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Abstract

In this paper, we present our solution to tiger re-

identification (re-ID) in both the plain and the wild tracks

in the 2019 Computer Vision for Wild life Conservation

Challenge (CVWC2019). We introduce a novel part-pose

guided framework for the tiger re-ID task, which consists

of two part streams and one full stream based on the pose

characteristics of tiger. Considering missing and inaccu-

rate pose annotations, the two part streams are used as a

regulator to guide the full stream in learning and align-

ing the local features in the training stage. We only use

the learnt full stream for the tiger re-ID task in the infer-

ence stage. The proposed model has the advantage that de-

spite requiring pose information at training time it is not

needed during inference, so it is particularly suitable for

tiger re-ID in the wild. Our proposed method outperforms

the state-of-the-art and finished top in both the PlainID and

WildID competitions at CVWC2019. The source of code

will be public available at https://github.com/

LcenArthas/CVWC2019-Amur-Tiger-Re-ID

1. Introduction

Object re-ID is a challenging task in the field of com-

puter vision because of the changes in illumination, camera

viewpoint, background and occlusions. Specifically, re-ID

means given a query image containing the target individual,

a re-ID algorithm will retrieve all the images of the same

identity from a large gallery and return ranking results. Pre-

vious studies on re-ID mainly focus on person re-ID and

have achieved fruitful research results in the field of pedes-

trian tracking and public safety [30]. In recent years, re-

searchers have noticed that the re-ID can also be used to

protect wildlife because it can help to obtain accurate popu-

lation counts and track wildlife trajactory [11, 14, 1]. In this

paper, we are concerned about wild Amur tiger protecting

using re-ID technique.

Conceptually, both the re-identification of person and
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Figure 1: Examples of Amur tiger samples in the ATRW.

(a) A tiger with different poses. (b) A tiger with different

degrees of occlusion. (c) A tiger under unconstrained illu-

mination conditions. (d) Different tigers with very similar

stripes.

tiger are image retrieval problems. Thus, some common

person re-ID strategies are also useful in the tiger re-ID.

But compared to the person re-ID, there are some differ-

ent challenges in the tiger re-ID field, as shown in Fig-

ure 1. First, wildlife data have a wide range of pose vari-

ations due to unrestricted four-limbed movement. Second,

because Amur tigers have a wide range of activities and im-

ages are captured from the wild environment, there will be

more occlusion, more complex natural background and un-

constrained illumination conditions. In addition, the exist-

ing re-identification method of Amur tiger is mainly based

on body stripes [10], which are more ambiguous because of

the similarities among different individuals than a person’s

appearance.

In recent years, many person re-ID methods used local

features extracted from various parts of the human body to

improve the global representation ability. For such meth-

ods, alignment is the key factor to make local features work.

A simple alignment is to partition the person image into a

few fixed horizontal stripes straightforwardly [21]. How-

ever, such a partition cannot well align the human body

parts well. Recent works have attempted the use of pose



(keypoints of body parts) to localize body parts for learning

part-aligned features. However, posture-based alignment of

body parts easily fails due to missing or inaccurate pose in-

formation, especially in tiger re-ID task.

To address the above challenges, we introduce the part-

pose guided network (PPGNet) for the Amur tiger re-ID

task. In our method, we use local image features based on

pose data to drive the main network to learn alignment fea-

tures from the original image. As shown in Figure 2, our

network consists three streams with one global stream (full

stream) and two local streams (part streams) according to

the inputs of different components. Meanwhile, consider-

ing missing and inaccurate pose annotations, the two local

streams are used as regulators to guide the original full im-

age stream in learning and aligning the local features. In the

inference stage, we only use the full image stream, which

have learned about local part information and alignment

features. Experiments show that our PPGNet performs well

with high efficiency and accuracy in the Amur tiger re-ID

task. Moreover, we found it is also very suitable for Amur

tiger re-ID in the wide since it doesn’t need the pose esti-

mation step.

In summary, our major contributions are:

• We propose a novel part-pose guided network

(PPGNet) tailored for tiger re-ID. The proposed frame-

work uses limited pose annotation data as regulator

to impose an alignment constraint on global feature

learning.

