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Abstract

Monocular 3D scene understanding tasks, such as ob-

ject size estimation, heading angle estimation and 3D lo-

calization, is challenging. Successful modern day methods

for 3D scene understanding require the use of a 3D sen-

sor. On the other hand, single image based methods have

significantly worse performance. In this work, we aim at

bridging the performance gap between 3D sensing and 2D

sensing for 3D object detection by enhancing LiDAR-based

algorithms to work with single image input. Specifically, we

perform monocular depth estimation and lift the input im-

age to a point cloud representation, which we call pseudo-

LiDAR point cloud. Then we can train a LiDAR-based 3D

detection network with our pseudo-LiDAR end-to-end. Fol-

lowing the pipeline of two-stage 3D detection algorithms,

we detect 2D object proposals in the input image and ex-

tract a point cloud frustum from the pseudo-LiDAR for each

proposal. Then an oriented 3D bounding box is detected

for each frustum. To handle the large amount of noise in

the pseudo-LiDAR, we propose two innovations: (1) use a

2D-3D bounding box consistency constraint, adjusting the

predicted 3D bounding box to have a high overlap with its

corresponding 2D proposal after projecting onto the im-

age; (2) use the instance mask instead of the bounding

box as the representation of 2D proposals, in order to re-

duce the number of points not belonging to the object in the

point cloud frustum. Through our evaluation on the KITTI

benchmark, we achieve the top-ranked performance on both

bird’s eye view and 3D object detection among all monoc-

ular methods, effectively quadrupling the performance over

previous state-of-the-art. Our code is available at https:

//github.com/xinshuoweng/Mono3D_PLiDAR.

1. Introduction

3D object detection from a single image (monocular vi-

sion) is an indispensable part of future autonomous driving

[51] and robot vision [28] because a single cheap onboard

camera is readily available in most modern cars. Successful

modern day methods for 3D object detection heavily rely

on 3D sensors, such as a depth camera, a stereo camera or a

laser scanner (i.e., LiDAR), which can provide explicit 3D

(a) Monocular depth estimation (b) Instance segmentation

(c) Point cloud frustums overlaid on the pseudo-LiDAR

(d) Results without BBC (e) Results with BBC

Figure 1: (a) Monocular depth estimation and (b) Instance

segmentation from a single input image; (c) Extracted

point cloud frustums (blue) overlaid on the pseudo-LiDAR

(black); 3D bounding box detection (blue) results (d) with-

out bounding box consistency (BBC) and (e) with BBC.

Ground truth shown in red.

information about the entire scene. The major disadvan-

tages of this category of methods are: (1) the limited work-

ing range of the depth camera depending on the baseline;

(2) the calibration and synchronization process of the stereo

camera, causing it hard to scale on most modern cars; (3) the

high cost of the LiDAR, especially when a high-resolution

LiDAR is needed for detecting faraway objects accurately.

On the other hand, a single camera, although cannot pro-

vide explicit depth information, is several orders of mag-

nitude cheaper than the LiDAR and can capture the scene

clearly up to approximately 100 meters. Although people

have explored the possibility of monocular 3D object detec-

tion for a decade [77, 6, 75, 33, 76, 43, 12, 60, 31, 32, 21],

state-of-the-art monocular methods can only yield drasti-

cally low performance in contrast to the high performance



achieved by the LiDAR-based methods (e.g., 13.6% aver-

age precision (AP) [60] vs. 86.5% AP [20] on the moderate

set of cars of KITTI [14] dataset).

In this paper, we aim at bridging this performance gap

between 3D sensing and 2D sensing for 3D object detec-

tion by extending LiDAR-based algorithms to work with

single image input, without using the stereo camera, the

depth camera, or the LiDAR. We introduce an intermedi-

ate 3D point cloud representation of the data, referred to

as “pseudo-LiDAR”1. Intuitively, we first perform monoc-

ular depth estimation and generate the pseudo-LiDAR for

the entire scene by lifting every pixel within the image

into its 3D coordinate given the estimated depth. Then we

can train any LiDAR-based 3D detection network with the

pseudo-LiDAR. Specifically, we extend a popular two-stage

LiDAR-based 3D detection algorithm, Frustum PointNets

[34]. Following the same pipeline, we detect 2D object pro-

posals in the input image and extract a point cloud frustum

from the pseudo-LiDAR for each 2D proposal. Then an ori-

ented 3D bounding box is detected for each frustum.

