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Abstract

Occupancy grid mapping is an important component in

road scene understanding for autonomous driving. It en-

capsulates information of the drivable area, road obsta-

cles and enables safe autonomous driving. Radars are an

emerging sensor in autonomous vehicle vision, becoming

more widely used due to their long range sensing, low cost,

and robustness to severe weather conditions. Despite re-

cent advances in deep learning technology, occupancy grid

mapping from radar data is still mostly done using classi-

cal filtering approaches. In this work, we propose learning

the inverse sensor model used for occupancy grid mapping

from clustered radar data. This is done in a data driven ap-

proach that leverages computer vision techniques. This task

is very challenging due to data sparsity and noise charac-

teristics of the radar sensor. The problem is formulated as

a semantic segmentation task and we show how it can be

learned using lidar data for generating ground truth. We

show both qualitatively and quantitatively that our learned

occupancy net outperforms classic methods by a large mar-

gin using the recently released NuScenes real-world driving

data.

1. Introduction

Inferring the drivable area in a scene is a fundamental

part of road scene understanding. This task is sometimes

also referred to as ”general obstacle detection”, ”free space

estimation” or ”occupancy grid mapping” [8].

Autonomous vehicles are required to operate in complex

environments. To this end, occupancy grid mapping from

various sensors is an important component of autonomous

vehicle perception [25], [16], [15], [13], [6], [26]. In real

world scenarios, training class specific detectors for all pos-

sible object classes a vehicle might encounter is intractable.

This in turn makes occupancy grid mapping a key capabil-

ity, crucial for ensuring the vehicle avoids obstacles of un-

known classes such as trash piles, boxes and other random

(a) (b) (c) (d)
Figure 1. Occupancy grid learning. (a) Ground truth. (b) Aggre-

gated radar input. (c) Classic ISM result (d) Occupancy net output

(ours). The occupancy net learns a complex inverse sensor model

(ISM) function that can handle sparse and noisy radar measure-

ments. The network significantly outperforms the commonly used

occupancy grid mapping algorithm using Bayesian filtering and

hand crafted ISM function. Note: White is occupied, black is free,

light gray is unobserved, dark gray is ignore.

obstacles.

Free space detection can be performed using data from

different sensors. Lidars are especially suitable for this task

due to their dense and accurate range measurements [24],

and are widely used for autonomous driving applications.

In recent years Radars are starting to emerge and become

more frequently used in autonomous driving in general, and

specifically for occupancy grid mapping. This is mostly due

to their long range, low price, and performance under severe

weather conditions such as fog, rain and snow [6], [25].

Traditionally, occupancy grid mapping is performed by

applying Bayesian filtering and using hand-crafted inverse

sensor model (ISM) functions [23]. In recent years, ad-

vances in deep learning have significantly improved the

performance of machine vision applications. Despite this



progress, deep learning in occupancy grid mapping is still

not widely used. Moreover, when considering occupancy

grid learning from radar data almost no prior work is to be

found.

Typically, automotive radars produce sparse detections,

in one of three forms: raw, clustered and object level data.

Raw level is the richest form of the data but is also the

nosiest. Applying algorithms such as DBSCAN as in [12],

or CFAR (constant false alarm rate) [22] on raw radar data

results in clustered radar data, which is sparser but less

noisy. Last, object level data is the most processed, in which

the detections are filtered and associated both in space and

in time. Generally, radar detections are statistical in nature

and suffer from various noise factors.

In this work we focus on the challenging task of learning

occupancy grid mapping from clustered radar data. With

many low cost commercial automotive radars providing

only clustered data with no elevation information, this task

is of high interest for autonomous driving.

Inspired by advances in computer vision, we propose

learning occupancy grid mapping for static obstacles, from

radar cluster data, in a supervised manner. We formulate the

problem as a semantic segmentation task with three classes:

occupied, free and unobserved. This formulation explicitly

handles regions in space for which we do not have mea-

surement information, which is an inherent problem in this

setting. Using this formulation, we learn an inverse sensor

model function from data. Our method takes advantage of

the spatial and temporal dependencies in the data in order

to overcome data sparsity and noise.

