, hence we call this

solution the Range-Azimuth (RA) model.

The second approach is to also provide range-Doppler and

azimuth-Doppler tensors as input. The range-Doppler input

has the azimuth dimension collapsed. Similarly, the azimuth-

Doppler input has range dimension collapsed. Thus, the

model has three inputs that are fused after initial processing.

We call this the Range-Azimuth-Doppler (RAD) model.

Due to the properties of the radar signal, translation

equivariance cannot be expected. As an example, if an object

is moving directly away from the radar, it will shrink on the

image due to occupying less azimuth bins. Or if the same

object would move along a circle around the radar, the signal

characteristics will be different because of how azimuth bins

are spaced (see Section 4.2 for more details). To counteract

these effects, we use CoordConv by Liu et al. [16] in the

first layer. In practice, this means stacking two additional

channels to the input which contain the pixel coordinates to

enable the convolutions to be conditioned on location.

4.1.1 Range-Azimuth model

The feature extractor used for our Range-Azimuth (RA)

model is motivated by the Feature Pyramid Network (FPN)

architecture by Lin et al. [14]. It consists of multiple

consecutive convolutional layers, with multiple down-

sampling (i.e. strided convolutional) layers. The next stage

is up-sampling multiple times using transposed convolutions.

Skip connections are used between feature maps of matching

shapes from the up-sampling and the down-sampling path.

Before adding the feature maps together, an additional

convolutional layer is executed for each skip-connection.

The layer configuration is constructed such that a feature in

the final layer has a receptive field spanning the complete

input.

4.1.2 Range-Azimuth-Doppler model

The Range-Azimuth-Doppler (RAD) model operates on

the three projections of the 3D radar tensor to reduce

computational complexity. The projections are made by

summing the power over the omitted dimension. Thus,

the network has three 2D inputs: range-azimuth, azimuth-

Doppler and range-Doppler.

The range-azimuth branch is exactly the same as the

down-sampling part of the architecture described in the

previous subsection. Additionally, there are two branches

taking range-Doppler and the azimuth-Doppler tensors as

input, respectively. These branches only down-sample.

The resulting feature maps are then fused as follows, also

shown in Figure 3. First, each feature map is repeated along

the missing dimension such that the tensors have compatible

shapes. This yields three 4D feature tensors, one channel

being the feature channel and the rest correspond to range-

azimuth-Doppler. We then concatenate these in the channel

dimension and apply 3D convolutional layers. After these

convolutions, we perform max-pooling over the Doppler

dimension and continue with the up-sampling layers of the

range-azimuth model, as described in the RA model section.

4.2. Polar to Cartesian transformation

As discussed in Section 2, after the FFT the radar tensor is

in polar space (range-azimuth). Figure 4 shows the physical

center direction of the azimuth bins on a Cartesian grid. In

the top right, a typical large vehicle with dimensions of two

by five meters is shown for reference. From the figure it

is apparent that as range increases, the distance between

adjacent bins becomes larger: the angle between center of

the forward bin and the center of the next bin is 3.7✵, which

corresponds to a distance of about three meters laterally at a

distance of 47 meters, while the angle between bins increases

to 11✵ (or 9 meters) for the most extreme bins.

Even though it is possible to get a higher resolution

feature map than the original radar signal and use that as

input to detection, it doesn’t solve the problem that adjacent

pixel locations can have vastly different distances between

them depending on their range. Single-shot object detection

methods, as described in Section 4.4, place a grid of prior



Figure 3: Conceptual diagram of our model architecture. Feature channels are not visualized in the picture. Notation: (R)ange;

(A)zimuth; (D)oppler. The different 2D tensors are calculated from the original RAD tensor by summing over each of the

dimensions. For the exact architecture configuration please refer to the appendix.
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Figure 4: Azimuth bins in our radar configuration.

boxes over the input tensor. We hypothesized that using

prior boxes which are distributed on such a uniform grid

in polar space is disadvantageous. To test our hypothesis

and to solve this problem, we created a baseline and three

alternative approaches:

• Polar input, polar output. The baseline solution takes

the range-azimuth radar tensor as input. The prior boxes

are distributed on a uniform grid in polar space.

• Cartesian input, Cartesian output. The input tensor

is transformed from polar space to Cartesian space

using bi-linear interpolation. Approximately 23 meters

of each side of the Cartesian input tensor is clipped,

resulting in a square feature map. This clipping is

motivated by the fact that for highway driving we do

not need to detect cars laterally up to 47 meters. The

distribution of the prior boxes is uniform in Cartesian

space. The downside of this approach is the radar signal

corresponding to close range is compressed, losing fine

details where they are needed the most, while far range

is expanded, wasting compute power.