In addition, we observe that there is a large amount of

noise in the pseudo-LiDAR compared to the precise LiDAR

point cloud due to the inaccurate monocular depth estima-

tion. This noise often reflects in two ways: (1) The ex-

tracted point cloud frustum might be largely off and there is

a local misalignment with respect to the LiDAR point cloud

.This may result in a poor estimate of the object center lo-

cation, especially for the faraway objects with more severe

misalignment; (2) The extracted point cloud frustum always

has a long tail – depth artifacts around the periphery of an

object stretching back into the 3D space to form a tail shape

– because the estimated depth is not accurate around the

boundaries of the object. Therefore, predicting the object’s

size in 3D becomes challenging.

We propose two innovations to handle the above is-

sues: (1) To alleviate the local misalignment, we use a

2D-3D bounding box consistency constraint, adjusting the

predicted 3D bounding box to have a high overlap with its

corresponding 2D detected proposals after projecting onto

the image. During training, we formulate this constraint as

a bounding box consistency loss (BBCL) to supervise the

learning. During testing, a bounding box consistency opti-

mization (BBCO) is solved subject to this constraint using

a global optimization method to further improve the pre-

diction results. (2) To cut off the long tail and reduce the

number of points not belonging to the object in the point

cloud frustum, we use the instance mask as the representa-

tion of the 2D proposals as opposed to using the bounding

box in [34]. We argue that, in this way, the extracted point

cloud frustum is much cleaner, and thus making it easier to

1We use the same term as in [52] for virtual LiDAR but we emphasize

that this work is developed independently from [52] and finished before

[52] is published. Also, it contains significant innovations beyond [52].

predict the object’s size.

Our pipeline is shown in Figure 2. To date, we achieve

the top-ranked performance on bird’s eye view and 3D ob-

ject detection among all monocular methods on the KITTI

dataset. For 3D detection in moderate class with IoU of 0.7,

we raise the accuracy by up to 15.3% AP, nearly quadru-

pling the performance over the prior art [60] (from 5.7% by

[60] to 21.0% by ours). We emphasize that we also achieve

an improvement by up to 6.0% (from 42.3% to 48.3%) AP

over the best concurrent work [52] (its monocular variant),

in moderate class with IoU of 0.5.

Our contributions are summarized as follows: (1) We

propose a pipeline of monocular 3D object detection, en-

hancing the LiDAR-based methods to work with single im-

age input; (2) We show empirically that the bottleneck of

the proposed pipeline is the noise in the pseudo-LiDAR due

to inaccurate monocular depth estimation; (3) We propose

to use a bounding box consistency loss during training and

a consistency optimization during testing to adjust the 3D

bounding box prediction; (4) We demonstrate the benefit of

using instance mask as the representation of the 2D detected

proposals; (5) We achieve the state-of-the-art performance

and show an unprecedented improvement over all monocu-

lar methods on standard 3D object detection benchmark.

2. Related Work

LiDAR-Based 3D Object Detection. Existing works have

explored three ways of processing the LiDAR data for 3D

object detection: (1) As the convolutional neural networks

(CNNs) can naturally process images, many works focus on

projecting the LiDAR point cloud into the bird’s eye view

(BEV) images as a pre-processing step and then regress-

ing the 3D bounding box based on the features extracted

from the BEV images [2, 56, 57, 24, 20, 64, 59, 63]; (2) On

the other hand, one can divide the LiDAR point cloud into

equally spaced 3D voxels and then apply 3D CNNs for 3D

bounding box prediction [25, 62, 73]; (3) The most popu-

lar approach so far is to directly process the LiDAR point

cloud through the neural network without pre-processing

[22, 10, 45, 65, 61, 40, 41, 44, 11, 71, 16, 54, 34, 23]. To

this end, novel neural networks that can directly consume

the point cloud are developed [7, 35, 47, 69, 18, 53, 15]. Al-

though LiDAR-based methods can achieve remarkable per-

formance, they require that the high-resolution and precise

LiDAR point cloud is available.

Monocular 3D Object Detection. Unlike LiDAR-based

methods requiring the precise LiDAR point cloud, monoc-

ular methods only require a single image, posing the task

of 3D object detection more challenging. [6] proposes to

sample candidate bounding boxes in 3D and score their 2D

projection based on the alignment with multiple semantic

priors: shape, instance segmentation, context, and location.

