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Abstract

Temporal localization of actions in videos has been of

increasing interest in recent years. However, most existing

approaches rely on complex architectures that are either

expensive to train, inefficient at inference time, or require

thorough and careful architecture engineering. Classical

action recognition on pre-segmented clips, on the other

hand, benefits from sophisticated deep architectures that

paved the way for highly reliable video clip classifiers. In

this paper, we propose to use transfer learning to leverage

the good results from action recognition for temporal local-

ization. We apply a network that is inspired by the clas-

sical bag-of-words model for transfer learning and show

that the resulting framewise class posteriors already pro-

vide good results without explicit temporal modeling. Fur-

ther, we show that combining these features with a deep but

simple convolutional network achieves state of the art re-

sults on two challenging action localization datasets.

1. Introduction

Temporal action localization in videos is of increasing

importance for various practical applications such as con-

tent based video search, surveillance, and automatic high-

light extraction e.g. in sports broadcasts. In classical action

recognition, where the task is to classify a pre-segmented

video clip as an instance of an action class, recent research

greatly helped to improve the performance [29, 34, 8, 7].

With the availability of large scale datasets that comprise

several hundred thousand clips, video clip classification

reaches accuracies of far above 90% [3]. Unfortunately,

the assumption that video clips are already pre-segmented

and only contain a single action instance does not hold for

practical applications.

Localization of actions in temporally untrimmed videos

– albeit being of a greater practical importance – is still lack-

ing behind. The reasons are twofold. First, the problem is
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inherently more difficult since besides finding the correct

action label, also accurate action boundaries have to be de-

termined. Second, and even more critically, obtaining large-

scale datasets to train temporal localization models is diffi-

cult and expensive. Most existing works approach the prob-

lem of temporal action localization using complex end-to-

end architectures that frequently rely on proposal and clas-

sification modules [21, 38, 4, 22] or time-consuming gram-

mar based decoding schemes [23]. These systems typically

require thorough architecture engineering and are expensive

to train.

In this paper, we address the problem by proposing an ef-

ficient transfer learning strategy that leverages the good per-

formance of classical action recognition while still generat-

ing generic representations that generalize to unseen videos

and can be used for temporal action localization. In order to

make the transfer as efficient as possible, we do not finetune

an expensive model [3], but map the features from the pre-

trained network into a latent probability space that simulates

a soft feature quantization as usually done with kMeans in

the classical bag-of-words setup. As non-linear function,

we use an approximation of the feature map of the χ2 ker-

nel. The transferred features can then be combined with any

temporal model. Since we aim for an efficient model that is

fast to train and does not require any post-processing, we

use a vanilla temporal convolutional network.

In our experimental evaluation, we show that this effi-

cient transfer learning strategy already performs on par with

some state of the art methods on the challenging Thumos

benchmark even without any need for temporal modeling.

Furthermore, we show that training a vanilla temporal con-

volutional network on top of the transferred features leads to

further improvements even though the model is extremely

simple. Since our approach is highly efficient and much

simpler than most related approaches, it serves as a very

strong baseline for more complex models.



2. Related Work

Action Recognition. Classical action recognition, i.e.

recognition of pre-segmented video clips, has been widely

studied. From classical feature based methods such as dense

trajectories with bag-of-words encodings [32] or Fisher vec-

tors [33], current research mainly focuses on deep architec-

tures that are based on two-stream networks [29, 34] which

process an appearance stream and an optical flow stream in

parallel. Many variants exist that explore how to pass infor-

mation from one stream to another [7] or how to incorporate

temporal context [8]. In [12] it has been shown that pre-

training a deep network on a large scale action dataset and

transferring the knowledge embedded in the deep features

can be beneficial to improve on smaller action recognition

datasets. The most successful architecture today is the I3D

network [3] that inflates 2D convolutions of two-stream net-

works to 3D and processes small spatio-temporal volumes

of a video clip. Being trained on huge collections of videos,

the approach achieves outstanding accuracies on challeng-

ing datasets. In [5], a more general approach for transfer-

ring knowledge from a network with 2D convolutions to a

network with 3D convolutions was proposed.