• The proposed model can greatly reduce the amount of

calculation because it only use the full stream in the

inference stage. Meanwhile, it is also very suitable for

tiger re-ID in the wild since it doesn’t need the pose

estimation step.

• Our algorithm achieved the first place both in the plain

and wild tiger re-ID tracks at the 2019 Computer Vi-

sion for Wildlife Conservation Challenge.

2. Related Work

2.1. Person and Wildlife Re-ID

Person re-identification is an active research topic which

has been paid more and more attention by academia and in-

dustry in recent years. The success of deep learning meth-

ods for person re-ID is well documented with the improved

computational power and the availability of large datasets

[29, 16]. Most of these methods use deep metric learning

[17, 5, 4], while some others regard person re-ID as a clas-

sification problem [31, 24, 27]. Recent studies have pro-

posed an optimization model that combines classifying loss

and measuring learning loss to improve the re-identification

rate and accelerate the convergence of the model [3, 22].

Inspired by the success of deep learning methods for

person re-ID, researchers are aware that re-ID can also be

used for wildlife conservation because of its ability to ob-

tain accurate population size and track wildlife trajecto-

ries [15, 11, 14, 1, 23]. Li et al. [15] introduced a large-

scale the Amur Tiger Re-identification in the Wild (ATRW)

dataset and proposed a novel method for Amur tiger re-

identification which introduces precise pose parts modeling

in deep neural networks to handle large pose variation of

tigers. Weideman et al. [23] introduced novel combinations

of integral curvature representation and two matching algo-

rithms for identifying individual cetaceans from their fins.

Körschens et al. [14] successfully implemented a system to

assist biologists to identify elephants they encounter in the

wild field. In this paper, we focus on Amur tigers re-ID

based on end-to-end network.

2.2. Pose Alignment

How to deal with pose variations of pedestrian is a key

factor in person re-ID. Among the existing person re-ID

models based on deep learning, the alignment method based

on keypoints is used to eliminate the adverse effect of pose

variance. Zheng et al. [28], proposed a PoseBoxes method

to correct the misalignment. Su et al. [20] proposed a Pose-

driven Deep Convolutional (PDC) model based on the pose

cue to learn improved feature extraction. Zhao et al. [26] in-

troduced a body part specific attention modeling for person

re-ID. There is also a lot of work on image misalignment

from the masks and semantics [18, 12, 28]. All of the above

works are based on the combination of pose information and

global information for training and inferencing.

Compared with person re-ID, wildlife data have a wide

range of pose variations due to unrestricted four-limbed

movements. Additionally, the models cannot obtain accu-

rate joints information or miss some joints information be-

cause the data are taken from the wild environment with

more complex natural backgrounds, unconstrained lighting

conditions and more occlusion. So it is not feasible to trans-

fer the alignment method from the above person re-ID mod-

els to a tiger re-ID model directly. Inspired by [25], we

leverage the body pose parts, which play the role of regu-

lators, to guide the feature learning from the original im-

age during the training stage. Thus, we design a triplet-

branched network which highlight the feature extraction of

tiger trunk and use the limbs symmetry characteristics ac-

cording to the peculiarities of tiger. Different from the

triplet-branch network in [2], we only use the learnt full

image stream which have learnt local part information and

alignment features.

3. Methodology

This work proposes the PPGNet which can fully exploit

aligned part-pose representations to guide the learning of



Figure 2: The PPGNet Structure. It consists of three streams: one F-Stream and two part streams. The F-stream is the main

stream and used to extract the global feature from the full tiger image, while the two part streams, the TP- and LP- streams,

are used to extract local features from the trunk image blocks and limb image blocks, respectively. In the training stage, the

local features play the role of regulator for the global feature learning. In the inference stage, only the F-stream is used for

tiger re-ID.

global feature for the tiger re-ID. Figure 2 gives the pipeline

of our method. We construct two part streams and one full

stream based on the pose characteristics of tiger. The part

streams includes TP-Stream which takes trunk part of tiger

image as input, and LP-Stream, which takes all the limbs

of tiger image as input based on the pose skeleton. The

input of the full stream (F-Stream) is the full original image.