[29] introduces a differentiable ROI lifting layer to predict



Figure 2: Proposed Pipeline. (a) Lift every pixel of input image to 3D coordinates given estimated depth to generate pseudo-

LiDAR; (b) Instance mask proposals detected for extracting point cloud frustum; (c) 3D bounding box estimated (blue) for

each point cloud frustum made to be consistent with corresponding 2D proposal. Inputs and losses are in red and orange.

the 3D bounding box based on features extracted from the

input image and depth estimate. On the other hand, instead

of estimating the pixel-wise depth for the entire scene, [37]

proposes a novel instance depth estimation module to pre-

dict the depth of the targeting 3D bounding box’s center. In

order to avoid using a coarse approximation (i.e., 3D bound-

ing box) to the true 3D extent of objects, previous works

[77, 12, 32, 75, 3, 58, 76, 21] have built fine-grained part-

based models or leverage the existing CAD model collec-

tions [4] in order to exploit rich 3D shape priors and rea-

son about occlusion in 3D. [33] enhances monocular 3D

object detection algorithm to work with the image captured

by 360° panoramic cameras.

Models leveraging the 2D-3D bounding box consistency

constraint are also related to our work. [31] proposes to

train a 2D CNN to estimate a subset of 3D bounding box

parameters (i.e., the object’s size and orientation). During

testing, they combine these estimates with the constraint to

compute the remaining of parameters, namely the object

center location. As a result, the prediction of the object

center location highly relies on the accuracy of the orienta-

tion and object size estimates. In contrast, we train a suc-

cessful PointNet-based 3D detection network and learn to

predict the complete set of parameters. Also, we formulate

the bounding box consistency constraint as a differentiable

loss during training and a constrained optimization during

testing to adjust 3D bounding box prediction. More impor-

tantly, we achieve an absolute AP improvement by up to

26.1% over [31] (from 5.6% to an unprecedented 31.7%) –

a surprising 5× improvement in performance.

The work of [52] and [60] both estimate the depth and

generate a pseudo-LiDAR point cloud from the single im-

age input for 3D detection. We go one step beyond them

by observing the local misalignment and long tail issues in

the noisy pseudo-LiDAR and propose to use bounding box

consistency constraint as a supervision signal and instance

mask as the representation of the 2D proposals to mitigate

the issues. We also show an absolute AP improvement by

up to 21.2% and 6.0% over [60] and [52] respectively.

Supervision via Consistency. Formulating a well-known

geometry constraint to a differentiable loss for training not

only provides a supervision signal for free but also makes

the outputs of the model geometrically consistent with each

other. [9] proposes a registration loss to train a facial land-

mark detector, forcing the outputs are consistent across ad-

jacent frames. [27, 66, 26, 67, 36] jointly predict the depth

and surface normal with a consistency loss forcing two out-

puts are compatible with each other. The multi-view su-

pervision loss is proposed in [48, 39, 49, 68, 70, 19], mak-

ing the prediction consistent across viewpoints. In addition,

[74, 42, 55, 5, 1, 72] propose the cycle consistency loss,

in the sense that if we translate our prediction into other

domain and translate back, we should arrive back to the

original input. In terms of consistency across dimensions,

[50, 21, 30] propose an inverse-graphics framework, which

makes the prediction in 3D and ensures its 2D projection

consistent with the 2D input. Similarly, our proposed BBCL

forces the projection of the predicted 3D bounding box to be

consistent with its 2D detected proposal.

3. Approach

Our goal is to estimate the oriented 3D bounding box of

objects from only a single RGB image. During both train-

ing and testing, we do not require any data from the LiDAR,
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Figure 3: Comparison of the 3D bounding box parameter-

ization between 8 corners [59], 4 corners with heights [20]

and ours. Our compact parameterization requires minimal

number of parameters for an oriented 3D bounding box.

stereo and depth camera. The only assumption is that the

camera matrix is known. Following [34], we parameterize

our 3D bounding box output as a set of seven parameters,

including the 3D coordinate of the object center (x, y, z),

object’s size h, w, l and its heading angle θ. Visualization

of our parameterization compared to others is illustrated in

Figure 3. We argue that our compact parameterization re-

quires the minimal number of parameters for an oriented 3D

bounding box.

