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Abstract

In this paper, we present ShelfNet, a novel architec-

ture for accurate fast semantic segmentation. Differ-

ent from the single encoder-decoder structure, ShelfNet

has multiple encoder-decoder branch pairs with skip con-

nections at each spatial level, which looks like a shelf

with multiple columns. The shelf-shaped structure can

be viewed as an ensemble of multiple deep and shallow

paths, thus improving accuracy. We significantly reduce

computation burden by reducing channel number, at the

same time achieving high accuracy with this unique struc-

ture. In addition, we propose a shared-weight strategy

in the residual block which reduces parameter number

without sacrificing performance. Compared with popu-

lar non real-time methods such as PSPNet, our ShelfNet

achieves 4× faster inference speed with similar accuracy

on PASCAL VOC dataset. Compared with real-time seg-

mentation models such as BiSeNet, our model achieves

higher accuracy at comparable speed on the Cityscapes

Dataset, enabling the application in speed-demanding tasks

such as street-scene understanding for autonomous driv-

ing. Furthermore, our ShelfNet achieves 79.0% mIoU

on Cityscapes Dataset with ResNet34 backbone, outper-

forming PSPNet and BiSeNet with large backbones such

as ResNet101. Through extensive experiments, we vali-

dated the superior performance of ShelfNet. We provide

link to the implementation https://github.com/

juntang-zhuang/ShelfNet-lw-cityscapes.

1. Introduction

Semantic segmentation is the key to image understand-

ing [8, 26], and is related to other tasks such as scene pars-

ing, object detection and instance segmentation [20, 47].

The task of semantic segmentation is to assign each pixel

a unique class label, and can be viewed as a dense classi-

fication problem. Recently many convolutional neural net-

works (CNN) have achieved remarkable results on seman-

tic segmentation tasks [23, 3, 44]. However, the success

of most deep learning models for semantic segmentation

comes at a price of heavy computation burden. The training

of CNNs on a large dataset such as PASCAL VOC [8] and

Cityscapes [6] typically takes several days on a single GPU,

and the running time during test phase is usually hundreds

of milliseconds (ms) or more, which hinders their applica-

tion in time-efficiency demanding tasks.

Real-time semantic segmentation has important appli-

cations, e.g., street scene understanding and autonomous

driving. Prior research on accelerating semantic segmenta-

tion includes removing redundancy of deep neural networks

through pruning [10, 11, 13] and distillation [30, 15, 35].

However, the running speed of these methods is typically

insufficient for fast semantic segmentation. Another way to

get faster running speed is to use a smaller model keeping

the same structure, but this strategy would inevitably yield

lower accuracy [45]. Therefore, we aim to propose a new

architecture for fast segmentation while maintaining satis-

fying accuracy.

Most state-of-the-art semantic segmentation models be-

long to the family of single “encoder-decoder” structure,

where the image is progressively down-sampled then up-

sampled. Here, we propose ShelfNet, which employs a

different structure like a multi-column shelf. As illus-

trated in Fig. 1(a), multi-scale features encoded by differ-

ent stages of a CNN backbone (e.g. ResNet) are fed into

the “segmentation shelf”. The segmentation shelf com-

prises of multiple encoder-decoder pairs with skip connec-

tions at each spatial resolution level. The unique structure

increases the number of paths to improve information flow

in the network, thus increasing the segmentation accuracy.

We demonstrate the high accuracy and fast running speed

of our ShelfNet on PASCAL VOC, PASCAL Context and

Cityscapes datasets.

Our main contributions are listed as follows:

1. We propose a novel architecture, ShelfNet (Fig. 1),

for accurate and fast semantic segmentation. Our ShelfNet

has a shelf structure of multiple encoder-decoder pairs to

improve information flow in the network.

2. In the segmentation shelf, we propose to share the



(a) Structure of ShelfNet.

(b) S-Block (Shared-weight resid-

ual block).

Figure 1: Structure and modules of the ShelfNet. (a) Architecture of ShelfNet. Rows A-D represent different spatial levels (e.g. for ResNet

backbone, the spatial sizes of A-D are 1/4, 1/8, 1/16 and 1/32 of input image respectively). Columns 1-4 represent different branches: 3 is

“encoder” (down-sample) branch while 2 and 4 are “decoder” (up-sample) branches; column 1 reduces the number of channels by 1 × 1

convolution followed by batch normalization and ReLU activation, and the numbers in column 1 represent the channel number of feature

maps. Features encoded by stages of backbone (column 0, i.e. ResNet) are fed into segmentation shelf. (b) Shared-weight residual block

(S-block) where two convolution layers share weights. The shape of feature maps are modified by transposed convolution layer (conv

trans) and convolution layer with stride 2 (conv stride). Input and output of a single S-block has the same shape; in the case of two inputs,

they are first summed up and fed into S-block.

weights of two convolutional layers in the same residual

block. This strategy greatly reduces the number of parame-

ters without sacrificing accuracy.