Through final feature fusion and loss design, the both part

streams can be used as a regulators to constrain F-Stream

feature learning from the original image. We elaborate the

PPGNet design as follows.

3.1. Part Images

Based on the pose skeleton annotations, 7 body parts can

be cropped as shown in Figure 3. These parts include trunk,

left and right of front legs, hind thighs, and hind shanks,

covering almost the entire body. Except for the rectangle of

the trunk, the remaining limb quadrilateral parts are com-

bined with an outer rectangle in a black background(the

RGB values are all zero).

As far as the details are concerned, the trunk is confined

by four body joints, the ear, nose, shoulder and tail, so we

simply draw a quadrangle for the trunk. The front legs are

defined as the joints of the shoulder and front paw. A hind

thighs are confined by the hip and knee joints, and the hind

shanks are confined by the knee and back paw joints. We

manually set the width of each front leg, hind thigh and hind

shank bounding box to 1

6
, 1

6
and 1 of its height respectively.

It is worth mentioned that we add some small random dis-

turbances when cropping part images to improve the robust-

ness of the model.

3.2. Part-Pose Guided Network

Because tigers are non-rigid quadrupeds and have more

abundant postures than person, coupled with the complex

background and occlusion in the wild, it is impossible to



(a) Full orignal image

(b) Trunk part image

(c) Limbs part image

Figure 3: Examples of the original image and the part im-

ages. (a) The full original image, in which skeleton annota-

tions are given. The colorful rectangles are the part image

block cropped based on the skeleton annotations. (b) The

trunk part image. (c) The limbs part images, including the

hind thighs, the hind shanks and the front legs from the left

to the right.

obtain accurate tiger pose information in most cases. Even

in some cases, pose data is unreliable because some joint

points might be missed. So the effect of tiger re-ID will not

be improved if we adopt the same strategy as the previous

work [12, 28], in which the final features are obtained

fusing the global and the local features directly based on

pose data. Inspired by [25], in order to make full use of

local features and solve the above challenges, we propose

to use limited pose annotation data to guide the features

learning from original images in training stage. That means

to impose a alignment regularization constraint on global

feature learning. In the inference stage, we only use the

original full stream image and the pose information is

no longer needed. This can greatly reduce the amount of

calculation. So the PPGNet is outstandingly effective since

it not only is in line with the needs of the Amur tiger re-ID

system in the wild but also doesn’t need the pose estimation

except for detection.

Part Streams. In our design, the part pose stream includes

TP-Stream and LP-Stream with trunk and limb part images

as input. The main considerations are as follows. 1) The

trunk part occupies the main part of the tiger image. The

stripes from the trunk are abundant and contain more

fine-grained features, so it has stronger ability to represent

the individual tiger. 2) Different from the trunk image, the

feature representation of the limbs image is more easily

affected by occlusion because of its small relative size.

3) Due to the symmetry of limbs, we will consider this

symmetry in network design. The details of these two part

stream structure is shown in Table 1.

Trunk Part Stream. The backbone of the network is

pre-trained on ImageNet dataset [19] to extract feature map

Ftrunk from the trunk part image. As mentioned above, the

trunk part of a tiger has the richest stripe that can identify

the individual tiger. here we use the method proposed

by [21], the output Ftrunk of the backbone network is

divided into 8 vertically stripes, each stripe undergoes

average pooling, and then generates 8 corresponding

512-dimension vector Gi|
N
i=1

, where N is 8. The extracted

fine-grained features are concatenated along channels and

we have the final trunk feature vector Dtrunk.