In Figure 2, our pipeline consists of: (1) pseudo-LiDAR

generation, (2) 2D instance mask proposal detection and (3)

amodal 3D object detection with 2D-3D bounding box con-

sistency. Based on the pseudo-LiDAR and instance mask

proposals, point cloud frustums can be extracted, which

are passed to train the amodal 3D detection network. The

bounding box consistency loss and bounding box consis-

tency optimization are used to adjust the 3D box estimate.

3.1. Pseudo-LiDAR Generation

Monocular Depth Estimation. To lift the input image to

the pseudo-LiDAR point cloud, a depth estimate is needed.

Thanks to the successful work called DORN [13], we di-

rectly adopt it as a sub-network in our pipeline and initial-

ize it using pre-trained weights. For convenience, we do

not update the weights of the depth estimation network dur-

ing training, and it can be regarded as an off-line module to

provide the depth estimate. As our pipeline is agnostic to

the choice of monocular depth estimation network, we can

replace it with other networks if necessary.

Pseudo-LiDAR Generation. Our proposed pipeline can

enhance the LiDAR-based 3D detection network to work

with single image input, without the need for 3D sensors. To

this end, generating a point cloud from the input image that

can mimic the LiDAR data is the essential step. Given the

depth estimate and camera matrix, deriving the 3D location

(Xc, Yc, Zc) in the camera coordinate for each pixel (u, v)
is simply as:

Xc =
(u− cx)Zc

fx
(1)

Yc =
(v − cy)Zc

fy
(2)

Figure 4: Comparison between the LiDAR (top), pseudo-

LiDAR (middle) and an overlaid version (bottom). Two

types of noise discussed in Section 3.1 are indicated in or-

ange (local misalignment) and black (long tail) ellipses.

where Zc is the estimated depth of the pixel in the camera

coordinate and (cx, cy) is the pixel location of the camera

center. fx and fy are the focal length of the camera along x

and y axes. Given the camera extrinsic matrix C = [R t],
one can also obtain the 3D location of the pixel in the world

coordinate (X,Y, Z) by computing C−1[Xc, Yc, Zc]
T and

dividing by the last element. We refer to this generated 3D

point cloud as pseudo-LiDAR.

Pseudo-LiDAR vs. LiDAR Point Cloud. To make sure

the pseudo-LiDAR is compatible with the LiDAR-based al-

gorithms, it is natural to compare the pseudo-LiDAR with

the LiDAR point cloud via visualization. An example is

shown in Figure 4. We observe that, although the gen-

erated pseudo-LiDAR aligns well with the precise LiDAR



Figure 5: Effectiveness of Instance Mask Proposal. Top

left: 2D box proposal. Top right: Instance mask proposal.

Bottom left: Point cloud frustum lifted from 2D box pro-

posal with noisy long tail. Bottom right: Point cloud frus-

tum lifted from instance mask proposal with no tail. Ground

truth box corresponding to the frustum shown in red.

point cloud in terms of the global structure, there is a large

amount of local noise in the pseudo-LiDAR due to inaccu-

rate monocular depth estimation. This noise often reflects

in two ways: (1) The extracted point cloud frustum might

be largely off and there is a local misalignment with respect

to the LiDAR point cloud. This may result in a poor esti-

mate of the object center location, especially for the faraway

objects with more severe misalignment. For example, in the

orange eclipse of Figure 4, the point cloud frustums fall be-

hind their LiDAR counterpart; (2) The point cloud frustum

extracted from the pseudo-LiDAR often has a long tail be-

cause the estimated depth is not accurate around the bound-

aries of the object. Therefore, predicting the size of the

objects becomes challenging. An example of point cloud

frustum with the long tail is shown in the black eclipse of

Figure 4.

In addition, a distinction of the pseudo-LiDAR from

the LiDAR point cloud is the density of the point cloud.

Although a high-cost LiDAR can provide high-resolution

point cloud, the number of LiDAR points is still at least

one order of magnitude less than the pseudo-LiDAR point

cloud. We will show how the density of the point cloud

affects the performance in the experiment section.

3.2. 2D Instance Mask Proposal Detection

In order to generate a point cloud frustum for each ob-

ject, we first detect an object proposal in 2D. Unlike previ-

ous works using the bounding box as the representation of

the 2D proposals [54, 34, 52, 60], we claim that it is better to

use the instance mask, especially when the point cloud frus-

tum is extracted from the noisy pseudo-LiDAR and thus has

a large number of redundant points. We compare the gen-

erated point cloud frustum corresponding to the bounding

box and instance mask proposal in Figure 5. In the left col-

umn, we demonstrate that, when we lift all the pixels within

the 2D bounding box proposal into 3D, the generated point

cloud frustum has the long tail issue as discussed in Sec-

tion 3.1. On the other hand, in the right column of Figure

5, lifting only the pixels within the instance mask proposal
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(a) Results without BBC (b) Results with BBC

Figure 6: Effect of Bounding Box Consistency (BBC).