3. We validate the superior performance of ShelfNet

on various benchmark datasets. On the Cityscapes dataset,

our real-time ShelfNet with ResNet18 backbone achieved

75.8% mIoU at a comparable speed to BiSeNet; our non

real-time ShelfNet with ResNet34 achieves 79.0% mIoU,

outperforming PSPNet and BiSeNet with larger backbones

such as ResNet101.

2. Related Work

2.1. Semantic Segmentation

Semantic segmentation has been a hot topic for many

years. Before the recent rise of deep learning, early ap-

proaches mainly relied on handcrafted features such as

HOG [7] and SIFT [24]. Since the resurgence of deep learn-

ing, especially fully convolutional neural networks (FCN)

[23], deep learning models have been widely used for se-

mantic segmentation.

Like FCN, many models such as U-Net [36], RefineNet

[18] and SegNet [2] also have an encoder-decoder struc-

ture, and use a “convolution-downsample” strategy for the

encoder. The downsample layer reduces spatial resolution

and increases channel number.

Chen et al. proposed DeepLab [3] based on dilated con-

volution. Instead of down-sampling, a dilated CNN grad-

ually increases dilation rate to increase the size of recep-

tive field, but does not shrink the size of the output tensor.

Therefore, compared with the “conv-downsample” strategy,

the dilated CNN has a better spatial resolution at a higher

computation cost. For example, a standard ResNet shrinks

image size to 1/32 of input size, while a dilated ResNet

shrinks image size to 1/4 of input size. State-of-the-art net-

works, such as DeepLab[3], PSPNet [44] and EncNet [43],

are based on dilated CNN, and thus are not suitable for time-

efficiency demanding tasks.

2.2. Real-time Semantic Segmentation

There have been several approaches for real-time se-

mantic segmentation by modifying a large network to a

light-weight version. For example, ICNet [45] is a mod-

ification of PSPNet and deals with multiple image scales,

but the robustness to low-resolution is not extensively val-

idated. Light-Weight RefineNet is a modification of Re-

fineNet [27], where the kernel sizes of some convolutional

layers are reduced from 3 × 3 to 1 × 1. However, most

of the real-time models, such as GUN [25], EffConv [34]

and ENet [31], achieve high running speed at the cost of

low accuracy. The recently proposed BiSeNet [41] uses a

shallow branch to capture spatial information, and a deep



branch to capture context information. However, it’s dif-

ficult for BiSeNet to deal with high-level features com-

bined from different branches. All models mentioned in this

paragraph can be viewed as modifications of the encoder-

decoder structure. In this project, we propose a network

with multiple encoder-decoder pairs (e.g. columns 3 and

4 in Fig. 1) and skip connections at different spatial lev-

els (e.g. rows A-D in Fig. 1), and demonstrate its superior

performance over previous methods both in inference speed

and segmentation accuracy.

3. Methods

3.1. Structure of ShelfNet

We propose ShelfNet, a multi-column convolutional

neural network for semantic segmentation as shown in Fig.

1. Different from the standard single encoder-decoder struc-

ture, our shelf-structure network introduces more paths to

improve the information flow.

As shown in Fig 1, our ShelfNet relies on a backbone

network. Different CNN architectures can be used as the

backbone, such as ResNet [14], Xception [5] and DenseNet

[16]. The backbone outputs feature maps of different spatial

scales, named as rows A to D in Fig. 1. Take ResNet back-

bone for example, the spatial sizes of feature maps are 1/4,

1/8, 1/16, 1/32 of the input size at levels A-D, respectively.

Feature maps encoded by different stages of the backbone

are fed into the segmentation shelf.

The segmentation shelf has a shelf-shaped multi-column

structure where columns are named with numbers 1 to 4.

We name column 3 as an encoder branch (down-sample

branch), and name column 2 and 4 as decoder branches (up-

sample branch). Between adjacent columns (e.g. column 3

and 4), there are skip connections at different spatial scale

stages (A-D).

Stage-wise features encoded by column 1 are then

passed to succeeding Shared-weight blocks (S-block) in

column 2. The S-Block serves as a residual-block but with

fewer parameters. Here, the S-block combines the features

passed from the vertical direction and lateral direction. As

shown in Fig. 1(b), the two inputs are first summed up be-

fore feeding into the succeeding part. For the exception at

A3 and D4 where there is only one input, the summing up

step is skipped. As a residual-block, the input and output of

a S-block has the same shape.

For the encoder branch at column 3, the feature maps

are passed into a convolution layer with a stride of 2 (conv

stride in Fig. 1), to halve the spatial size and double the

channel number (e.g. B3 to C3). Similarly, in the decoder

branches at column 2 and 4, feature maps are passed into

a transposed convolution layer (conv trans in Fig. 1) with a

stride of 2, to double the spatial size and halve the channel

number (e.g. C2 to B2). Finally, output from block A4 goes

through a 1×1 convolutional layer and a softmax operation

to generate the final segmentation.

