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Abstract

In this paper, we propose the Multitask Transformer Net-

work for multitasking on untrimmed video. To analyze the

untrimmed video, it needs to capture important frame and

region in the spatio-temporal domain. Therefore, we uti-

lize the Transformer Network, which can capture the use-

ful features from CNN representations through an atten-

tion mechanism. Motivated by the Action Transformer Net-

work, which is a repurposed model of the Transformer for

video, we modified the concept of query which was special-

ized only for action recognition on the trimmed video to fit

the untrimmed video. In addition, we modified the structure

of the Transformer unit to the pre-activation structure for

identity mapping on residual connections. We also utilize

the class conversion matrix (CCM), one of the feature fu-

sion methods, to share the information of different tasks.

Combining our Transformer structure and CCM, the Mul-

titask Transformer Network is proposed for multitasking

on untrimmed video. Eventually, our model evaluated on

CoVieW 2019, and we enhanced the performance through

post-processing based on prediction results that suitable to

the CoVieW 2019 evaluation metric. In CoVieW 2019 chal-

lenge, we placed fourth on final rank while first on scene

and action score.

1. Introduction

Analyzing and understanding the untrimmed video is a

fundamental problem for real-world artificial intelligence.

Recently, deep CNN-based methods achieve state-of-the-art

performance on image recognition such as object recogni-

tion [34, 21, 39, 13, 18], scene recognition [48, 36], object

detection [28, 33], semantic segmentation [6, 47], and ob-

ject tracking [8, 27]. Since video is a sequence of images,

many previous video recognition approaches use CNN rep-

resentations.

The untrimmed video contains a lot of useless frames,

so we do not need to analyze all of the CNN features for
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every frame. To filter out useless features, we utilized the

Action Transformer Network [9], which can capture the in-

terested actioness region through an attention mechanism

by repurposing the query, key, and value (QKV) concept of

the Transformer Network [44]. We also modified the query

concept and the Transformer unit structure of the Action

Transformer Network to capture the important features in

untrimmed videos.

For multitask learning, we expect that performance

would be improved by sharing the information when jointly

training the different categories of labels. To do this, we

fuse the features of different tasks. Many existing meth-

ods use concatenation or element-wise sum to perform fea-

ture fusion [38, 4]. However, if we perform feature fusion

using a class conversion matrix (CCM) [35], we likely to

get improved performance than conventional feature fusion

methods since it adapted the domains somewhat between

two different features. To capture important frames in an

untrimmed video with sharing the information in different

tasks, we propose the Multitask Transformer utilizing the

CCM and Action Transformer based on CNN representa-

tions. The overall architecture of our proposed Multitask

Transformer Network is shown in Fig. 1.

Finally, we used CoVieW 20191 to train and evaluate

our model. CoVieW 2019 provides untrimmed videos with

three labels that scene, action, and importance scores for

a single video segment. To evaluate on CoVieW 2019, it

requires the selection of the top-6 segments in the video

based on the importance score. To improve the performance

on CoVieW 2019 evaluation metric, we propose a method

of importance score recalibration through prediction-based

post-processing. In CoVieW 2019 challenge, we took fourth

place on final rank while first place on scene and action

score without the use of model ensemble and optical flow.

2. Related work

In this section, we briefly review some related studies

about two topics: (1) feature aggregation methods, and (2)

feature fusion methods.

1http://cvlab.hanyang.ac.kr/coview2019.
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Figure 1. The overall architecture with our Multitask Transformer Network for CoVieW 2019. Places365-2D CNN and ImageNet-2D

CNN extract scene and object features, respectively. The attentional query processor (AQPr) generates a query. The Multitask Transformer

Network consists of a stack of Multitask Transformer (MTx) units, which generates the features to be classified for each task, and CCM [35]

for fuse the features. When training, the solid black line propagates the gradient in backward, but the dotted gray line does not propagate

the gradient. The structure of AQPr and MTx explained in Section 3.2.

2.1. Feature aggregation for video recognition

Recently, many video recognition approaches based on

the CNN representations [38, 7, 20, 42, 32] rather than the

hand-crafted feature [24, 25, 45]. The CNN-based methods

focused on feature aggregation methods to generating a new

feature for well-recognizing video. The simplest method is

that generating a feature via a global average pooling (GAP)

[12, 3], but it cannot catch the important features that appear

only in certain frames or regions. Therefore, to catch the im-

portant feature, the attention module is often used [37, 31].