Temporal Action Localization and Segmentation.

Moving from classical action recognition to localization

and segmentation of actions in videos, there has been a

strong focus on temporally untrimmed videos that contain

multiple action instances. There are two main research

directions in this area. One is focusing on long-range tem-

poral modeling of actions in videos, particularly for datasets

where there are clear semantical dependencies between

succeeding actions such as in cooking videos [14, 27, 30].

Richard and Gall [23], for instance, use a statistical

language model to capture dependencies between different

actions and a length model together with a framewise action

classifier to obtain accurate segment boundaries. Various

works on weakly supervised action segmentation make

use of hidden Markov models and context free grammars

to capture long term dependencies and use shallow neural

networks or recurrent networks for frame-level action

modeling [15, 25, 26]. Lea et al. [18] use spatio-temporal

convolutions to capture mid-range dependencies and a

semi-Markov model for transitions between action seg-

ments. In [17], a purely temporal convolutional network

(TCN) consisting of an encoder that downsamples the

input sequence in the temporal domain and a decoder that

upsamples again to full resolution has shown good results

on various datasets. The idea of encoder-decoder TCNs has

been adapted and improved in various other works [6, 20].

A second major direction is mainly inspired by object

detection. Assuming that videos can typically contain

large background portions between two action instances,

successful temporal modeling of consecutive actions is

hard even if there are causal dependencies between them.

Therefore, many works neglect these contextual dependen-

cies and treat the localization of actions in videos similar to

an object detection task. Zhao et al. [38], for instance, use a

proposal network that divides segments into start, mid, and

end parts before a classificaton network and a completeness

network decide about the class label and if the boundaries

are correct. Overall, many architectures follow the idea

of proposal generation followed by segment classification

and propose different architectural variants, losses, or

processing stages [28, 9, 10]. Leveraging the success of

Faster-RCNN for object detection, [4] develop a variant

of this architecture for action localization. Xu et al. [35]

combine convolutional 3D networks for action recognition

with RCNNs to temporally localize actions. Overall, these

architectures typically require expensive training of two-

stream networks, thorough architecture enginieering, costly

proposal generation steps, and post-processing to clean

the output from overlapping or unreliable segments. Our

approach, on the contrary, is much simpler and achieves

state of the art results with a vanilla TCN network without

the need for segment proposals or post-processing.

3. Technical Details

In this section, we define the task of temporal action lo-

calization and describe the technical details of our proposed

method.

3.1. Task Definition and Notation

Temporal action localization is the task of finding all oc-

currences of action instances in a video. More formally,

given a video with T frames fT1 = (f1, . . . , fT ), the task

is to assign a class label c ∈ C to each frame, where C is a

pre-defined set of classes. We assume that there is a back-

ground class that is assigned to frames not being part of an

action instance. The training data are videos in which each

occurring action instance is annotated with its start and end

frame. This way, for each frame it is known if it belongs to

the background class or an action class. We denote a train-

ing pair as (fT1 , cT1 ) where fT1 is a video with T frames as

defined above and cT1 = (c1, . . . , cT ) are the corresponding

class labels.

3.2. Robust Transfer Learning for Action Localiza-
tion

Transfer learning is a commonly used technique to ex-

ploit deep neural networks that have been trained on a huge

amount of data from one domain in order to train a model

on a new domain. In our case, the pre-trained model is an

I3D network [3] for action recognition. The new domain are

temporally untrimmed videos where the goal is to localize

all action instances.
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Figure 1. Overview of the BoW-Network (green). For temporal modeling, the class posteriors of the BoW-Network at each frame are used

as an input into a 20-layer vanilla TCN.

3.2.1 Output Layer Retraining

We start with a discussion of a commonly used transfer

learning strategy, output layer retraining, that does not only

find application in various computer vision tasks [13, 12]

but also in other fields such as speech recognition [16].

The simplest way of transfer learning is to fix all layers

of a pre-trained network but the output layer. Let N (·) de-

note the function realized by a network up to its penultimate

layer. Given an input video with frames fT1 = (f1, . . . , fT ),
we denote the sequence of framewise features that results

from application of N to the input frames as xT
1 .