3.2. Channel Reduction for Faster Inference Speed

The backbone feature maps typically have a large chan-

nel number (e.g. 2048 at level D for ResNet50). For faster

inference speed, we reduce the number of feature map chan-

nels with 1× 1 convolution followed by a batch-norm layer

and ReLU activation (e.g. for ResNet50, channel number

of feature maps are reduced from 256, 512, 1024, 2048 to

64, 128, 256, 512 for levels A-D respectively). As shown in

column 1 in Fig. 1, channel number is reduced by a 1 × 1
convolution, batch-normalization and ReLU activation.

We theoretically show that reducing channel number sig-

nificantly improves inference speed. The computation bur-

den of a convolution with stride 1 is H ×W ×K2
×Cin ×

Cout, where H,W are spatial sizes, K is the kernel size,

and Cin are Cout are channel number of input and output

respectively. Simply reducing Cin and Cout by a factor of 4

quadratically reduces the computation burden to 1

16
. Even

with two extra columns in the shelf structure, the computa-

tion burden is 2× 1

16
= 1

8
, thus is faster.

Figure 2: ShelfNet (gray background, the structure is the same as

Fig. 1) can be viewed as an ensemble of FCNs. A few examples

of information flow paths are marked with different colors. Each

path is equivalent to an FCN (except that there are pooling layers

in ResNet backbone). The equivalence to an ensemble of FCNs

enables ShelfNet to perform accurate segmentation.

3.3. ShelfNet as an Ensemble of FCNs

ShelfNet can also be viewed as an ensemble of FCNs.

Andreas et al. [37] argued that ResNet behaves like an en-

semble of shallow networks, because the residual connec-

tions provide multiple paths for efficient information flow.

Similarly, ShelfNet provides multiple paths of information

flow. For ease of representation, we denote backbone as

column 0 and list a few paths here as an example as shown

in Fig. 2: (1) (Blue line in Fig. 2) A0 → A1 → A2 →



A3 → A4, (2) (Green line in Fig. 2) A0 → A1 → A2 →

A3 → B3 → C3 → C4 → B4 → A4, (3) (Red line in

Fig. 2)A0 → B0 → B1 → B2 → A2 → A3 → A4, (4)

(Orange line in Fig. 2) A0 → B0 → C0 → D0 → D1 →

D2 → C2 → B2 → B3 → C3 → C4 → B4 → A4.

Each path can be viewed as a variant of FCN (except that

there are pooling layers in ResNet backbone). Therefore,

ShelfNet has the potential to capture more complicated fea-

tures and produce higher accuracy.

The effective number of FCN paths in ShelfNet is much

larger than SegNet [2], which is a single encoder-decoder

pair with skip connections. The total number of paths grows

exponentially with the number of encoder-decoder pairs

(e.g columns 0 and 2, 3 and 4 are two pairs) and the number

of spatial levels (e.g., A to D in Fig. 1). Not considering

the effective paths generated from residual connections in

backbone, for a SegNet with 4 spatial levels (A-D), the total

number of FCN paths is 4; for a ShelfNet with the same spa-

tial levels, the total number of FCN paths is 29. The unique

structure of ShelfNet significantly increases the number of

effective FCN paths, thus achieving a higher accuracy.

3.4. Ensemble of Deep and Shallow Paths

GridNet [9] also has a multi-column structure. We il-

lustrate the key difference between ShelfNet and GridNet

in Fig. 3 by simplifying the structure. When stacking the

same number of encoder-decoder blocks, the information

path in ShelfNet can go much deeper. For example, the

deepest path in ShelfNet goes through all 16 blocks, while

GridNet can only use 10 blocks. The difference in depth

is even bigger with more “downsample-upsample” branch

pairs. Our ShelfNet takes advantage of ensemble informa-

tion from a variety of shallow and deep paths, like the suc-

cess of ResNet.

Figure 3: Deepest path (orange curve) in ShelfNet and GridNet.

3.5. Shared-weights Residual Block (S-block)

Compared with SegNet, the larger effective number of

FCN paths comes at a price of extra blocks. To reduce the

model size, we propose a modified residual block (S-Block)

as shown in Fig. 1(b). Here we use it only in the segmenta-

tion shelf. The two convolutional layers in the same block

share the same weights while the two batch normalization

layers are different. The shared-weights design that reuses

weights of convolution is similar to the recurrent convolu-

tional neural network (RCNN) [1] and recursive convolu-

tional network [17]. A drop-out layer is added between

two convolutional layers to avoid overfitting. The shared-

weights residual block combines the strength of skip con-

nection, recurrent convolution and drop-out regularization

while using many fewer parameters than a standard residual

block.