We treat the radar as a 3D imaging sensor. To this end,

we provide the data to the network as a birds-eye-view

(BEV) image with desired grid resolution. Temporal in-

formation is leveraged by means of radar frame aggrega-

tion. The network is trained to infer the output occupancy

grid mapping, learning the inverse sensor model function.

Training labels are generated using lidar data.

An additional challenge is the problem of significant

class imbalance, as free space is much more frequent than

occupied space. We handle this problem by using a recently

proposed surrogate of the intersection-over-union (IoU) loss

called the Lovasz loss [2].

We demonstrate the efficacy of the proposed approach

using the NuScenes data set [3] comprised of challenging

real world driving scenes. We train the proposed occupancy

grid network and demonstrate its performance both quali-

tatively and quantitatively. We show significant gains com-

pared with standard filtering based methods for occupancy

grid mapping using hand crafted ISM functions.

To summarize, the main contribution of this work is:

(i) A method of processing sparse clustered radar data us-

ing computer vision techniques, used for road scene under-

standing by means of learning occupancy grid mapping that

outperforms standard methods. This method learns an ISM

function from data using multi frame aggregation to handle

sparsity and noise. (ii) Proposing a method for perform-

ing supervised learning using lidar data to generate train-

ing labels while resolving issues related to range and cov-

erage differences between lidar and radar. (iii) Quantitative

results showing the efficacy of our approach for the occu-

pancy grid mapping task on the recently released NuScenes

data set.

2. Related Work

Traditionally, occupancy grid mapping is performed

using an inverse sensor model (ISM) and by applying

Bayesian filtering techniques. Among the classical meth-

ods, a delta function ISM is typically used for lidar oc-

cupancy grid generation [9], [23], [20], [11]. Since radar

data is noisier, it is common to see a Gaussian variant (in

range and azimuth) of the delta function ISM [9], [18], [25].

Algorithms operating on raw radar data are often required

to clear noise and clutter, assess the detection probability /

plausibility [13], [25], and perform clustering on the results

before generating the occupancy grid mapping [13].

To the best of our knowledge, this work is the first to uti-

lize clustered radar data using a learnable model, which is

an important use case for autonomous driving. Other works

concentrate on raw radar data [9], [18], [25],[26], [6] or ob-

ject level data for high level fusion [10], [4].

In most, if not all, related work it is common to see a use

of non-public data sets. Moreover, due to the lack of data,

occupancy grid results are often demonstrated only qualita-

tively on few samples [25],[13], [20], making it more diffi-

cult to compare between different published results. Other

studies suggest measuring distance errors for specific sce-

narios [5], or ROC curve [11]. Using mean IoU, of occu-

pied and free regions, as a metrics for radar occupancy grid

is done in [26]. Using it for generating occupancy grids

from camera and lidar is proposed in [17], [16].

In addition to identifying occupied and free cells, the in-

ability to observe a known state of cells is also an important

concept in occupancy grid mapping and has been addressed

in several ways. In cases where each cell is associated with

an occupancy probability, such as in [25], [6], [18], a prob-

ability of 0.5 represents the highest uncertainty between oc-

cupied and free, and is equivalent to having no knowledge

of a cell’s occupancy state. Unobserved state can also be

leveraged in inverse sensor modeling [20]. In contrast, we

define a class for unobversed cells, as a part of a semantic

segmentation problem formulation.

3. Occupancy grid mapping

Occupancy grid mapping is an important part of road

scene understanding and is used for generating consistent



(a) lidar and radar aggregated data. (b) lidar point cloud concave hull.

Figure 2. Real world scene from the NuScenes data set. (a) Showing an overlay of aggregated lidar (Blue) and Radar (white) data. Radar

data is much noisier than lidar data. Also, due to the longer range of the radar there are a lot of radar points in regions which are beyond

what the lidar can observe. (b) Concave hull used to mask regions without lidar data in training and evaluation. See text for more details.

estimation of free and occupied space from noisy sensor

measurements. The measurements themselves can come

from different sensors, providing information on the state

of the world as well as the vehicle pose, using inertial mea-

surement units (IMU) and vehicle odometry.