The Action Transformer Network [9] repurposes the Trans-

former Network [44], which was used in natural language

processing through self-attention mechanism with the QKV

concept, and the QKV concept was modified to suit the ac-

tion recognition. Since video is a sequence of images on

a time domain, the recurrent neural network (RNN) such

as long short-term memory (LSTM) [15] or gated recurrent

unit (GRU) [5] is also utilized for aggregating CNN features

[3]. Another way, aggregating features using NetVLAD [1],

which used for place recognition, performed well in ac-

tion recognition and video classification [10, 29]. Except for

RNN methods, the methods introduced in this section are

orderless aggregation methods, and we utilize the Action

Transformer to aggregating features of untrimmed video.

2.2. Feature fusion

In multitask learning, the fusion of features which ex-

tracted for analyzing each task is often used to boosting

performance [23, 16]. The feature fusion is also used in

singletask learning; utilizing object information for scene

recognition [4, 36] and utilizing optical flow information for

action recognition [38, 7]. Most of these conventional ap-

proaches use element-wise summation, element-wise multi-

plication, or concatenation when performing feature fusion.

The class conversion matrix (CCM) [35] likely achieves

better performance than the existing fusion method by

transforming the input feature to match the domain to be

fused. In our model, feature fusion is used to share the in-

formation of each task, we adopt CCM for fusion method.

3. Methods

In this section, we introduce our methods for recognizing

the scene and action simultaneously on untrimmed videos.

We describe the feature extraction methods based on CNN

in Section 3.1, and the explanation of our Multitask Trans-

former Network is followed in Sections 3.2, and 3.3. Then,

we describe our importance score regression method in Sec-

tion 3.4 to evaluate our model on CoVieW 2019. The overall

our proposed architecture is given in Fig. 1.

3.1. Feature extraction

Since training CNN from scratch on the CoVieW 2019

dataset caused serious overfitting problem, so we obtained

features of video using pre-trained CNN, the experimental

analysis is given in Section 4.4. To obtaining CNN repre-

sentations for scene recognition, we used features extracted

from conv5 x layer (denotes in [13]) of Places365-2D

CNN, which pre-trained on Places 365 dataset [48]. Sim-

ilarly, we used ImageNet-2D CNN, which pre-trained on

ImageNet [34], to extract features for action recognition.

Previous studies generally extract features using 3D CNN

from RGB images or use additional optical flow when us-

ing only 2D CNN. However, there are some cons, optical

flow requires much pre-computation, and 3D CNN requires

a lot of memory, it leads difficult to use deep architecture.

In view of [26], the action recognition tasks such as [22, 40]
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Figure 2. The structure of (a) the Action Transformer (Tx) unit [9] and (b) our Multitask Transformer (MTx) unit. The existing Tx unit

structure has a normalization module in the residual connection of the query. We modified the position of this normalization module to the

pre-activation [14] of the Feed-forward Network (FFN).

can recognize an action even if only a single frame is given

by understanding spatial context related to action. Interest-

ingly, we also found that ImageNet-2D CNN achieve better

performances than Kinetics-3D CNN [3] for action recog-

nition. Therefore, we use 2D CNN for action feature extrac-

tion. In the case of scene recognition, it has limited to gen-

erates a pre-trained 3D scene CNN because there was no

large amount of videos for scene recognition. In addition,

since the scene does not change dynamically on time, we

expected to be able to recognize the scene with 2D CNN

representation. Therefore, we also use 2D CNN for scene

recognition. The comparison experiment between 2D CNN

and 3D CNN for action recognition is given in Section 4.4.

3.2. Spatio-temporal attention module

The untrimmed videos include a lot of useless frames

to recognizing the scene or action, so we wanted to cap-

ture only the important features in spatio-temporal do-

main. Therefore, we utilized the Action Transformer Net-

work [9], which is a modified for video action recogni-

tion by revising the QKV concepts of the Transformer

Network [44] which can capture the important feature

through an attention mechanism. The Action Transformer

set the query to a RoIPool-ed feature for the actioning

person box, which obtained by supervised learning. How-

ever, CoVieW 2019 dataset provides only categories of

scene and action labels without a bounding box of sce-

ness or actioness, so we needed to modify the concept of

the query used in Action Transformer. Therefore, we gener-

ate a query through the attentional query processor (AQPr),

which learned weakly supervised to select only useful fea-

tures in the untrimmed video. For each spatio-temporal fea-

ture Xt,h,w, the AQPr generates attention map Mt,h,w and

a refined feature Y attention as follows:

Mt,h,w = σ
(

InstanceNorm
(

WAttentionXt,h,w

))

, (1)

Y attention =
∑

t,h,w

Mt,h,wXt,h,w
∑

t,h,w

Mt,h,w

, (2)

where σ (·) denotes a sigmoid function, WAttention is train-

able parameter and InstanceNorm [43] also contains train-

able parameters, and the attention map Mt,h,w is a scalar.

To generate the attention map Mt,h,w, we can replace In-

stanceNorm with trainable scalar value (bias) or BatchNorm

[19], but experimentally InstanceNorm has the best perfor-

mance for Multitask Transformer Network. The Y attention

was used as the query of our Multitask Transformer (MTx)

unit, as shown in Fig. 1.

The features of key K and value V for our MTx unit are

generated through a simple linear projection of the CNN

representations without aggregation. Then, the query, and

memory are fed into the MTx unit, and the structure of

MTx unit is given in Fig. 2(b). We modified the Action

Transformer (Tx) unit [9] by replacing with identity resid-

ual connection and adding some non-linearity. As shown in

Fig. 2(a), the existing Tx unit performs the normalization

twice on the residual connection. However, since adding

any module into the residual connection may cause per-

formance degradation by optimization issues, we modified

the structure of the Feed-forward Network (FFN) to a pre-

activation type structure [14]. Furthermore, we added some

non-linearity by adding the ReLU activation function after

each LayerNorm [2].

The remaining architecture essentially follows the Ac-

tion Transformer Network [9]. The linear projected query

Q, key K, and value V all have the same channel dimension

as D. We used the D as 128. After matrix multiplication of

Q and K, we normalize it by dividing to
√
D before apply-

ing softmax as in [44]. Then, the V is weighted summed by

matrix multiplication with softmax attention, and dropout

[41] of 0.1 is followed. After updating the query with a

weighted summed value, we update the query again through

our pre-activated FFN. Finally, the LayerNorm and ReLU

are followed.

3.3. Feature fusion method

To take advantage of multitask learning, we performed

feature fusion by sharing the information of different tasks.



Many of the existing methods use concatenation, sum or

multiplication for feature fusion, but we opt for CCM [35].

If CCM is used for feature fusion, the dimension of output

fused feature is not changed by using a sum operator rather

than concatenation, and since the non-linearity is increased

by using ReLU in CCM, the performance likely increases.

With queries Qα and Qβ that extracted from each module

for task α and task β, respectively, the fused queries Q′

α for

task α is calculated via CCM as follows:

Q′

α = Qα + ReLU (WαQβ + bα) (3)

where Wα and bα are trainable class conversion matrices

for task α. We applied the CCM to every query of the MTx

units and applied CCM to both scene and action queries.

The detailed position of the CCM is given in Fig. 1. In ad-

dition, the CCM does not backpropagate the gradient when

training to increase the expertise of each task. If the CCM

backpropagates the gradient, performance degradation has

occurred, and the experimental results are given in Section

4.4.

3.4. Importance score regression

To evaluate on CoVieW 2019 challenge, we need to

regress the importance score for each segment. An impor-

tance score is an indicator of how important a given seg-

ment is in the video, and it given in real number bounded

from 0 to 2. Based on the importance score, six segments

with a high importance score be selected from a video, and

the scene and action hamming scores for only these six seg-

ments are measured.

To regress importance score, we concatenate all queries

and fed it into importance score regressor. The importance

score regressor implemented as a 2-layer MLP with a half

dimension of hidden layer, ReLU activation, and dropout

of 0.1. We did not propagate the gradient of the impor-

tance score regression error to the Multitask Transformer

and the feature extractor, because it severely interferes with

the training of the scene and action. Since the importance

score is bounded, we could use cross-entropy loss for cal-

culate the error of importance score. Thus, although the im-

portance score prediction is not a classification task, we opt

loss function for the binary cross-entropy with sigmoid acti-

vation function rather using the mean squared error (MSE).