4. Experiments and Results

We carried out extensive experiments to validate the fast

inference speed and high accuracy of ShelfNet on three pub-

lic datasets: PASCAL VOC 2012, PASCAL Context and

Cityscapes. Performance is measured by mean intersection

over union (mIoU). To test inference speed, we feed a single

image to the network, and measure the mean running time

of 100 repetitions. We first introduce the datasets and in-

plementation details, then provide an ablation analysis for

ShelfNet, finally we compare the performance with state-

of-the-art methods.

4.1. Datasets and Implementation Details

4.1.1 PASCAL VOC 2012

PASCAL VOC 2012 [8] contains 20 object classes with one

background class. We use the augmented PASCAL VOC

dataset [12] containing 10582, 1449 and 1456 images for

training, validation and test set. MS COCO [20] is also used

as extra training data to generate higher accuracy.

4.1.2 PASCAL-Context

PASCAL-Context dataset [26] provides dense labels for the

whole image with 59 classes and a background class. There

are 4,998 training images and 5,105 test images.

4.1.3 Cityscapes

Cityscapes [6] consists of images for 50 cities in different

seasons and are annotated with 19 categories. It contains

2975, 500 and 1525 fine-labeled images for training, vali-

dation and test respectively. More than 20,000 images with

coarse annotations are also provided.

4.1.4 Implementation Details

All models are implemented with PyTorch [32]. Learn-

ing rate is scheduled in the form lr = baselr × (1 −

iter
total iter

)power with power = 0.9 as in [43], and cross-

entropy loss is used. The weight-decay is set as 10−4. For

Pascal VOC, the model is first trained with Stochastic Gra-

dient Descent (SGD) optimizer on MS COCO dataset for

30 epochs with a base learning rate of 0.01, then trained

on PASCAL augmented dataset for 50 epochs with a base



learning rate of 0.001, and finally fine-tuned on original

PASCAL VOC dataset for 50 epochs with a base learning

rate of 0.0001. For PASCAL-Context, we train our model

with SGD optimizer for 80 epochs with cross-entropy loss.

The base learning rate is set as 0.001. For Cityscapes

dataset, we train the model using fine-labelled images, with

an initial learning rate of 0.01.

For data augmentation, the image is randomly flipped

and scaled between 0.5 to 2. The images are also randomly

rotated between -10 and 10 degrees. The image is cropped

into size 512 × 512 for PASCAL VOC and PASCAL Con-

text datasets, and cropped into 1536 × 768 for Cityscapes

dataset. For final prediction results, we predict the segmen-

tation masks on multi-scale inputs ranging from 0.5 to 2 and

calculate their average.

4.2. Ablation Analysis

4.2.1 Ablation Study for Structure

We conduct the ablation analysis on PASCAL VOC valida-

tion dataset, and train all models with the same strategy as

in Sec. 4.1.4. The results are summarized in Table 1. Num-

bers after model name represent which column in Fig. 1 is

present.

First we show the shelf-shaped structure, which in-

creases the number of paths for information flow, is the key

to high performance. Compared with FCN, SegNet uses

columns 0,1 and 2, and uses low-level features, thus gen-

erating a higher mIoU. We use W-Net which has a similar

structure compared to ShelfNet, except skip connections be-

tween (B2,C2) and (B3,C3) are removed in W-Net. W-Net

is equivalent to stacked hourglass network (SHN) [28]. The

number of paths for information flow from input to output

has the following order: ShelfNet>W-Net> SegNet>FCN,

and we observe the same order of segmentation accuracy,

which validates our argument.

We further validate that the improvement in accuracy

comes from increased number of paths, not increased num-

ber of parameters. We reduce the number of channels in a

ShelfNet by half (e.g. reduce from 64 to 32 channels for

A2), but keep the backbone unchanged. This reduces the

parameter number from 38.7M to 29.2M, but generates a

comparable result (mIoU drops from 88.26% to 85.52%),

and the result is much better compared to FCN with more

parameters (35.0M).

4.2.2 Shared-weights Blocks (S-Block)

We evaluate the effect of Shared-weights blocks (S-blocks)

by replacing S-blocks in the segmentation shelf with not-

shared-weight version of residual blocks. Both versions use

the same ResNet50 backbone provided by PyTorch official

website [32]. Both models are trained with SGD optimizer

on PASCAL augmented dataset for 50 epochs with a base

Backbone Model A2 # Channels # Parameter mIoU Accuracy

ResNet50 FCN (0) 35.0M 66.11 91.0

ResNet50 SegNet (0,1,2) 64 31.7M 86.90 96.77

ResNet50 ShelfNet (0,1,2,3,4) 32 29.2M 85.52 96.37

ResNet50 W-Net (0,1,2,3,4) 64 38.7M 86.98 96.79

ResNet50 ShelfNet (0,1,2,3,4) 64 38.7M 88.26 97.09

Xception ShelfNet (0,1,2,3,4) 64 35.9M 85.99 96.54

Table 1: Comparison of different structures on PASCAL VOC

validation dataset. Numbers in the column named “Model” rep-

resents which column in Fig. 1 is present, and column 0 repre-

sents the backbone. For example, FCN only has a single column

0 followed by a convolution layer, SegNet has columns 0, 1 and

2, ShelfNet has columns 0 to 4 with skip connections between

column 2 and 3, while W-Net has columns 0 to 4 without skip

connections between (B2,C2) and (B3,C3).