Occupancy grid maps partition the space in front or

around the vehicle into a fine grained grid. Each grid cell is

represented by a random variable corresponding to the oc-

cupancy of the location it covers. The grid map is usually

represented in the relevant sensor’s coordinate frame, or in

the host vehicle’s coordinate frame where sensor fusion is

desired [23].

Let y ∈ {occupied, free, unobserved}H×W be a grid

map of size H × W , with spatial resolutions αx, αy . We

denote by yu,v the occupancy state of each cell (u, v).
Occupancy grid mapping algorithms aim to calculate the

posterior probability of the grid map y given the measure-

ment data:

p(y|z1:t, x1:t) (1)

Where z1:t is the set of all measurements up to time t, and

x1:t is the sequence of host vehicle poses.

In this work we focus on the task of performing occu-

pancy grid mapping for static obstacles from clustered radar

data. This type of data is typically very sparse and does not

provide elevation information. This is a challenging setup

which is notably relevant to the use of automotive radars.

This problem relates to the most common type of occupancy

grid maps, that of 2-D planar maps viewing space from a

birds-eye-view (BEV).

3.1. Bayesian filtering and inverse sensor model

We now provide a short introduction to the canonical oc-

cupancy grid mapping approach, and refer the reader to [23]

for a more thorough derivation.

The classic occupancy grid mapping algorithm has two

main elements. The first is an ISM function dictating how a

given measurement affects the occupancy state. The second

is Bayesian filtering which governs how cell occupancy is

updated over multiple temporal samples.

Estimating the probability in equation (1) is difficult. In

order to make this problem tractable it is first assumed that

the state of each cell is independent with respect to other

cells. This allows breaking down the problem of estimating

the map into a collection of separate problems such that:

p(y|z1:t, x1:t) =
∏

u,v

p(yu,v|z1:t, x1:t) (2)

Instead of working directly with probability values it is

common to use the log-odds representation of occupancy:

lt(y
u,v|z1:t, x1:t) = log(

p(yu,v|z1:t, x1:t)

1− p(yu,v|z1:t, x1:t)
) (3)

Using Bayesian filtering one can obtain a formulation for

updating the occupancy probability of a cell (u, v) over

time, using log-odds, as follows:

lt(y
u,v|z1:t, x1:t) = lt(y

u,v|zt, xt)+

lt−1(y
u,v|z1:t−1, x1:t−1)− l0 (4)

Where the term lt(y
u,v|zt, xt) represents the inverse sensor

model defining how grid cells are updated given observa-

tions, and the constant l0 = log
p(yu,v=1)
p(yu,v=0) is the occupancy

log-odds prior.

The most common ISM functions used for lidar and

radar data include the Delta and Gaussian functions. Using

a Delta function, for example, means that if a return was



obtained from some cell (u, v), then that cell is updated

with a higher probability of being occupied. Cells along

the line-of-sight between the sensor and (u, v) are updated

with a higher probability of being free. Finally, cells along

the line-of-sight after (u, v) are considered unobserved and

therefore left unchanged.

3.2. Occupancy grid learning

Instead of using hand crafted ISM functions (like in the

classical method), we propose learning an inverse sensor

model function in a data driven manner using deep learn-

ing. Additionally, since our data is extremely sparse, we

propose learning this ISM over an aggregation of multiple

radar frames. Specifically, this means our occupancy net-

work learns to infer:

p(y|zt−k:t, xt−k:t, θ) (5)

Where θ are neural network parameters optimized in a su-

pervised learning process, and k the number of aggregated

radar frames.

The occupancy net learns the underlying joint probabil-

ity function from data. Note that this is unlike the classical

approach where we need to assume grid cells are indepen-

dent.

Another important observation is that temporal informa-

tion is directly incorporated into the ISM function itself (and

not by means of Bayesian filtering). To use multiple frames,

we compensate for the ego motion between frames using the

pose information xt−k:t, warping all frames to the coordi-

nate frame of the host vehicle at time t.