Limbs Part Stream. To learn the local details of individual

parts area rather than mixing them all together, subnetworks

with multiple branches are used to learn the limbs feature

map. We use the symmetry of tiger limbs to extract features

in two steps, and merge the features of the symmetrical

limbs to reduce the computational complexity by reducing

the number of branches. First, we use the 6 parallel

independent pre-trained networks to learn the local feature

Flimb,i, i = 1, 2..., 6. According to the image symmetry of

left and right limbs, we merge the feature maps of the hinds

legs left-right separately finally obtain 4 new local feature

FMlimb,i, i = 1, 2..., 6. In the second stage, similarly,

we merge the two branches corresponding to the left and

right symmetrical parts of the hind legs, and finally get 4

branches, as shown in Table 1. After an average pooling,

generate 4 corresponding 1024-dimension vector Hi|
N
i=1

,

where N is 4, and then similar to trunk-Stream, concatenate

the Hi along channels. Finally, we obtain the limb feature

vector Dlimb.

Full Stream. In this stream, we mainly use a classification

network to extract rich feature representations. Specifically,



we also use the pre-trained series network of ResNet [8]

as the backbone, followed by an average pooling layer to

get the global feature vector Dfull. It’s worth mentioning

that we set the last stride of ResNet from 2 to 1, there are

two advantages to doing so. 1) We can get larger feature

maps, so that the higher spatial resolution of features, the

stronger the feature representation. 2) Make the obtained

global features Dfull dimension consistent with the local

feature Dtrunk and Dlimb obtained above, convenient next

feature fusion. Note that only the Dfull extracted from the

F-Stream are used for the final re-ID in the inference phase.

Table 1: The details of the TP-Stream and LP-Stream struc-

ture. We use a structure similar to ResNet-34 [8]. #Bran.

denotes the number of sub-branches.

Layer name Parameters Output size #Bran.

TP-Stream

conv1 7×7, 64, stride 2 32×64

1

conv2 x
3×3, Max pool, stride 2

16×32
[

3×3, 64

3×3, 64

]

×2

conv3 x
[

3×3, 128

3×3, 128

]

×2 8×16

conv4 x
[

3×3, 256

3×3, 256

]

×2 4×8

Average pool 4×1 1×1 8

LP-Stream

conv1 7×7, 64, stride 2 32×32

6

conv2 x
3×3, Max pool, stride 2

16×16
[

3×3, 64

3×3, 64

]

× 2

conv3 x
[

3×3, 128

3×3, 128

]

× 2 8×8

conv4 x
[

3×3, 256

3×3, 256

]

× 2 4×4

merging add element 4×4 6 → 4

conv5 x
[

3×3, 512

3×3, 512

]

× 2 2×2
4

Average pool 2×2 1×1

3.3. Feature Fusion

In order to use local part information to guide learning

and alignment of global features, we fuse part and global

features of the three streams by adding corresponding ele-

ments:

Zft = Dtrunk +Dfull (1)

Zfl = Dlimb +Dfull (2)

where Zft, Zfl denote the fused feature from the TP-Stream

and LP-Stream with F-Stream, respectively.

Table 2: Different performance with different F-Stream

backbones on the plain re-ID test set.

Backbones mmAP
Single-Cam Cross-Cam

mAP Rank-1 Rank-5 mAP Rank-1 Rank-5

ResNet-50 0.779 0.896 0.994 0.994 0.663 0.908 0.977

ResNet-101 0.810 0.907 0.995 0.991 0.712 0.931 0.971

ResNet-152 0.802 0.902 0.991 0.997 0.703 0.931 0.965

3.4. Loss Function

For the tasks of person [3, 22] and wildlife [1, 15] re-

identification, both the ID loss(cross entropy loss) and the

triplet loss [9] have been widely used for optimizing the net-

work. In our design, we also use the combination of these

two losses to optimize our network in training phase.

Among all the learned features, we supervise the fea-

ture Dfull from the F-Stream and the fusion features, i.e.

Zft and Zfl, as shown in Figure 2. Specifically, a ID loss

is computed over the the original full image feature vector

Dfull extracted by the F-Stream, and in the two part streams

a ID loss and a triplet loss are separately calculated using the

fused features, Zft and Zfl.