Share-weights # Parameter mIoU Accuracy

45.8M 88.02 97.01

� 38.7M 88.26 97.09

Table 2: Comparison of ShelfNet with ResNet50 backbone us-

ing shared-weights and conventional residual blocks on PASCAL

VOC 2012 validation dataset.

learning rate of 0.01, and finally fine-tuned on original PAS-

CAL VOC 2012 dataset for 50 epochs with a base learning

rate of 0.001. We test them on the PASCAL VOC valida-

tion dataset, and results are summarized in Table 2. The

shared-weight strategy reduces the number of parameters

from 45.8M to 38.7M without sacrificing the accuracy. In

our experiment the shared-weights strategy even generates

a slightly higher mIoU (88.26%) compared to the conven-

tional residual block (88.02%).

4.2.3 Speed Analysis for Backbone

ShelfNet is a flexible architecture and can be used with var-

ious backbone models. We summarize the inference speed

of different backbones in Table 3, and show that dilated

convolution significantly reduces the inference speed. “Di-

lated” means the network uses dilated convolution to in-

crease receptive field instead of a pooling layer. The number

of flops of a convolution layer is calculated as:

Computation = C1 × C2 ×K1 ×K2 ×H ×W (1)

where C1, C2 are channel numbers of the input and output

tensors, K1,K2 are sizes of the kernel, and H,W are sizes

of the feature map. A dilated convolution network will gen-

erate a larger H,W , therefore is computationally intensive.

As shown in Table 3, with the same network structure, a

dilated version has about 5× larger computation burden.

State-of-the-art semantic segmentation networks such as

DeepLabv3 and PSPNet use dilated residual network as the

backbone, while ShelfNet uses an undilated version. There-

fore, ShelfNet is much faster. The speed up mainly comes



from computation reduction of the backbone.

Backbone Dilated # Parameter FPS Flops

ResNet18 11.7M 286 9.5G

ResNet18 � 11.7M 59 48.2G

ResNet50 35.6M 100 21.4G

ResNet50 � 35.6M 28 99.8G

ResNet101 44.5M 56 40.8G

ResNet101 � 44.5M 15 177.5G

Xception 22.9M 67 24.2G

Table 3: Inference speed of different backbones. “Dilated” means

the network uses dilated convolution.

4.3. Results

4.3.1 PASCAL VOC 2012

Comparison with non real-time models We evaluate the

segmentation results on the PASCAL evaluation server. Ex-

emplary results are shown in Fig. 4. The detailed results

are summarized in Table 4 and Table 5. For a fair com-

parison, we implemented ShelfNet and several state-of-the-

art segmentation models with PyTorch and measured their

inference speed on a single GTX 1080Ti GPU. ShelfNet

with ResNet18, ResNet50 and ResNet101 backbone are

named as ShelfNet18, ShelfNet50 and ShelfNet101 for

short respectively. When trained only on augmented PAS-

CAL training set and fine-tuned on original PASCAL VOC

dataset, ShelfNet18, ShelfNet50 and ShelfNet101 achieve

74.0%, 79.0% and 81.1% mIoU respectively. When trained

on both MS COCO and PASCAL dataset, they achieve

79.3%, 82.8% and 84.2% mIoU respectively. We provide

anonymous links to our results12.

Compared to state-of-the-art semantic segmentation

models such as PSPNet [44] and EncNet [43], ShelfNet

achieves a comparable mIoU but generates 4 to 5 times

speed-up during inference (59 FPS for ShelfNet50 and 42

FPS for ShelfNet101, 11 FPS for PSPNet and 12 FPS for

EncNet). Compared to DeepLabv2, our ShelfNet achieves

comparable mIoU (79.3% vs 79.7%) but achieve almost

10× speed up (103FPS vs 12 FPS). Compared with large

networks such as PSPNet and DeepLab, our ShelfNet is

faster mainly because there’s no dilation in the backbone,

thus less computation, as shown in Table 3.