When using an occupancy grid mapping algorithm one

eventually obtain the posterior probability for each cell

which resides in the range [0, 1]. This real valued output

captures not only if a cell is likely to be occupied (near 1)

or free (near 0), but also if the cell is actually observable by

the sensor. When a certain cell is unobserved the resulting

probability will be close to 0.5 meaning we do not know

whether it is occupied or free. This is reflected in the clas-

sical algorithm by the fact cells are only updated if they are

observed, and also by the occupancy prior.

In order to explicitly incorporate this observability infor-

mation into our model we formulate the learning problem as

a 3 class semantic segmentation task. Specifically, for each

grid cell the network predicts one of 3 possible labels: oc-

cupied, free or unobserved which corresponds to occupancy

probabilities of 1.0, 0.0 and 0.5 accordingly.

Another major challenge inherent to occupancy grid

mapping is significant class imbalance. Namely, there is

a much larger a-priory probability of seeing free space rela-

tive to occupied space. This in turn means there are signif-

icantly less grid cells with the occupied label compared to

those with free or unobserved labels.

Figure 3. Network architecture. We propose an encoder-decoder

architecture with skip connections to help maintain fine grained

information. The network input are radar clusters embedded as

a BEV image and its output is the corresponding occupancy grid

map (with the same resolution). Note: Numbers correspond to the

number of filters in each layer. All convolutions are 3x3.

We propose using a metric that explicitly addresses the

problem of class imbalance. This metric is the intersection-

over-union (mIoU) per class, which is commonly used in

semantic segmentation problems [21], [26]:

IoUc =
|{y = c} ∩ {ỹ = c}|

|{y = c} ∪ {ỹ = c}|
(6)

Where y is the predicted occupancy map,ỹ are the true la-

bels and c ∈ C,C = {occupied, free, unobserved} is the

class. In this case an overall metric giving equal weight to

all classes will be:

mIoU =
1

|C|

∑

c

IoUc (7)

The problem of class imbalance relates to both perfor-

mance evaluation as well as to learning. If class imbalance

is not addressed as part of a network’s training loss func-

tion, the network might converge to a solution which never

predicts occupied cells. One example is the common cross

entropy loss, where this issue is usually addressed by some

form of weighting, which involves adding hyper parameters

that are not necessarily easy to tune.

We would like our network to obtain results minimizing

the above metric. Unfortunately, directly minimizing over

the IoU complement which is the complement of equation

(6) is not possible since it is not differentiable. Instead we

use the recently proposed Lovasz loss [2] which is a sur-

rogate to the intersection-over-union loss. It extends the

notion of IoU from discrete to continues space making it

differentiable, and therefore suitable for back-propagation

used in stochastic gradient decent. Lovasz loss was shown

in the original paper to be useful for semantic segmentation

learning. Using it as proposed in equation (7) automatically

scales all classes to have equal weight regardless of the a-

priory data distribution. This in turn helps the training to

optimize for all classes without adding any additional hyper

parameters.



4. Experiments

We begin by describing the procedure of generating

training labels using lidar data in section 4.1. We then dis-

cuss the experimental setup in section 4.2 including model

architecture, data, training details and performance evalua-

tion. Finally, results are shown in section 4.3.

4.1. Labeling procedure

In this section we describe an automated labeling pro-

cess. Its goal is generating ground truth labels for the occu-

pancy of each cell in the grid map by using accurate lidar

data 1. As part of this procedure we also generate a mask

which solves the problem of handling regions of space for

which we have radar data but do not have lidar data.

For each radar frame, we generate a grid map repre-

sentation containing the true state of occupancy for each

cell, ỹ ∈ {occupied, free, unobserved}H×W . Each such

grid map is represented in the matching radar’s coordinate

frame.

Lidar range is typically limited relative to radar. There-

fore, we aggregate over all lidar frames in a given scene.

This enables the ground truth data not to be strictly limited

by the range of the lidar in a specific frame, and also helps

overcome temporary occlusions.

The aggregated point cloud is represented in global coor-

dinates. For each radar frame, we transform the point cloud

to the radar’s coordinate frame. We then project the aggre-

gated 3D point cloud onto a 2D H ×W grid, with spatial

resolutions αx, αy . Noise and dynamic obstacles are fil-

tered out using binary thresholding clearing cells with low

point count. Next, we apply morphological operations for

additional noise removal and smoothing. Specifically, we

perform: dilation, hole filling, and erosion. This results in

a grid representation containing aggregated information for

all static obstacles in the scene.