• Polar input, Cartesian output with learned

transformation. The input tensor of the neural

network is in polar space, but the output boxes are on

a uniform grid in Cartesian space. Thus, the neural

network has to explicitly learn the polar to Cartesian

transformation. The downside of this method might

be that the neural network wastes capacity to learn the

transformation.

• Polar-to-Cartesian transformation on latent

features. Same as the polar input, Cartesian output

solution, but after feature extraction, an explicit

transformation layer transforms the latent features from

polar to Cartesian space (using bi-linear interpolation).

As we will show in Section 5, this method works best.

Note that for all of the described solutions, the widths and

heights of the prior boxes correspond to the real width and

length of the vehicles, not their span in polar space.

4.3. Temporal Processing

Due to the nature of automotive environments, exploiting

the temporal aspect of the signal can provide benefits

to detection quality as well as enable access to velocity

information. To this end, and in order to capture the

dynamics of the scene, we need to build memory into our

model. As a result, we convert our network into a Recurrent

Neural Network (RNN) by taking advantage of Long Short-

Term Memory (LSTM) modules introduced by Hochreiter

and Schmidhuber [7]. To be able to operate in a fully

convolutional manner we employ a Convolutional LSTM

cell proposed by Shi et al. [21]. In essence, compared to

a more traditional LSTM cell, some of the operations are

replaced with convolutions, and the cell operates on a 3D

tensor.



4.4. Object detection and property estimation

As our focus is vehicle perception on highways, it is key

for our solution to run at a high frame rate on embedded

systems with limited compute power. We therefore employ

a one-shot object detection model, namely Single Shot

Detector (SSD) by Liu et al. [17].

In essence, the SSD algorithm operates on one or more

feature maps extracted from a backbone network. The

feature maps are run through additional convolutional layers

that predict confidence values for each feature location to

determine whether the corresponding location in the input

tensor contains an object of a certain class with a size close

to a pre-defined height and width. Multiple pre-defined sizes

can be used for each feature location.

SSD uses regression to adapt the size and position of the

pre-defined box to better match the bounding box of the

actual object. During inference, non-maximum suppression

is used to remove overlapping detections which are likely

for the same object.

Our solution has a couple of key differences compared

to the standard SSD architecture. First of all, we are only

using the output of a single convolutional layer as input to

SSD. Since we apply SSD on what is essentially a bird’s-

eye view of the road, vehicles cannot overlap as long as the

feature-map has enough resolution.

Another difference is that the backbone is inspired by

the RetinaNet architecture by Lin et al. [15] and we use

Focal Loss from the same work, as it is shown to provide

superior results compared to hard negative mining. If p is

the confidence value for a given class, and pt ✏ p when

that class matches the ground truth label, and pt ✏ 1 ✁ p

otherwise, then Focal Loss is defined as:

Lconf ✏ ✁αt♣1✁ pt�
γ log♣pt�. (1)

Here, αt is a class-dependent weighting factor, and γ is

the focusing factor.Using grid-search we decided to use

αvehicle ✏ 1.0, αbackground ✏ 0.9 and γ ✏ 1.0. We use the

box regression loss Lloc from the original SSD paper.

Each of the detections also comes with an estimation of

the vehicle’s velocity (relative to the ego frame of reference).

An extra head of the network regresses the velocity vector

for each proposed box. The direction and the magnitude of

the velocity are regressed separately. Direction is further

separated into the sine and cosine of the angle. During the

forward pass, the two direction components are normalized

so they describe a unit vector.

These terms are L1 losses for regressing the three

components. To define the velocity loss formally, let the

subscripts p and t stand for prediction and target respectively,

and i indexes the ith object match in the mini-batch. The

variables sin angle and cos angle refer to the network’s

estimation of the sine and cosine of the angle of the velocity

vector.

Lvel ✏
1

N

N➳

i✏1

⑥magnitudei,p ✁magnitudei,t⑥ �

⑥sin anglei,p ✁ sin♣anglei,t�⑥ �

⑥cos anglei,p ✁ cos♣anglei,t�⑥. (2)

The training of the system works as described in Lin et

al. [15] with the additional loss term for velocity estimation.