Top Row: Minimum bounding rectangle (MBR) of 3D box

estimate (white), instance mask (red). Bottom left: Poor

3D box estimate without BBC. Bottom right: Improved 3D

box estimate with BBC. Ground truth shown in red.

significantly removes the points not being enclosed by the

ground truth box, resulting in a point cloud frustum with no

tail. Specifically, we consider the Mask R-CNN [17] as our

instance segmentation network.

3.3. Amodal 3D Object Detection

Based on the generated pseudo-LiDAR and 2D instance

mask proposals, we can extract a set of point cloud frus-

tums, which are then passed to train a two-stage LiDAR-

based 3D detection algorithm for 3D bounding box predic-

tion. In this paper, we experiment with Frustum PointNets

[34]. In brief, we segment the point cloud frustum in 3D to

further remove the points not belonging to the objects. Then

we sample a fixed number of points from the segmented

point cloud for 3D bounding box estimation, including es-

timating the center (x, y, z), size h, w, l and heading angle

θ. Please refer to the Frustum PointNets [34] for details.

3.4. 2D-3D Bounding Box Consistency (BBC)

To alleviate the local misalignment issue, we use the ge-

ometry constraint of the bounding box consistency to re-

fine our 3D bounding box estimate. Given an inaccurate

3D bounding box estimate, it is highly possible that its 2D

projection also does not match well with the corresponding

2D proposal. An example is shown in Figure 6a. By adjust-

ing the 3D bounding box estimate in 3D space so that its 2D

projection can have a higher 2D Intersection of Union (IoU)

with the corresponding 2D proposal, we demonstrate that

the 3D IoU of 3D bounding box estimate with its ground

truth can be also increased, shown in Figure 6b.

Formally, we first convert the 3D bounding box esti-

mate (x, y, z, h, w, l, θ) to the 8 corner representation
{

(pnx , p
n
y , p

n
z )
}8

n=1
. Then its 2D projection {(un, vn)}

8

n=1

can be computed given the camera projection matrix. From

that, we can compute the minimum bounding rectangle

(MBR), which is a tuple te = (tex, t
e
y, t

e
w, t

e
h), representing

the smallest axis-aligned 2D bounding box that can enclose

the 2D point set {(un, vn)}
8

n=1
. Similarly, we can obtain

the MBR of the 2D mask proposal tp = (tpx, t
p
y, t

p
w, t

p
h).



The goal of the BBC is to increase the 2D IoU between the

2D bounding box te and tp.

Bounding Box Consistency Loss (BBCL). During train-

ing, we propose a PointNet-based 3D box correction mod-

ule2 for bounding box refinement. The 3D box correction

module takes the segmented point cloud and features ex-

tracted from the 3D box estimation module as the input,

and outputs a correction of the 3D bounding box parameters

(i.e., a residual). Then our final estimate Ef is the summa-

tion over the initial estimate Ei and the residual. The loss

can be formulated as follows:

Lbbc =
∑

i∈{x,y,w,h}

smoothL1
(tei − t

p
i ) (3)

Where te and tp can be computed deterministically from

the final estimate Ef and 2D mask proposal respectively

as described in Section 3.4. As the gradients can be back-

propagated through the entire network, we can thus train

our 3D detection network with BBCL end-to-end.

Bounding Box Consistency Optimization (BBCO). Dur-

ing testing, we further refine the final estimate with the BBC

constraint as a post-processing step. For each pair of the 3D

bounding box estimate and its 2D proposal, we solve the

same optimization problem and minimize the Lbbc in Equa-

tion 3 using a global search optimization method.

4. Experiments

4.1. Settings

Dataset. We evaluate on the KITTI bird’s eye view and 3D

object detection benchmark [14], containing 7481 training

and 7518 testing images as well as the corresponding Li-

DAR point clouds, stereo images, and full camera matrix.

We use the same training and validation split as [34]. We

emphasize again, during training and testing, our approach

does not use any LiDAR point cloud or stereo image data.