Comparison with real-time models Lightweight-

RefineNet (LWRF) [27] is one of the state-of-the-art

real-time semantic segmentation models. Comparisons

between our ShelfNet and LWRF are summarized in Table

6. ShelfNet50 achieves higher accuracy (82.8%) than

1http://host.robots.ox.ac.uk:8080/anonymous/

5NMB0K.html
2http://host.robots.ox.ac.uk:8080/anonymous/

KAZMJD.html

LWRF with a ResNet 152 backbone (82.7%) and RefineNet

with a ResNet101 backbone (82.4%). Compared to Re-

fineNet and LWRF, the better performance with a much

smaller backbone of ShelfNet validates the efficiency of

the proposed shelf-like structure in feature extraction. Our

ShelfNet with Resnet101 backbone achieves the highest

accuracy (84.2%) compared to all RefineNet and LWRF

models.

In addition to the higher accuracy, ShelfNet achieves

faster inference speed compared with LWRF when using

the same backbone. Unlike LWRF, our ShelfNet reduces

channel number with a 1× 1 convolution as in column 1 in

Fig. 1. For levels A to D, LWRF uses 256, 256, 256, 512

channels, while in ShelfNet it’s reduced to 64, 128, 256,

512. As mentioned in Sec. 3.2, the computation for a conv

layer is H × W × K2
× C2,hence quadratically reduced

to ( 64

256
)2 = 1

16
for level A; even with two more columns,

overall the computation burden is reduced to 2 ×
1

16
= 1

8
.

Therefore, our ShelfNet is faster.

Figure 4: Examples on PASCAL VOC. Columns from left

to right represent: input images, ground truth annotations,

predictions from ShelfNet with ResNet50 backbone, pre-

dictions from ShelfNet with ResNet101 backbone.

4.3.2 PASCAL-Context

Examples of ShelfNet on PASCAL-Context test set are

shown in Fig. 5. The detailed results are summarized

in Table 7. DeepLab-v2 achieves 45.7% mIoU with MS

COCO as extra training data, while our ShelfNet achieves

45.6% and 48.4% with ResNet50 and ResNet101 respec-

tively without extra training data. RefineNet achieves

47.3% mIoU at the speed of 29 FPS, while our ShelfNet

achieves 45.6% mIoU at 59 FPS with ResNet50 backbone,

and 48.4% mIoU at 42 FPS with ResNet100 backbone.

ShelfNet has both higher accuracy and faster running speed



Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU FPS # Param

FCN [23] 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2 -

DeepLabv2 [3] 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6 -

CRF-RNN [46] 87.5 39.0 79.7 64.2 68.3 87.6 80.8 84.4 30.4 78.2 60.4 80.5 77.8 83.1 80.6 59.5 82.8 47.8 78.3 67.1 72.0 -

Deconvnet [29] 89.9 39.3 79.7 63.9 68.2 87.4 81.2 86.1 28.5 77.0 62.0 79.0 80.3 83.6 80.2 58.8 83.4 54.3 80.7 65.0 72.5 -

GCRF [38] 85.2 43.9 83.3 65.2 68.3 89.0 82.7 85.3 31.1 79.5 63.3 80.5 79.3 85.5 81.0 60.5 85.5 52.0 77.3 65.1 73.2 -

DPN [22] 87.7 59.4 78.4 64.9 70.3 89.3 83.5 86.1 31.7 79.9 62.6 81.9 80.0 83.5 82.3 60.5 83.2 53.4 77.9 65.0 74.1 -

Piecewise [19] 90.6 37.6 80.0 67.8 74.4 92.0 85.2 86.2 39.1 81.2 58.9 83.8 83.9 84.3 84.8 62.1 83.2 58.2 80.8 72.3 75.3 -

ResNet38 [40] 94.4 72.9 94.9 68.8 78.4 90.6 90.0 92.1 40.1 90.4 71.7 89.9 93.7 91.0 89.1 71.3 90.7 61.3 87.7 78.1 82.5 13 55.9M

PSPNet [44] 91.8 71.9 94.7 71.2 75.8 95.2 89.9 95.9 39.3 90.7 71.7 90.5 94.5 88.8 89.6 72.8 89.6 64.0 85.1 76.3 82.6 11 67.6M

EncNet [43] 94.1 69.2 96.3 76.7 86.2 96.3 90.7 94.2 38.8 90.7 73.3 90.0 92.5 88.8 87.9 68.7 92.6 59.0 86.4 73.4 82.9 12 54.5M

ShelfNet18 81.6 56.7 89.7 62.3 69.6 88.5 82.8 88.4 30.5 82.1 63.5 80.9 82.3 82.6 81.2 62.1 81.3 55.4 75.2 62.7 74.0 103 23.5M

ShelfNet50 94.0 63.2 86.1 68.9 73.3 93.6 87.7 91.5 31.4 87.1 67.9 89.5 88.8 86.2 85.5 69.9 88.5 56.1 82.4 72.3 79.0 59 38.7M

ShelfNet101 93.6 64.2 86.9 69.7 76.2 93.4 90.5 94.4 37.0 91.7 71.1 91.2 91.5 88.9 86.2 72.7 92.6 58.5 85.8 72.4 81.1 42 57.7M

Table 4: Results on PASCAL VOC test set without pre-training on COCO. ShelfNet with ResNet18, ResNet50 and

ResNet101 as backbone are named as ShelfNet18, ShelfNet50 and ShelfNet101 respectively. We implemented several mod-

els and measured the inference speed on a 512× 512 image as input with a single GTX 1080Ti GPU.