In action recognition, the class label of a video is usually

determined by averaging over multiple snippets within the

video. Since this is not possible for an untrimmed video

where frames have different labels, we apply a temporal

smoothing over a window of 2δ+1 frames centered at each

xt, i.e.

x̂t =
1

2δ + 1

t+δ
∑

τ=t−δ

xτ (1)

is a smoothed feature vector for frame t. After smoothing

the sequence of I3D output features xT
1 , we retrain the out-

put layer by optimizing the cross-entropy loss over posterior

probabilities of the ground truth class ct given the features

in the window (t− δ, t+ δ),

p(ct|x
t+δ
t−δ) = p(ct|x̂t) = softmax(WT x̂t + b). (2)

The class posteriors for each time t are thus computed by

sliding a window of size 2δ + 1 over the feature sequence

xT
1 and applying the retrained output layer to the windowed

frames at each temporal position.

3.2.2 BoW-Network Transfer Learning

A major drawback of output layer retraining is that it only

applies a linear transformation to map from the features of

the pre-trained network to the output posteriors of the new

task. Given that most datasets for action localization have a

rather small number of videos, just adding more layers can

quickly lead to overfitting as a huge amount of additional

parameters is introduced. In the following, we address this

issue by replacing output layer retraining with a bag-of-

words inspired neural network. A BoW-Network has first

been proposed in [24] and simulates a feature quantization

step as performed in the classical bag-of-words model fol-

lowed by an approximation of a χ2 kernel using explicit

feature maps as proposed in [31]. The kernel approxima-

tion provides a non-linear mapping of the features without

the need to introduce multiple additional network layers.

The network implements three steps which are illustrated

in Figure 1 (green part). First, the features from the pre-

trained network are mapped into a latent probability space

that simulates a soft feature quantization as usually done

with kMeans in the classical bag-of-words setup. We use

4, 000 components for this latent probability space, as this

corresponds to a commonly chosen number of visual words

in classical bag-of-words methods [32] and is also used

in [24]. Second, the soft-quantized features are pooled

along a temporal window and transformed with the non-

linear function

Ψ(xt) =

⎡

⎢

⎣

ψ
−2(xt)

...

ψ2(xt)

⎤

⎥

⎦
,

ψj(xt) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

√

0.5 · κ(0) · xt if j = 0,
√

κ
(

j+1

4

)

· xt · cos
(

j+1

4
log xt

)

if j odd,
√

κ
(

j
4

)

· xt · sin
(

j
4
log xt

)

if j even,

where κ(λ) = sech(πλ). As shown in [31], the function

Ψ approximates the feature map of the χ2 kernel. Finally,

the transformed features are projected onto class-posterior

probabilities using a second softmax layer. The outputs of

this layer are then the class posteriors p(c|xt+δ
t−δ).

Note that in [24] this kind of network has been used stan-

dalone, not being integrated into a larger network architec-

ture and it has only been used for classical action recogni-

tion. We are the first to apply this technique for both, trans-

fer learning and a sequence-to-sequence modeling task like

temporal action localization.



3.2.3 Temporal Modeling Using Frame Posteriors

Both transfer learning strategies, output layer retraining and

BoW-Networks, predict class posterior probabilities for the

input frames. Apart from a local windowing, no temporal

context is included in these posteriors. Recently, temporal

convolutional networks have been a popular tool to model

temporal context in video sequences [17, 6]. Recent archi-

tectures feature ecoder-decoder TCNs [17], WaveNet style

networks with huge receptive fields [1], or multi-resolution

networks [19]. In general, TCN architectures can be arbi-

trarily complex.

We show that using a deep vanilla TCN on top of the

posteriors obtained from transfer learning already suffices

to achieve state of the art performance. Our temporal model

is a TCN with 20 temporal convolutions each with kernel

size three. The network architecture does not contain any

pooling operations or complex elements like gated convo-

lutions, attention layers, or multi-scale convolutions. It can

therefore be considered as a light-weight model that serves

as a strong baseline for more complex networks. The source

code is available online.1

4. Experiments

In this section, we analyze the proposed model and com-

pare our approach to several state of the art methods on two

challenging action localization benchmarks, Thumos and

Hollywood Extended.