Evaluation Metric. We use the evaluation toolkit provided

by KITTI, which computes the precision-recall curves and

average precision (AP) with the IoU thresholds at 0.5 and

0.7. We denote the AP for the bird’s eye view (BEV) and

3D object detection as APBEV and AP3D respectively.

Baselines. We compare our method with previous state-of-

the-art: Mono3D [6], Deep3DBox [31] and MLF-MONO

[60]. To show the superiority of our method, we also com-

pare with three recent concurrent works: ROI-10D [29],

MonoGRNet [37] and PL-MONO [52].

4.2. Implementation Details

2D Instance Mask Proposal Detection. As only 200

training images with pixel-wise annotation are provided by

2Details of the specific architectures are described in the supplementary

KITTI instance segmentation benchmark, it is not enough

for training an instance segmentation network from scratch.

Therefore, we first train our instance segmentation network3

on Cityscapes dataset [8] with 3475 training images and

then fine-tune on the KITTI dataset.

Amodal 3D Object Detection. To analyze the full potential

of the Frustum PointNets [34] for 3D object detection with

pseudo-LiDAR, we experiment with its different variants in

our ablation study: (1) Removing the intermediate supervi-

sion from the 3D segmentation loss Lseg3d so that network

can only implicitly learn to segment point cloud via min-

imizing the 3D bounding box loss Lbox3d; (2) Removing

the TNet proposed in [34] for object center regression and

learning to predict the object center location using the 3D

box estimation module; (3) Varying number of points sam-

pled from the segmented point cloud to show the effect of

point cloud density.

Bounding Box Consistency Optimization (BBCO). We

use the differential evolution [46] as our global search op-

timization method to refine our 3D bounding box estimate

during testing. The final estimate from the network is used

as the initialization of the optimization method. The bounds

of the 3D bounding box parameters are linearly increasing

based on the object’s depth, i.e., the further the objects are,

the more their 3D bounding box can be adjusted.

4.3. Experimental Results

Comparison with State-of-the-Art Methods. We sum-

marize the bird’s eye view and 3D object detection results

(APBEV and AP3D) on KITTI val set in Table 1. Our method

consistently outperforms all monocular methods by a large

margin on all levels of difficulty with different evaluation

metrics. We highlight that, at IoU = 0.7 (moderate) – the

metric used to rank algorithms on the KITTI leader board

– we nearly quadruple the AP3D performance over previ-

ous state-of-the-art [60] (from 5.7 by MLF-MONO [60] to

21.0 by ours). We emphasize that we also achieve an im-

provement by up to 6.0% (from 42.3% by PL-MONO [52]

to 48.3% by ours) absolute AP3D over the best-performed

concurrent work [52] on the moderate set at IoU = 0.5. Ex-

amples of our 3D bounding box estimate on KITTI val set

are visualized in Figure 7.

Results on Pedestrian and Cyclist. We report APBEV and

AP3D results on KITTI val set for pedestrians and cyclists at

IoU = 0.5 in Table 2. We emphasize that the bird’s eye view

and 3D object detection from a single image for pedestrians

and cyclists are much more challenging than cars due to the

small sizes of the objects. Therefore, none4 of prior monoc-

3Details about the performance of our instance segmentation network

are in the supplementary material.
4To avoid confusion, we note that [52] is the first to present results on

pedestrians and cyclists from stereo input instead of monocular input.



Table 1: Quantitative comparison on KITTI val set. We report the average precision (in %) of car category on bird’s eye view

and 3D object detection as APBEV and AP3D. Top three rows are previous state-of-the-art methods and middle three rows

colored in green are concurrent works developed independently from our work. We outperform all monocular methods.

Method Input
APBEV / AP3D (in %), IoU = 0.5 APBEV / AP3D (in %), IoU = 0.7

Easy Moderate Hard Easy Moderate Hard

Mono3D [6] Monocular 30.5 / 25.2 22.4 / 18.2 19.2 / 15.5 5.2 / 2.5 5.2 / 2.3 4.1 / 2.3

Deep3DBox [31] Monocular 30.0 / 27.0 23.8 / 20.6 18.8 / 15.9 10.0 / 5.6 7.7 / 4.1 5.3 / 3.8

MLF-MONO [60] Monocular 55.0 / 47.9 36.7 / 29.5 31.3 / 26.4 22.0 / 10.5 13.6 / 5.7 11.6 / 5.4