Method aero bike bird boat bottle bus car cat chair cow tale dog horse mbike person plant sheep sofa train tv mIoU FPS # Param

CRF-FCN [46] 90.4 55.3 88.7 68.4 69.8 88.3 82.4 85.1 32.6 78.5 64.4 79.6 81.9 86.4 81.8 58.6 82.4 53.5 77.4 70.1 74.7 -

Dilation8 [42] 91.7 39.6 87.8 63.1 71.8 89.7 82.9 89.8 37.2 84 63 83.3 89 83.8 85.1 56.8 87.6 56 80.2 64.7 75.3 -

DPN [22] 89 61.6 87.7 66.8 74.7 91.2 84.3 87.6 36.5 86.3 66.1 84.4 87.8 85.6 85.4 63.6 87.3 61.3 79.4 66.4 77.5 -

Piecewise [19] 94.1 40.7 84.1 67.8 75.9 93.4 84.3 88.4 42.5 86.4 64.7 85.4 89 85.8 86 67.5 90.2 63.8 80.9 73 78.0 -

DeepLabv2 [3] 92.6 60.4 91.6 63.4 76.3 95 88.4 92.6 32.7 88.5 67.6 89.6 92.1 87 87.4 63.3 88.3 60 86.8 74.5 79.7 12 43.9M

RefineNet [18] 95 73.2 93.5 78.1 84.8 95.6 89.8 94.1 43.7 92 77.2 90.8 93.4 88.6 88.1 70.1 92.9 64.3 87.7 78.8 83.4 14 118M

ResNet38 [40] 96.2 75.2 95.4 74.4 81.7 93.7 89.9 92.5 48.2 92 79.9 90.1 95.5 91.8 91.2 73 90.5 65.4 88.7 80.6 84.9 13 55.9M

PSPNet [44] 95.8 72.7 95 78.9 84.4 94.7 92 95.7 43.1 91 80.3 91.3 96.3 92.3 90.1 71.5 94.4 66.9 88.8 82 85.4 11 67.6M

DeepLabv3 [4] 96.4 76.6 92.7 77.8 87.6 96.7 90.2 95.4 47.5 93.4 76.3 91.4 97.2 91 92.1 71.3 90.9 68.9 90.8 79.3 85.7 8 58.0M

EncNet [43] 95.3 76.9 94.2 80.2 85.2 96.5 90.8 96.3 47.9 93.9 80 92.4 96.6 90.5 91.5 70.8 93.6 66.5 87.7 80.8 85.9 12 54.5M

ShelfNet18 92.7 64.4 91.8 72.3 76.0 90.6 84.4 91.1 34.8 89.5 68.2 83.6 88.1 86.8 85.5 70.6 85.6 62.0 83.5 68.7 79.3 103 23.5M

ShelfNet50 95.6 71.5 94.2 72.4 74.3 94.1 88.4 92.6 35.6 93.9 77.8 88.2 95.5 89.7 88.7 71.3 91.4 61.6 87.9 77.1 82.8 59 38.7M

ShelfNet101 95.4 73.9 94.9 75.7 83.2 96.3 91.2 93.9 35.3 90.0 79.4 90.2 94.2 92.8 90.1 73.2 92.3 64.5 88.0 77.5 84.2 42 57.7M

Table 5: Results on PASCAL VOC test set with pre-training on COCO.

Model RefineNet-101 RefineNet-152 RefineNet-LW-50 RefineNet-LW-101 RefineNet-LW-152 ShelfNet-18 ShelfNet-50 ShelfNet-101

mIoU, % 82.4 83.4 81.1 82.0 82.7 79.3 82.8 84.2

FPS 19 16 53 37 29 103 59 42

Table 6: Results on PASCAL VOC test set. Comparison with RefineNet and Lightweight-RefineNet (RefineNet-LW). Numbers represent

the number of layers in backbone ResNet.

Figure 5: Example predictions of ShelfNet on PASCAL

Context dataset.

compared with RefineNet. EncNet achieves a higher mIoU

of 51.7%; this is because EncNet uses dilated convolution

and sacrifices the inference speed. The inference speed of

ShelfNet is 4 to 5 times faster than EncNet as shown in Ta-

ble 5. Overall, our ShelfNet achieves high mIoU with fast

inference speed.