Zft and Zfl are made up of the globel feature and the lo-

cal feature which are extracted from the F-Stream and Part-

Streams, respectively, so the generation of loss depends not

on a single branch but on all the three streams. When gra-

dient back-propagation is performed in training phase, the

F-Stream will suffer gradient loss computed by two fusion

features from the two pose part streams. So the F-Stream

can always be affected by local features to adjust network

parameters. That is to say, these two branches play a similar

regularization role in guiding learning features for the main

stream in the training phase.

For the ID loss, each feature vector is followed by a batch

normalization (BN) layer and a fully connected (FC) layer.

And we use the method proposed in [7] to initialize the FC

layers.

4. Experiments

4.1. Dataset

The ATRW dataset is proposed by [15] and is a bench-

mark dataset for Amur tiger re-identification. The dataset

consists of 3649 bounding box annotations of 182 entities

of 92 tigers. In this dataset, not all entities appear cross

camera but 50 entities are cross-camera, the remaining are

different frames from a single camera. There are 60% enti-

ties from single-camera and 40% entities from cross-camera

in the training set and the remaining images are in the test

set, i.e., 1887 images are in the training set and 1762 images

in the testing set. The testing set is the query set and also

the gallery set. This dataset also provides the key-points an-



Table 3: The top10 teams in the Plain Tiger ReID track. Our

results are in the first place.

Team mmAP
Single-Cam Cross-Cam

mAP Rank-1 Rank-5 mAP Rank-1 Rank-5

Bestfitting NBU 0.816 0.906 0.977 0.991 0.726 0.936 0.967

BRL-RedPanda 0.770 0.898 0.966 0.977 0.643 0.913 0.958

NWPU ASGO 0.751 0.879 0.969 0.983 0.622 0.925 0.951

DeepBlueAI 0.704 0.865 0.956 0.983 0.543 0.889 0.929

DelPro 0.696 0.836 0.973 0.981 0.556 0.872 0.948

SDL 0.672 0.857 0.940 0.960 0.488 0.783 0.867

zdi 0.658 0.846 0.954 0.984 0.470 0.841 0.904

NDWild 0.658 0.763 0.907 0.967 0.553 0.851 0.944

Batiary 0.634 0.757 0.900 0.967 0.511 0.824 0.935

aaa 0.631 0.758 0.906 0.964 0.505 0.806 0.917

notations for each image, but the shaded joints on the body

are not marked.

4.2. Evaluation Protocol

We use the mean average precision (mAP) and the rank-k

accuracy as the metric to evaluate the algoritm. And accord-

ing to the situation of the query image appearing in camera,

separate each query image into two fileds: ‘single camera’,

where the target tiger appears only in single camera, and

‘cross camera’ where the target appears in the multiple cam-

eras [15]. And in this challenge, for the re-ID task, the final

ranking metric is the average of mAP on both the single-

cam case and the cross-cam case (mmAP).

4.3. Implementation Details

Data Augmentation. To enlarge the dataset, we horizon-

tally flip the images in the training set to create more ’new

entities’ since different sides of the same Amur tiger are

regarded as different entities [15]. So we have double the

number of the original training set. During the training

for re-ID, each original image is resized into 256 × 512,

each trunk part image 64 × 128 and each limb part image

64 × 64. Three types of data augmentations are applied

to each image input the network: 1) Rotate with a degree

randomly sampled from -5 to 5 degrees. 2) Randomly

change the brightness, contrast and saturation range from

0.8 to 1.2 respective. 3) Random affine transformation of

image.

Backbones. For the TP-Stream and multi-branch subnets

in the LP-Stream, we use the ResNet-34 [8] as the backbone

to obtain the feature map. And for the F-Stream, we know

from experiments that different backbones of F-Stream

may get different performance. As shown in Table 2,

ResNet-101 [8] arrives the best performance in the plain

re-ID testing set.

Table 4: Our method compeared with the baseline.