ROI-10D [29] Monocular 46.9 / 37.6 34.1 / 25.1 30.5 / 21.8 14.5 / 9.6 9.9 / 6.6 8.7 / 6.3

MonoGRNet [37] Monocular - / 50.5 - / 37.0 - / 30.8 - / 13.9 - / 10.2 - / 7.6

PL-MONO [52] Monocular 70.8 / 66.3 49.4 / 42.3 42.7 / 38.5 40.6 / 28.2 26.3 / 18.5 22.9 / 16.4

Ours Monocular 72.1 / 68.4 53.1 / 48.3 44.6 / 43.0 41.9 / 31.5 28.3 / 21.0 24.5 / 17.5

Figure 7: Qualitative results of our proposed method on KITTI val set. We visualize our 3D bounding box estimate (in blue)

and ground truth (in red) on the frontal images (1st and 3rd rows) and pseudo-LiDAR point cloud (2nd and 4th rows).

Table 2: APBEV / AP3D performance on KITTI val set for

pedestrians and cyclists at IoU = 0.5.

Category Easy Moderate Hard

Pedestrian 14.4 / 11.6 13.8 / 11.2 12.0 / 10.9

Cyclist 11.0 / 8.5 7.7 / 6.5 6.8 / 6.5

ular works has ever reported the results for pedestrians and

cyclists. Although our reported APBEV and AP3D perfor-

mance for pedestrians and cyclists are significantly worse

than for cars, we argue that this is a good starting point for

future monocular work.

4.4. Ablation Study

Unless otherwise mentioned, we conduct all the ablative

analysis by progressively including modules in the network.

In the most basic setting, we use only the proposed pseudo-

LiDAR (+PLiDAR in Table 3) generated from the DORN

[13], without using the instance mask as the representation

of the 2D proposal and bounding box consistency to refine

the 3D bounding box estimate. Instead, it (i.e., +PLiDAR)

uses 2D bounding boxes detected by the Faster R-CNN [38]

as the 2D proposals and follows the original Frustum Point-

Net [34] for 3D bounding box estimation. We train the net-

work from scratch by random initializing its weights and

sample 512 points from the segmented point cloud for 3D

bounding box estimation. All positive ablative analysis is

summarized in Table 3 and negative analysis is in Table 4

5 and 6. The best-performed model, also illustrated in Fig-

ure 2, is the combination of using pseudo-LiDAR, instance

mask proposals, training with BBCL, testing with BBCO

and removing the TNet from the Frustum PointNets.

Instance Mask vs. Bounding Box Proposal. We replace

the bounding box proposals in +PLiDAR with our proposed



Table 3: Summarized positive ablative analysis on KITTI val set. We show individual and combined effects of using pseudo-

LiDAR (+PLiDAR), using instance mask (+Mask), training with bounding box consistency loss (+BBCL), testing with

bounding box consistency optimization (+BBCO) and removing the TNet from the amodal 3D detection network (-TNet).

Method
APBEV / AP3D (in %), IoU = 0.5 APBEV / AP3D (in %), IoU = 0.7

Easy Moderate Hard Easy Moderate Hard

+PLiDAR 71.4 / 66.2 49.8 / 42.5 42.8 / 38.6 40.4 / 28.9 26.5 / 18.2 22.9 / 16.2

+PLiDAR+Mask 70.8 / 64.7 51.4 / 44.5 44.4 / 40.4 41.2 / 29.4 27.8 / 19.8 24.2 / 17.5

+PLiDAR+BBCO 71.9 / 68.2 50.4 / 46.6 43.3 / 40.9 42.0 / 31.7 27.4 / 20.8 23.3 / 17.1

+PLiDAR+BBCL 71.7 / 68.5 50.3 / 46.5 43.2 / 40.5 41.6 / 31.3 27.0 / 20.8 23.1 / 17.1

+PLiDAR-TNet 70.4 / 66.0 49.8 / 42.6 42.7 / 38.6 41.7 / 29.4 26.4 / 18.5 23.0 / 16.4

+PLiDAR+Mask+BBCO 71.1 / 67.7 52.1 / 48.2 44.8 / 42.3 40.7 / 28.9 27.4 / 20.0 24.0 / 17.1

+PLiDAR+Mask+BBCO-TNet 71.1 / 68.1 52.3 / 48.3 44.8 / 42.2 41.5 / 28.5 28.3 / 20.3 24.1 / 17.2