The combined loss is:

L ✏ 0.5✂ Lconf � 0.5✂ Lloc � Lvel. (3)

For our experiments we observed that using loss weight

of 1 for the velocity loss term works best.

5. Experiments and model analysis

5.1. Dataset

Given the lack of a public automotive radar dataset, we

have collected and annotated our own. Our data collection

vehicle has a radar, mounted on the front bumper, a wide-

angle camera, mounted inside the vehicle, and a 32 or

64 beam LiDAR, mounted on the roof of the vehicle. In

this work, the camera is used for visualization and human

verification only, and the LiDAR is used for ground truth

annotation only. All sensors are 3D calibrated with respect

to each other.

Our annotations are based on LiDAR using a combination

of automatic annotation and manual correction. The statistics

of our dataset can be seen in Table 2.

The number of tracks refers to the number of unique

vehicles in the dataset. Two recordings that are used in the

test-set are also part of the train-set, but different parts of the

recordings are used for each set. All other train- and test-set

recordings were made on different days.

Dataset Train Test

Number of frames 106K 5200

Duration 2h56m 8m40s

Number of recordings 7 6

Number of annotations 389157 20011

Max. annotations in single frame 23 12

Number of tracks 3011 142

Table 2: Training and test set statistics.

5.2. Training details

For all experiments, stochastic gradient descent was used

with a momentum of 0.9 and a weight decay of 0.0001. The

weights were initialized using the method by Glorot and

Bengio [6]. For non-temporal models, training consisted

of 15000 iterations, with 32 images per mini-batch and an

initial learning rate of 0.05, which was divided by 3 at 6

evenly spaced points throughout the process.



Temporal models were initialized using the pre-trained

weights of the non-temporal equivalent. BackPropagation

Through Time was used to train the LSTM, as described by

Werbos [22]. Training consisted of 3000 iterations with 8

images per mini-batch and a sequence length of 10. The

initial learning rate was 0.005, which was divided by 3 at 3

evenly spaced points throughout training.

The range-azimuth and range-Doppler inputs are

normalized by making each range-row zero-mean and unit-

variance, using statistics computed over the training-set.

All of the discussed models used the same set of prior box

shapes, 8 in total. Widths: 1.9m, 3.5m. Lengths: 4.21m,

6.1m, 11m, 18m. As all of the input images spanned the

same space, we defined the ground truth and prior boxes in

meters and then mapped them to �0, 1�
➅
�0, 1� for the loss

function. The input to the SSD head was a single feature

map with a size of 64✂ 64, corresponding to a 47m✂ 47m

area, so prior boxes were spaced approximately 73cm from

each other.

Also note that some annotated cars were not visible to the

radar, and in other cases, vehicles were not visible from the

LiDAR signal primarily used for annotation. These resulted

in unsolvable false positives and false negatives, rendering

100% performance (i.e. mAP, precision, recall) unreachable.

During training, the only form of data augmentation used

was horizontal mirroring with a probability of 0.5. Each

experimental result is the average of at least 8 training runs.

Standard deviations are also indicated. For all reported

mAP scores, we used an IoU threshold of 0.5, unless noted

otherwise.

5.3. Experiments

Cartesian space detections: In previous sections we

already established that the original radar signal is in

polar coordinate space, even though the preferred object

representation is in Cartesian space. We benchmarked

all four proposals listed in Section 4.2. The architecture

configurations (number of layers, number of feature maps

per layer, connectivity pattern of the FPN) are kept identical

to the extent possible.

Table 3 lists the resulting mAP scores from each of

the models. Note that the Cartesian to Cartesian model

has 65% more MACs (multiply-accumulate operations)

due to increased size of the input (256 ✂ 256 compared

to 256 ✂ 64). Based on these results, we conclude that

as hypothesized, the baseline polar input polar output

solution has far inferior detection performance. It is

also safe to conclude that applying the explicit polar to

Cartesian transformation to the latent representation (instead

of learning this transformation) is beneficial. Last, we

attribute the lower detection performance of the Cartesian

to Cartesian model to the fact that the signal in Cartesian

space has properties which are more difficult to learn for a

CNN, for example the azimuth side-lobes are arcs instead

of lines. However, this explanation has not been verified

experimentally or otherwise.

Transformation mAP [%]

Polar to Polar 72.62✟ 1.02

Cartesian to Cartesian 83.15✟ 0.92

Polar to Cartesian (learned) 83.98✟ 0.60

Polar to Cartesian 86.15✟ 0.61

Table 3: Experimental Cartesian space detection results.