Model BaseNet mIoU, % FPS # Parameters

FCN-8s [23] 37.8

CRF-RNN [46] 39.3

ParseNet [21] 40.4

Piecewise [19] 43.3

DeepLab-v2[3] Res101-COCO 45.7 12 43.9M

RefineNet [18] Res101 47.1 19 118M

RefineNet [18] Res152 47.3 16 134M

EncNet [43] 51.7 12 54.5M

ShelfNet50 Res50 45.6 59 38.7M

ShelfNet101 Res101 48.4 42 57.7M

Table 7: Segmentation results on PASCAL-Context dataset

4.3.3 Cityscapes

For non real-time tasks, we used the same structure as in

Fig. 1, which is used for experiments on PASCAL datasets.

For real-time tasks, we modified the network for a light-

weight structure, denoted as ShelfNet-lw.



Figure 6: Results of ShelfNet on Cityscapes validation dataset. Results from real-time models are generated from single scale test.

Light-weight ShelfNet We further modify our ShelfNet

into a light-weight version (ShelfNet-lw). Different from

Fig. 1, in ShelfNet-lw, only features from levels B, C, D

are fed into the segmentation shelf; features in level A are

not used. For ShelfNet34-lw, we set the channel number

for B, C, D as 128, 256, 512 respectively; for ShelfNet18-

lw, we set the channel number for B, C, D as 64, 128, 256

respectively, further reducing the computation burden. We

replace the conv transpose layer with a direct upsampling

to reduce number of parameters, and replace S-block in the

upsample branch with a conv-bn-relu along with channel

attention. For training of our light-weight ShelfNet, we use

online hard example mining loss and distributed training to

match the training scheme for BiSeNet.

Method mIoU (test)

EffiConv[34] 68.0

ICNet[45] 69.5

ENet[31] 58.3

GUN[25] 70.4

ContextNet[33] 66.1

BiSeNet(Res18) [41] 74.7

ShelfNet18-lw 74.8

(a) Real-time performance

Model Backbone val test

RefineNet [18] Res101 - 73.6

DeepLabv2 [3] Res101 71.4 70.4

DUC [39] Res152 76.7 76.1

PSP [44] Res101 - 78.4

BiSeNet [41] Res101 80.3 78.9

ShelfNet50 Res50 - 74.1

ShelfNet101 Res101 - 77.5

ShelfNet34-lw Res34 80.0 79.0

(b) Non real-time performance

Table 8: Mean IoU (%) for Cityscapes dataset. Real-time

ShelfNet was evaluated on single scale input. Light-weight

ShelfNet is marked with -lw.

Input size EffConv ICNet ENet GUN Context BiSeNet ShelfNet18-lw

1024x2048 - 30.3 - 33.3 18.3 37.0 36.9

1920x1280 11.4 - 21.6 - - 31.3 31.2

768x1536 - - - - - 61.7 59.2

Table 9: Speed analysis (FPS) for a single forward pass. BiSeNet

and ShelfNet use ResNet18 as backbone and are tested on a single

GTX 1080Ti GPU. Speed for other models are from the literature.

Numerical results For non real-time tasks, we average

results from multi-scale evaluations; for real-time tasks, we

use single-scale evaluation.

The results are summarized in Fig. 6, Table 8 and Ta-

ble 9. ShelfNet50 achieves 74.1% mIoU, and ShelfNet101

achieves 77.5% mIoU.

Our ShelfNet achieves significant improvement in both

inference speed and accuracy. Our ShelfNet18-lw achieved

74.8% mIoU with single-scale evaluation, surpassing all

existing real-time models. In terms of inference speed,

our ShelfNet18-lw achieves comparable inference speed as

BiSeNet, surpassing previous real-time models such as IC-

Net and GUN.

Our ShelfNet34-lw achieves the highest mIoU of 79.0%

on Cityscapes test set. Our model outperforms previous non

real-time models with a large backbone such as ResNet101,

which provides strong evidence for the effectiveness of our

shelf-shaped structure. We provide links to results34.

5. Conclusion

We proposed ShelfNet for fast semantic segmentation,

which has multiple pairs of encoder-decoder branches with

skip connections between adjacent branches. The unique

shelf-shaped structure enables multiple paths for informa-

tion flow and achieves high accuracy; the shared-weight de-

sign in the S-block significantly reduces parameter number

without sacrificing accuracy. We validated the high segmen-

tation accuracy and fast running speed on three benchmark

datasets. ShelfNet achieves comparable segmentation accu-

racy to state-of-the-art off-line models with a 4 to 5 times

faster inference speed. Our real-time model achieves the

highest mIoU on the Cityscapes dataset, while maintaining

a high inference speed comparable to BiSeNet. Our off-

line ShelfNet with ResNet34 backbone outperforms previ-

ous models with large backbones such as ResNet101, vali-

dating the effectiveness of our shelf-shaped structure.
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