Given the positions of all static obstacles on the grid, we

map the occupancy state of each grid cell from a specific

radar viewpoint using ray tracing. Specifically, we consider

all cells between the radar and the first return along a ray

as free. All consecutive occupied cells along the ray are

considered as a single obstacle and label as occupied. Cells

after the first obstacle are marked as unobserved. This ap-

proach is similar to that taken in [26]. The main difference

is we do not distinguish between partially observed and un-

observed cells, considering anything after the first return as

unobserved. Finally, areas of the occupancy map that can-

not be observed by the radar, due to its limited field-of-view

angle, are masked out indicating they will not be used for

loss computation or metric evaluation.

The last issue we address when working with real world

1 https://github.com/liat-s/radar_occupancy_

grid/
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Figure 4. Performance for different numbers of aggregated radar

frames. Occupancy net (Blue curve) significantly outperforms ray

tracing (Red curve), using the same data, as well as the best result

obtained by the classic approach using ISM (green line). In fact,

the network using just a single radar frame outperforms ray tracing

with any number of aggregated frames. This indicates our occu-

pancy net is learning an ISM function that is more complex than

simple ray trace, helping it overcome radar noise and data sparsity.

recordings, is that lidar and radar coverage is different along

the scene boundaries. This is mainly due to range limita-

tions resulting in some parts of space having radar data, but

not lidar data. This phenomenon is evident in directions

perpendicular to the driving direction and near the end of

the recording.

In order to use grid maps which contain partial lidar

ground truth, we propose computing a concave hull [7] (also

known as a concave closure or an alpha shape) over the

projected lidar point cloud. We then only label cells that

are contained within the concave hull. The rest of the cells

(outside the concave hull) are marked with an ignore value

meaning they will not be used for loss or metric computa-

tions. Figure 2 (a) shows a typical scene. There are many

regions where only radar data is available (no lidar returns).

Computing loss or metrics in these regions will results in

erroneous training and evaluation. The corresponding con-

cave hull used for masking this scene is shown in figure 2

(b). Notice how this hull tightly bounds the region of the

scene covered by lidar data.

4.2. Experiment setup

Model architecture: Inspired by U-net [21] we propose us-

ing an encoder-decoder architecture with skip connections

as shown in figure 3. This type of network was previously

shown to be effective for learning semantic segmentation

tasks [14, 1].

Data: We demonstrate the performance of our approach us-

ing the NuScenes data set [3] comprised of real world driv-

ing scenes. Each scene containing 20 seconds of recorded



data from 6 cameras, 1 lidar and 5 radars providing clus-

tered data output. Each radar outputs up to 128 clusters

providing their 2D location (no elevation) and velocity. The

velocity is used to filter out dynamic clusters. In total, we

use 100 scenes removing 4 scenarios where the host vehi-

cle is static or our view is blocked for the entire scene. The

data is split into training (80%), validation (5%) and test

sets (15%).

Training: We train the occupancy net to output a grid of

size H ×W = 215× 50 in the radar coordinate frame. For

our experiments we use grid cell size αx = αy = 40cm.

The resulting occupancy grid map covers an area from 0m

to 86m in range, and 20m in width ranging from -10m to

10m. The network input is a grid of similar size where each

grid cell has a binary value and is equal to one if a radar

cluster resides in that cell and zero otherwise. As previ-

ously mentioned we aggregate radar data using k consec-

utive frames zt−k:t. In order to compensate for the host’s

ego motion, each frame is warped to the last ego pose xt

before performing the aggregation. The radar frames are

highly correlated temporally, therefore, training examples

are taken such that they are in non-overlapping windows,

i.e. {z1:k, zk+1:2k, ...}.

Our network model is trained using the Lovasz loss as

explained in section 3.2. In addition, we ran ablation tests

using the cross entropy loss, with varying weights to handle

class imbalance.

Data from all 5 radars is used meaning the network is

agnostic to radar mounting. Thus the same network can be

used to infer the occupancy grid map of any of the 5 radars.