The Thumos dataset [11] is the most widely used dataset

for temporal action localization. It features a training set

with 200 videos and a test set with 212 videos. The train

and test set comprise about 1.2 and 1.3 million frames, re-

spectively. In total, there are 5, 902 action instances of 20
different classes and 6, 105 background segments. Action

instances are rather sparsely distributed through the videos

and about 70% of all frames are labeled as background.

We follow the official evaluation protocol and report mean

average precision (mAP) based on a segment-level inter-

section over union. A detection is considered correct if

the overlap with the ground truth is larger than a specified

threshold. Results are usually reported for the thresholds

0.1, 0.2, 0.3, 0.4, and 0.5.

Hollywood Extended [2] is a dataset collected from 69
Hollywood movies. It comprises a total of 937 video clips

which have been annotated with 16 different action classes.

On average, there are 5.9 action instances per video. With

61%, the background ratio is similarly high as in Thumos.

The overall number of frames is 780, 000. For evaluation,

we use a ten-fold cross-validation where the test data for

the i-th split are all videos that end with the digit i − 1.

We report the frame accuracy and average intersection over

union (IoU) per class.

1https://github.com/alexanderrichard/coview2019

segment classification accuracy (%)

I3D (output layer retraining) 82.2

I3D + BoW-Network 85.8

Table 1. Segment accuracy on pre-segmented action clips of the

212 videos from the Thumos test set. For training, pre-segmented

action clips have been extracted from the 200 videos of the Thu-

mos validation set.

4.1. Transfer Learning: The Use of BoW-Networks

In this section, we show that transfer learning with BoW-

Networks is beneficial compared to output layer retraining.

Using an I3D network pre-trained on the large scale Kinet-

ics action recognition dataset as starting point, our results

suggest that transfer learning is an effective and efficient

way to improve temporal action localization. Even without

the use of an explicit temporal model, results close to state

of the art can be obtained.

4.1.1 Output Layer Retraining vs. BoW-Networks

While our final goal is to leverage a network trained for

action recognition in order to improve temporal action lo-

calization, we first consider the task of action recognition

and show that BoW-Networks result in higher classifica-

tion accuracies than simple output layer retraining. There-

fore, we interpret the Thumos dataset as a classical action

recognition task, i.e. instead of using untrimmed videos, we

cut each video in the dataset into its action instances and

treat them as single clips that need to be classified as one

of the 20 action classes or background, respectively. Since

this task is a typical video classification task, a single class

posterior for each video clip is required, i.e. for a segment

xte
ts

ranging from ts to te, the posterior probability p(c|xte
ts
)

needs to be modeled. Therefore, for output layer retraining,

first average pooling is applied over the range (ts, te) and

then the softmax output layer is retrained to predict the seg-

ment classes. Similarly, for transfer learning using BoW-

Networks, the average pooling step is not performed over a

fixed size window but over all frames of the action segment.

In Table 1, the segment classification accuracy on Thu-

mos is shown for both, output layer retraining and BoW-

Networks. Compared to a simple retraining of the out-

put layer, the BoW-Network achieves a 3.6% higher accu-

racy and is therefore a promising candidate to be applied to

untrimmed videos in the context of temporal action local-

ization. Note that both transfer learning steps are extremely

fast: after extraction of the I3D features, the output layer re-

training takes 12 minutes and the BoW-Network trains for

27 minutes only for the 11 hours of Thumos training data.



mAP@

0.1 0.2 0.3 0.4 0.5

Current Best Systems

Structured Segment Networks [38] 66.0 59.4 51.9 41.0 29.8
Re-thinking Faster-RCNN [4] 59.8 57.1 53.2 48.5 42.8
GTAN [22] 69.1 63.7 57.8 47.2 38.8

Sliding Window Baseline

I3D (output layer retraining) 61.2 56.6 48.0 35.1 25.1
I3D + BoW-Networks 65.2 60.0 52.7 42.1 29.7

Table 2. With transfer learning from a pre-trained I3D network, even a simple sliding window baseline almost reaches state of the art

performance.