Contribution of the Doppler dimension to detection:

With the Doppler dimension, the signal has characteristics

which may help the detection of objects. For example,

objects close to each other in physical space might be

separated in the Doppler dimension. Due to this, we assessed

if the Doppler dimension is indeed useful from both detection

and velocity estimation points of view.

To see whether our solution with Doppler helps detection,

we compare our models based on mAP scores. As can be

seen from Table 4, the RAD model provides a gain over

RA in the simplest case, without LSTM or joint velocity

estimation training. Because the difference in mAP is

relatively small compared to the standard deviation, we

used bootstrap hypothesis testing suggested by Efron and

Tibshirani [3] to estimate the confidence. The hypothesis

is that the RAD model achieves a significantly better mAP

score. Based on 10000 redraws the obtained p-value was

0.0031, which expresses high confidence that the RAD

model does help with detection.

However, for the case where we also utilize LSTM and

velocity estimation (see Table 5), the RAD model performs

worse and the p-value shifts to 0.9657, meaning that there

is a high confidence that the hypothesis is false for the case

of temporal models. This inconsistency might be because

of suboptimal hyper-parameters, or because of redundancy

between Doppler and LSTM.

We conclude that incorporating Doppler information

using our proposed RAD model helps the detection

performance.

Contribution of the Doppler dimension to velocity

estimation: For comparing velocity estimation performance

we calculate the L1 error between the predicted and target

velocity vectors. The velocity estimation performance results

can be seen in Table 5, which shows the velocity estimation

performance for both RA and RAD models using LSTM.

Based on these results, we cannot conclude that the RAD

model has better velocity estimation capabilities. This might

be due to the limited range of velocities the Doppler channel

captures (see Table 1).

Effect of using a temporal model on detection

performance: For determining the gain in detection



Input LSTM mAP [%]

RA No 86.15✟ 0.61

RAD No 86.75✟ 0.32

RA Yes 87.52✟ 0.67

Table 4: Detection model results.

Input LSTM mAP [%]
Velocity L1

error [m④s]

RA No 86.34✟ 0.30 2.47✟ 0.06

RA Yes 88.00✟ 0.37 1.49✟ 0.11

RAD Yes 87.59✟ 0.56 1.50✟ 0.11

Table 5: Detection and velocity estimation model results.

performance by utilizing the temporal aspect of our signal,

we compare two Range-Azimuth input models, one having

an LSTM module and the other not. They have both been

trained without velocity estimation. Based on the results

shown in Table 4, we conclude that exploiting the temporal

dependency of the scene results in superior detection.

Effect of using a temporal model on velocity

estimation: Even though the main source of velocity

information is the temporal aspect of the signal, it is

important to mention that the location of the objects also

holds prior information about their velocity. In the areas

we used for data collection, vehicles in the right lanes tend

to go slower than the ego vehicle, and vehicles in the left

lanes tend to be faster. Furthermore, their velocity vectors

are usually on the same line as the road they are following.

Even though we use random horizontal flipping for data

augmentation, the neural network is able to learn these as

prior information. One explanation could be that the left

and ride side boundaries of the road may have different

characteristics, so horizontal flipping preserves e.g. the fact

that faster lanes are closer to the lane divider bushes. As

a baseline, we used a non-temporal RA-input model to

estimate the performance that can be achieved by looking at

only a single snapshot of the scene.

Based on the velocity estimation results shown in

Table 5, we conclude that using a temporal model results in

significantly better velocity estimation.

5.4. Model analysis

Based on the conclusions drawn from the experiments,

the best configuration is the range-azimuth model, with the

explicit polar to Cartesian transformation, the LSTM block,

and velocity estimation. We perform analysis on one instance

of this specific choice. This instance has been chosen by

ordering all of the trained models by mAP and selecting the

one with the median score.

The precision-recall curve can be seen in Figure 6.

Attribute L1 Error value

Position 36.6✟ 22.6cm

Velocity 1.57✟ 1.08m④s
Length 36.41✟ 34.88cm

Width 14.32✟ 14.67cm

Table 6: The L1 error measures for different property

estimations of our solution.

Even with the lowest confidence threshold the recall of

the system doesn’t exceed 90%. This gives an indication

about the proportion of the targets in the test set which are

undetectable, likely because they are not in the radar signal

(obstruction or they are in an elevated lane).