Ground truth labels are generated as explained in sec-

tion 4.1 using aggregated lidar data. The network is trained

using SGD with momentum optimizer [19]. We set the ini-

tial learning rate to 0.05 and momentum 0.9. The learn-

ing rate was decayed by a factor of 0.9 wherever the mean

intersection-over-union (mIoU) metric plateaued for two

epoches. Horizontal flip data augmentation is used to in-

crease the data set size.

Baseline methods: We compare the performance of our

occupancy grid mapping network with the commonly used

classic approach that uses Bayesian filtering and an ISM as

described in section 3.1. We use two ISM functions which

are commonly used in the literature. The first is the Delta

function ISM and the second in the Gaussian ISM. For each

method we performed hyper parameter search using the val-

idation set. The aim is to find the best thresholds used to

determine which cells are occupied, free and unobserved

based on the cell’s posterior probability estimate.

In order to emphasize that our network is learning a com-

plex ISM function, we provide an additional ray tracing

baseline. Specifically, we take the aggregated radar data,

used as network input, and instead of feeding it to the net-

work we perform ray tracing in a similar manner to what is

described in section 4.1.

Evaluation metric: We qualitatively compare between the

different methods using the IoU metric as shown in equation

(6). The IoU is computed per each of the 3 classes (free,

occupied and unobserved). Then the mIoU value over the

3 classes is also computed as shown in equation (7). This

provides one figure of merit for overall performance.

4.3. Results

Results comparing the performance of all method on

the test set data are presented in table 1. As can be seen

our occupancy net outperforms the classic approaches us-

ing Bayesian filtering and ISM models by a large margin.

The limited performance of the classic methods in this setup

demonstrates the difficulty of performing occupancy grid

mapping with such sparse and noisy radar data. The net-

work also significantly outperforms direct ray tracing on the

input data in each of the classes resulting in over 25% im-

provement in mIoU.

We note that ray tracing outperforms classic ISM ap-

proaches and hypothesize there are two main reasons for

this. The first is data sparsity. Unlike the ray tracing

which uses aggregated radar data, which reduces sparsity,

the classic ISM algorithms works frame by frame, seeing

very sparse data at each stage. Supporting this hypothesis is

the observation that ray tracing with just a single frame pro-

duces similar results to classic ISM, as can be seen in figure

4. The second reason ray tracing outperforms the classic

ISM is related to differences in their underlying assumption

regarding the nature of the world. Specifically, the classic

ISM approach uses an a-priori assumption that the world

is unobserved. This means that cells are considered unob-

served until evidence is provided. In contrast the ray tracing

algorithm uses an a-priori assumption that the world is free.

A ray along which there are no returns (no radar points) will

be considered all unobserved by the classic ISM while con-

sidered all free by the ray tracing. When the data is very

sparse, as in our case, this difference in a-priori assump-

tion, dramatically affects the results. An example of this

phenomenon can be seen in figure 1.

One of the main factors impacting the performance of

the occupancy net is the number of aggregated radar frames

used as input. As can be seen in figure 4 (Blue curve),

using 10 or 20 aggregated radar frames provides a 12.5%
and 16.7% improvement in mIoU, over using a single radar

frame, accordingly. Best results are obtained for 20 frames

after which point results start to drop.

We point out that the occupancy network consistently

outperforms ray tracing on the aggregated input. This

shows that our network is learning an intricate inverse sen-

sor model function that is much more complex then simple

ray tracing. It is this ISM learning that allows the network



to overcome data sparsity and radar noise. Even using just

a single radar frame is enough for the occupancy network

to outperform ray tracing with any number of aggregated

frames, as can be seen in figure 4. A qualitative example

demonstrating the kind of ISM function the network is able

to learn using just a single radar frame is presented in figure

5. When compared to simple ray tracing, with the same in-

put, it is evident that the network learns a complex spatially

meaningful ISM. It can be seen that the network learns to

ignore points in unobserved space while expanding other

points to generate clear and continuous occupied regions.