Figure 2. Qualitative comparison of three approaches from Table 3 for a video from the Thumos test set containing instances of long jump

(green). While the background is gray, red indicates the prediction of another foreground class. First row: I3D features from penultimate

layer with moving average + TCN; second row: output layer retraining + TCN; third row: BoW-Network + TCN; fourth row: ground truth.

4.1.2 Application to Temporal Action Localization

Both transfer learning approaches – retraining the output

layer as well as BoW-Network based transfer learning – ef-

fectively are trained to predict class posteriors p(c|xt2
t1
) for

a short video snippet ranging from time t1 to t2. While this

approach is sufficient for the classification of pre-segmented

short video clips, the task of temporal action localization is

more involved. Particularly, in an untrimmed video, multi-

ple action instances and their boundaries have to be local-

ized reliably, which usually requires a certain temporal con-

text. While most existing approaches rely on complex and

oftentimes expensive proposal and classification networks

inspired by object detection, we show that with well tuned

features, simple temporal models already achieve state of

the art results.

As a first naive baseline, we compute the class posterior

probabilities for each frame using a sliding window of width

nine. In more detail, in order to obtain the posterior proba-

bilities p(ct|x
t+δ
t−δ) for frame t, we consider the I3D features

in the range (t − δ, t + δ) with δ = 4. For the approach

with the retrained output layer, the features in this window

are averaged and then classified using the retrained layer. In

the BoW-Network, the features are processed as illustrated

in Figure 1 (green part). Note that we do not perform any

post-processing but evaluate the system directly on the ob-

tained frame posteriors.

The results are shown in Table 2. The model based

on frame posteriors from the pre-trained I3D network with

BoW-Network transfer learning clearly outperforms the

model in which the output layer of I3D has been retrained.

Additionally to these simple baselines, the table contains

the three currently best systems on Thumos [4, 38, 22]. Re-

markably, the sliding window approach with transfer learn-

ing features is already close to the current state of the art

and even outperforms two of the currently best systems in

mAP at 0.2 overlap ratio.

4.2. Posterior Probabilities for Temporal Modeling

In the previous section, we have already shown that

BoW-Networks and transfer learning provide strong results

even without any temporal modeling. Here, we analyze how

those features can facilitate temporal action localization if

additional temporal modeling is applied. Therefore, we

feed the learned posterior probabilities into a deep vanilla



mAP@

0.1 0.2 0.3 0.4 0.5

I3D features from penultimate layer + TCN

no feature averaging 58.1 49.8 39.9 30.5 19.7
moving average over 9-frame window 57.8 50.2 40.8 29.4 20.4

Transfer Learning + TCN

output layer retraining + TCN 65.6 60.5 52.6 40.3 29.6
BoW-Network + TCN 68.5 63.5 55.7 45.0 31.6

Table 3. Applying a TCN on top of the 2048 dimensional features of the penultimate I3D network layer does not improve the accuracy,

cf. Table 2. Temporal modeling on top of the transfer learning posteriors, however, results in much better performance.

mAP@

0.1 0.2 0.3 0.4 0.5

State of the Art Approaches

Statistical Language Model [23] 39.7 35.7 30.0 23.2 15.2
Frame Glimpses [36] 48.9 44.0 36.0 26.4 17.1
Multistage CNNs [28] 47.7 43.5 36.3 28.7 19.0
Structured Max Sums [37] 51.0 45.2 36.5 27.8 17.8
Cascaded Boundary Regression [10] 60.1 56.7 50.1 41.3 31.0
R-C3D [35] 54.5 51.5 44.8 35.6 28.9
BSN + UNet [21] − − 53.5 45.0 36.9
Structured Segment Networks [38] 66.0 59.4 51.9 41.0 29.8
Re-thinking Faster-RCNN [4] 59.8 57.1 53.2 48.5 42.8
GTAN [22] 69.1 63.7 57.8 47.2 38.8

Ours

output layer retraining + TCN 65.6 60.5 52.6 40.3 29.6
BoW-Network + TCN 68.5 63.6 55.7 45.0 31.6

Table 4. Comparison to state of the art on Thumos. Our simple approach performs on par with the most recent complex approaches for

mAP@{0.1, 0.2, 0.3} albeit relying solely on a simple transfer learning strategy and a vanilla temporal convolutional network.