Ours (+PLiDAR+Mask+BBCO-TNet+BBCL) 72.1 / 68.4 53.1 / 48.3 44.6 / 43.0 41.9 / 31.5 28.3 / 21.0 24.5 / 17.5

Table 4: Effect of 3D segmentation loss Lseg3d. APBEV and

AP3D results on KITTI val set for car category at IoU = 0.7.

loss Lseg3d Easy Moderate Hard

w/ (+PLiDAR) 40.4 / 28.9 26.5 / 18.2 22.9 / 16.2

w/o 32.9 / 21.8 22.4 / 15.5 20.4 / 14.8

Table 5: Effect of point cloud density. APBEV and AP3D

results on KITTI val set for car category at IoU = 0.7.

Num. of Points Easy Moderate Hard

4096 41.1 / 29.0 26.9 / 18.4 23.1 / 16.4

2048 41.1 / 28.9 26.3 / 18.2 22.9 / 16.2

1024 40.7 / 29.2 26.0 / 18.2 22.9 / 16.1

512 (+PLiDAR) 40.4 / 28.9 26.5 / 18.2 22.9 / 16.2

256 41.8 / 29.1 26.5 / 18.3 23.0 / 16.2

instance mask proposals in +PLiDAR+Mask. In Table 3,

we observe that +PLiDAR+Mask consistently outperforms

+PLiDAR about 1-2% AP on all subsets except for the easy

set at IoU = 0.5.

Effect of Bounding Box Consistency. In Table 3, we

compare +PLiDAR with +PLiDAR+BBCL (training the

network with bounding box consistency loss) and +PL-

iDAR+BBCO (applying bounding box consistency opti-

mization during testing). We show that either BBCL or

BBCO improves the performance significantly, e.g., AP3D

from 42.5% to 46.6% in the moderate set at IoU = 0.5.

Removing the TNet. We observe a mild improvement

when comparing +PLiDAR-TNet with +PLiDAR at IoU =

0.7 in Table 3. On the other hand, removing the TNet does

not make any obvious difference on all sets at IoU = 0.5.

Effect of 3D Segmentation Loss. In Table 4, we also com-

pare +PLiDAR with the variant trained without the 3D seg-

mentation loss Lseg3d. We observe a significant perfor-

mance drop, meaning that it is difficult to learn the point

cloud segmentation network without direct supervision.

Effect of Point Cloud Density. In Table 5, we compare

models trained with the different number of points sampled

Table 6: Fine-tuning vs. training from scratch. APBEV and

AP3D results on KITTI val set for car category at IoU = 0.7.

Initialization Easy Moderate Hard

random (+PLiDAR) 40.4 / 28.9 26.5 / 18.2 22.9 / 16.2

pre-trained 40.6 / 27.1 26.1 / 18.1 22.6 / 16.0

from the segmented point cloud before feeding into the 3D

box estimation module. Surprisingly, it turns out increasing

the point cloud density (e.g., from 512 to 4096 points) does

not improve the performance.

Fine-Tuning vs. Training from Scratch. In Table 6, we

compare +PLiDAR (i.e., training with randomly initialized

weights) with its variant, which initializes the weights from

the pre-trained model of Frustum PointNets. Surprisingly,

training with the pre-trained weights slightly drops the per-

formance. We argue that it is because the pre-trained model

provided by Frustum PointNets might have over-fitted on

the LiDAR point cloud data and cannot be easily adapted to

consume our pseudo-LiDAR input.

5. Conclusion

In this paper, we propose a novel monocular 3D ob-

ject detection pipeline that can enhance LiDAR-based al-

gorithms to work with single image input, without the need

of 3D sensors (e.g., the stereo camera, the depth camera or

the LiDAR). The essential step of the proposed pipeline is to

lift the 2D input image to a 3D point cloud, which we call

pseudo-LiDAR point cloud. To handle the local misalign-

ment and long tail issues caused by the noise in the pseudo-

LiDAR, we propose to (1) use a 2D-3D bounding box con-

sistency constraint to refine our 3D box estimate; (2) use

the instance mask proposal to generate the point cloud frus-

tum. Importantly, our method achieves the top-ranked per-

formance on KITTI bird’s eye view and 3D object detection

benchmark among all monocular methods, quadrupling the

performance over previous state-of-the-art. Although our

focus is monocular 3D object detection, our method can be

easily extended to work with stereo image input.
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