The selected model (at the optimal operating point)

has 95.46% precision with 84.85% recall. The parameter

count is 7.5M and the MAC count excluding NMS is

8.4GMACs.

Some of the inference results can be seen in Figure 5.

Note that in some cases (bottom row) the perception system

misses vehicles due to them being obstructed from view by

other vehicles or because they are elevated compared to the

sensor. In some other cases (e.g. top right) the detector sees

cars behind others. This can be attributed to the fact that

radio waves can reflect off the road under the cars.

5.5. Comparison with LiDAR-based approaches

Even though there are no publicly available radar range-

azimuth-Doppler datasets, we would still like to make an

attempt at putting our results into perspective. As the most

prevalent sensor in autonomous environments which enables

bird’s eye view detections is LiDAR, we will use that sensor

for a point of comparison, even if the fundamental signal

characteristics are different (see Figure 1 for an example).

On the KITTI Bird’s Eye View detection benchmark

initiated by Geiger et al. [5], state of the art solutions such as

Frustum ConvNet by Qi et al. [20], Deep Continuous Fusion

(DCF) from Liang et al. [12] and VoxelNet from Zhou

and Tuzel [25] report 84.0%, 85.83% and 84.81% mAP

respectively (on moderate difficulty vehicles). On larger

scale (not publicly available) datasets, Fast and Furious (FaF)

by Luo et al. [19], and Deep Continuous Fusion from Liang

et al. [12] report similar numbers (83.1% and 83.89 mAP

respectively).

Even though these cited results are comparable to our

model’s reported performance, it is not fair to directly relate

them to each other for a number of key reasons. First,

the cited results are all calculated with an IoU similarity

threshold 0.7, while we used 0.5. In Figure 7 we visualize

the mAP score of our system for different IoU matching

thresholds and also include results from other works. Based

on this figure we conclude that it is possible to achieve

similarly high detection performance with radar just as well



Figure 5: Examples from our test set. The radar signal has been visualized in Cartesian coordinates for easier human

verification. Targets are indicated by black, predictions by white outlines. Velocity estimation targets and predictions are also

visible. Best viewed digitally.

Figure 6: Precision-recall curve of our final model.

Figure 7: mAP vs IoU. Note that the methods use differing

datasets for evaluation.

as with LiDAR. Given our settings and solution, however,

the bounding box accuracy of our system is lower than of

LiDAR-based methods. This is hinted at by the fact that the

curve representing our results is shifted to the left.

We also analyzed how our system’s performance degrades

over distance, visualized in Figure 8. Cars are more likely to

be obstructed from view the farther they are, so to examine

the effect of distance only, we filtered out all obstructed

vehicles for this analysis. Compared to LiDAR-based

methods, the trends imply that our radar-based perception

system is less sensitive to the distance of the target.

We also have to acknowledge other differences between

the settings, such as that the cited datasets represent different

environments than ours, or that the LiDAR sensor resides

on the top of the vehicle while the radar is level with the

bumper. Due of this, we advise the reader to compare the

trends instead of the values.

In runtime, our method seems to be advantageous over

LiDAR-based solutions. Our radar-based model runs at

95 FPS on an NVidia GeForce GTX 1080 Ti, about an

Figure 8: mAP vs range. Note that the methods use differing

datasets for evaluation. We conclude that our radar-based

approach’s detection performance degrades more slowly

with distance than the compared methods’.

order of magnitude faster than most LiDAR-based models

[20, 12, 23]. However, there are also models with a

significantly higher frame rate [19, 10], but the frame rate of

the LiDAR sensor itself bottlenecks the latency, as modern

LiDAR sensors are operating with a frame rate of about a

10Hz compared to the 125 Hz achieved with our settings.

6. Conclusion

In this paper we have presented a perception system for

highway automotive environments, utilizing a radar sensor.

To the best of our knowledge, we are the first ones to

demonstrate a deep-learning-based object detection model

that operates on the radar tensor as opposed to the point cloud

resulting from peak detection. Our model includes a solution

to the problem of the input being in polar coordinate system

while the desired detection representation is in Cartesian

space. We also proposed a novel way of handling the

third, non-space-like dimension of the radar signal, the

Doppler (velocity) dimension and demonstrated that it can

be leveraged to increase detection performance.

Finally, we demonstrated the viability of the solution by

comparing its characteristics to LiDAR-based approaches,

finding that our model has a lower latency and sensitivity

to target range, as well as providing similar detection

performance.
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