Setting Method
Single-Cam Cross-Cam

mAP Rank-1 Rank-5 mAP Rank-1 Rank-5

Plain
Baseline [15]

CE 0.591 0.786 0.927 0.381 0.697 0.878

Triplet loss 0.713 0.866 0.960 0.472 0.776 0.906

Aligned-reID 0.648 0.812 0.924 0.442 0.738 0.905

PPbM-a 0.741 0.882 0.964 0.517 0.768 0.910

PPbM-b 0.728 0.894 0.956 0.478 0.771 0.907

Ours(ResNet101 + Rerank) 0.906 0.977 0.991 0.726 0.936 0.967

Wild
Baseline [15]

CE 0.588 0.787 0.925 0.345 0.685 0.868

Triplet loss 0.707 0.865 0.951 0.452 0.776 0.905

Aligned-reID 0.587 0.748 0.907 0.410 0.701 0.872

PPbM-a 0.710 0.874 0.966 0.503 0.772 0.907

PPbM-b 0.692 0.889 0.953 0.462 0.766 0.912

Ours(ResNet101 + Rerank) 0.889 0.956 0.974 0.724 0.929 0.953

Optimization. In our experiments, the ID loss for the F-

Stream, the ID loss and triplet loss for the fused features are

weighed by 1.0, 1.5 and 2.0 respectively. The training is op-

timized by Adam [13] optimizer using 500 epochs and with

a batch size of 32. Meanwhile, we adopt the warmup strat-

egy to bootstrap the network for better performance. We

spent 25 epochs linearly increasing the learning rate from

2.5×10−4 to 2.5×10−3. Then, the learning rate is decayed

by a factor of 0.5 for every 80 epochs. In our experiments,

we use the Pytorch framwork to train and test our model.

Table 5: The rank results in the Wild Tiger ReID track. Our

results are in the first place.

Team mmAP
Single-Cam Cross-Cam

mAP Rank-1 Rank-5 mAP Rank-1 Rank-5

Bestfitting NBU 0.807 0.889 0.956 0.974 0.724 0.929 0.953

DeepBlueAI 0.696 0.845 0.944 0.967 0.548 0.908 0.941

Batiary 0.666 0.789 0.909 0.959 0.543 0.856 0.942

zdi 0.644 0.823 0.932 0.967 0.465 0.849 0.910

4.4. Tiger Re-ID Performance

In the 2019 Computer Vision for Wildlife Conservation

Challenge (CVWC2019), the re-ID task is divided into two

tracks, the Plain Tiger Re-ID and the Wild Tiger Re-ID. In

the plain track uses the the cropped Amuer tiger bounding-

box and keypiont annotations as introduced in the Sec-

tion 4.1 for re-ID task. And in the wild track we aim to

design a complete tiger re-identification system based on

automatic detection and tiger pose estimation [15].

Here we briefly show our results of the Tiger re-ID in

the plain and Tiger re-ID in the wild at this challenge.

Plain Tiger ReID. Table 3 shows the performances of

top10 teams in the Plain Tiger ReID track. It is seen

that our team achieves the top-1 in this task and overtake

other teams by a large margin, which shows advancement



Figure 4: Example results of our method on ATRW. From left to right in each row, the first with the blue border is the query

image and the remaining are the top-7 ranking results.

and high performance of PPGNet. Table 4 lists the mAP

and top-k results for compared with baseline method in

[15]. Examples re-ID results of our method are shown in

Figure 4.

Wild Tiger ReID. In this track, for the detection module,

we adopt Mask RCNN [6] as the detector since they are

open-sourced with the state of the art results in the field of

object detection. Then put the detected tigers images into

PPGNet for the re-ID purpose. With the PPGNet, we also

won the championship of this track. Table 5 shows the per-

formances teams in the Wild Tiger ReID track.

5. Conclusions

In this paper, we present our solution to plain re-ID and

wild re-ID Challenges on CVWC2019. We build a novel

part-pose guided network (PPGNet) for the tiger re-ID task.

Some data augmentations based on the characterizes of tiger

re-ID are adopted. We arrive at 81.6% mmAP and 80.7%

mmAP on plain re-ID and wild re-ID testing set respec-

tively. Our proposed method ranks the first on both re-ID

tracks. In the future, we will continue to focus on the re-

search of computer vision for wildlife conservation.
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