Frame Accuracy IoU

HTK [15] 39.5 8.4
ED-TCN [17] 36.7 10.9
TCFPN [6] 54.8 20.4

Ours (BoW-Network +

TCN)

61.0 19.2

Table 5. Comparison to state of the art on Hollywood Extended.

TCN with 20 layers as described in Section 3.2.3. To show

the effectiveness of posteriors as temporal features, we com-

pare them to a system in which the 2048 dimensional output

of the penultimate I3D layer are directly fed into the TCN

without explicit transfer learning. For the latter setup, we

provide an additional experiment where the I3D features are

averaged over the same temporal window that is also used

for output layer retraining and for the average pooling in the

BoW-Network. This way, the temporal context is the same

as for the transfer learning experiments.

The results in Table 3 show that explicit transfer learn-

ing is crucial for good results. Using the 2048 dimensional

features from the penultimate I3D layer directly without

transfer learning results in a degradation of about ten per-

cent points compared to the models with transfer learning.

Again, the BoW-Network shows the best performance, out-

performing the output layer retraining constantly by two to

five percent. Also note that despite its simplicity, the com-

bination of BoW-Network and vanilla TCN is highly effec-

tive. Qualitative results comparing the different models are

shown in Figure 2. Using I3D features from the penul-

timate layer with moving average and the TCN, the seg-

mentation is prone to wrong classifications into both, back-

ground frames and frames from other action classes. Using

output layer retraining as transfer learning strategy and the

TCN on top, the results are already much more accurate but

the model suffers from over-segmentation at the segment

boundaries. The BoW-Network with TCN, on the contrary,

makes stable predictions even at the action boundaries and

is less sensitive to over-segmentation.



4.3. Comparison to State of the Art

We compare our approach to the current state of the art

on Thumos and Hollywood Extended. The results on Thu-

mos are shown in Table 4. For an mAP with overlap ratios

below 0.4, the BoW-Network with a vanilla TCN achieve

comparable results with [22] and outperforms all other ap-

proaches. For overlap ratios 0.4 and 0.5, only [4, 21, 22]

perform better than our approach. Note that these ap-

proaches are complex architectures. Lin et al. [21] use a

proposal generation module and a proposal evaluation mod-

ule. Moreover, post-processing of the output is required to

suppress redundant proposals. The architecture used in [4]

is inspired by the Faster-RCNN for object detection and

highly optimized for temporal action localization. Their ar-

chitecture also requires post-processing to discard bad pro-

posals. The method of Mei et al. [22] is also based on pro-

posal generation and post processing to suppress redundant

proposals.

On Hollywood Extended, we follow [6] and report frame

accuracy and IoU, see Table 5. For the first, our method

achieves better results than the current state of the art, for

the latter, the results are only slightly lower. Note that the

state of the art approaches on Hollywood Extended differ

from those used on Thumos. HTK [15] is a speech recogni-

tion software that has been applied to temporal action seg-

mentation, ED-TCN [17] is a deep temporal convolutional

model that downsamples the temporal dimension in an en-

coding step and upsamples it in a later decoding step, and

TCFPN [6] is a similar architecture with an iterative opti-

mization scheme. Overall, our approach achieves state of

the art results on both benchmarks while being highly ef-

ficient: once the I3D features of the penultimate layer are

extracted, the BoW-Network plus TCN takes only 43 min-

utes to train on Thumos with a GTX 1080.

5. Conclusion

In this paper, we addressed the problem of temporal

action localization in videos. Using transfer learning from

a network pre-trained on a large scale action recognition

dataset and using a bag-of-words inspired network in

combination with a simple vanilla temporal convolutional

network, we achieve state of the art results on two action

localization benchmarks. Our approach is efficient to

train and does not require complex network architectures,

proposal methods, or post-processing. Overall, we show

comparable performance to the best results on Thumos

for several overlap ratios albeit following a rather simple

approach.
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