With regards to the network loss used, after fine tuning the

weights of the cross entropy loss, we achieved similar re-

sults (less than 0.001 difference in metrics). Since using

Lovasz does not require fine tuning to handle class imbal-

ance, it is less time consuming, more robust and is our rec-

ommended setting.

Qualitative results are shown in figure 6. It can be seen

that the radar input is very noisy (second row) even when

aggregating over 20 frames. Notice how our occupancy net

(last row) is able to produce much sharper results than those

of the classic ISM approach (third row). In some cases the

classic ISM produces clutter in the form of isolated occu-

pied points in free regions. This seems to be related to

radar clusters which are generated due to reflections from

the road. This noise is hard to filter without elevation infor-

mation. The occupancy net, leveraging the labels produced

by lidar, does not suffer from this problem, producing much

cleaner output. We note that in some cases the network gen-

erates undesired blobs of different classes. For example the

free region at the bottom-left of subplot (f) and free blobs in

subplot (d). Small unobserved blobs in the free area of sub-

plots (b) and (c) are another example. We believe this be-

havior is caused by the network predicting each pixel class

separately without any explicit spatial consistency mecha-

nism. In future work we plan to try and fix this behaviour

by adding additional loss terms.

Method Occupied Free Unobs. mIoU

Delta ISM 0.029 0.391 0.311 0.244

Gaussian ISM 0.012 0.444 0.213 0.223

Ray trace 0.066 0.576 0.405 0.349

Occupancy net 0.108 0.614 0.593 0.439
Table 1. Quantitative results on the test set. Comparing our occu-

pancy net (last row) to classic Bayesian filtering approaches using

ISM and to performing ray tracing directly on the aggregated radar

data (network input). Table entries are intersection-over-union for

each of the classes and average over all 3 classes (last column).

Both ray trace and occupancy net are with 20 frame aggregation.

It is clear our occupancy net outperforms the classic approaches as

well as the ray trace baseline in all categories by a large margin.

(a) (b) (c) (d)
Figure 5. Learning with single frame input. (a) Ground truth. (b)

Radar input (single radar frame). (c) Ray trace result (d) Occu-

pancy net output. The occupancy net learns a complex ISM func-

tion able to infer the occupancy state of the world from very sparse

data. This is evident when comparing the network results to simple

ray tracing performed on the same input. Note: White is occupied,

black is free, light gray is unobserved, dark gray is ignore.

5. Conclusions

Radar is an emerging sensor in autonomous vehicle vi-

sion that can be leveraged for road scene understanding in

challenging scenarios and conditions.

In this work we focused on occupancy grid creation from

radar data. This task was made especially challenging as we

were dealing with clustered radar data (and not raw). De-

spite recent advances in computer vision and deep learning

technology, in the vast majority of studies, occupancy grid

mapping from radar data is still performed using classic fil-

tering techniques. In this work we have shown that learning

occupancy grid mapping from clustered radar data is feasi-

ble and represents an attractive solution which significantly

outperforms commonly used standard techniques. We have

formulated the problem as a computer vision task of learn-

ing a three class semantic segmentation problem. This al-

lows understanding which space is free and which is occu-

pied, and also explicitly infer which parts of the space are

unobserved. We have shown how lidar data can be used

to generate training labels. We leveraged temporal data to

handle data sparsity, and addressed class imbalance.

We believe this work and results achieved using the

NuScenes data set provide a baseline for this fundamen-

tal task and help promoting further research. Possible fu-

ture directions of this work are handling dynamic objects,

adding an explicit spatial consistency mechanism, and ex-

ploring additional techniques for handling temporal infor-

mation. In addition, our formulation serves as a basis for

sensor fusion, which is a prominent research direction.



(a) (b) (c) (d) (e) (f) (g) (h) (i)
Figure 6. Qualitative results from 3 different radar positions (front, back left, back right). Columns show different examples. Top row

showing ground truth, second row radar input, third row classic ISM and bottom row our occupancy net predictions with 20 frame ag-

gregation. Network is agnostic to radar position therefore the same network model is used from all radars. The radar data is very noisy

making this a challenging task. It is evident the learned grid maps are much sharper and more accurate than the ones produced by the

classic method. Note: White is occupied, black is free, light gray is unobserved, dark gray is ignore.
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