We also tried to extract the feature from the whole video

rather than a segment for accurate prediction of importance

score value. In this case, because of insufficient memory,

we used only a single 2D CNN and gathered video features

from only one image for each segment. However, the perfor-

mance of video-level model is lower than the segment-level

network, the experimental results are given in Section 4.4.

The labels of importance score seem to highly subjective

and very noisy. We tried to learn the importance score but

found that even we cannot overfit the importance score to

training data. In addition, scene and action accuracy for se-

lected top-6 segments based on importance score regression

results were significantly degraded than segment-level ac-

curacy. Therefore, we select important segments using more

clear and accurate results, scene and action. We determined

the reliability of the prediction result for a segment by ob-

taining the maximum value of predictions applied softmax.

The reliability was extracted separately from the scene and

action, and then multiplied by the regressed importance

score and used it as the final predicted importance score.

For each n-th segment of the given video, let P scene
n and

P action
n be the vector of prediction scores for each class

of scene and action, respectively, and P importance
n be the

scalar of importance score regression result. Then, the new

importance score Pnew importance
n using the our proposed

prediction-based post-processing is calculated as follows:

Pnew importance
n = max (softmax (P scene

n ))

× max
(

softmax
(

P action
n

))

× sigmoid
(

P importance
n

)

.

(4)

If we select the top-6 important segments based on the

calculated Pnew importance
n , the importance score accuracy

becomes slightly degraded, but the scene and action ham-

ming score are significantly improved. The experimental re-

sults are given in Section 4.3.

4. Experiments

In this section, we describe the experimental results of

the Multitask Transformer Network on the CoVieW 2019

dataset. We describe contents of the CoVieW 2019 dataset

in Section 4.1, and we describe the training settings in Sec-

tion 4.2. In Section 4.3, we show the experimental results

on CoVieW 2019, and we conduct the ablation studies in

Sections 4.4.

4.1. CoView 2019 dataset

CoVieW 2019 dataset provides untrimmed videos with

the scene, action, and importance score labels for each 5-

second segments. The total number of the provided video is

1500, of which 1200 are training data and the remaining 300

are test data, which not include labels. Since there is no val-

idation set, we arbitrarily split it into training 1000 videos

and validation 200 videos with balanced the number of la-

bels between the training set and validation set as much as

possible. The scene and action contain 78 and 99 categories,

respectively. The importance score indicates how important

each segment is, compared to other segments from the same

video. The CoVieW 2019 challenge uses the hamming score

of the scene and action, and the importance score accuracy.

The hamming score of the scene and action is calculated

only for 6 segments per video, which selected based on the



Feature aggregation method
Segment-level results

CoVieW 2019 evaluation metric

Based on IS regression results After post-processing

Scene Action Scene Action IS Scene Action IS

GAP 55.879 52.799 52.250 45.667 0.793 60.167 62.083 0.745

Only AQPr 56.045 53.539 53.583 44.500 0.787 61.250 60.500 0.753

GAP + Concat Fusion 55.603 55.018 54.833 45.583 0.780 61.667 60.750 0.763

GAP + CCM Fusion 55.570 55.073 55.083 45.417 0.783 62.000 63.167 0.759

Multitask Transformer 56.586 54.654 53.750 44.500 0.789 63.167 66.000 0.732

Table 1. Experimental validation results based on segment-level and CoVieW 2019 evaluation metric using 2D ResNet-18. For scene and

action, top-1 accuracy was measured. IS denotes the importance score, and accuracy of the importance score measured by CoVieW 2019

metric.

Input size (T ×H ×W )
Segment-level results

CoVieW 2019 evaluation metric

Based on IS regression results After post-processing

Scene Action Scene Action IS Scene Action IS

32× 128× 128 58.258 55.641 56.833 46.833 0.793 64.333 66.250 0.743

32× 224× 224 60.086 57.812 58.583 51.500 0.797 65.333 67.750 0.745

32× 224× 224, ten-crop 60.241 57.282 60.833 51.333 0.798 67.833 67.667 0.741

All × 224× 224, ten-crop 60.351 57.315 61.167 51.083 0.797 67.667 67.417 0.742

Table 2. The validation results of the Multitask Transformer Network based on CoVieW 2019 evaluation metric using 2D SE-ResNeXt-101.

The results of the three bottom rows are the same model trained with 32× 224× 224 input size, and only testing methods are different.

importance score. To calculate the importance score accu-

racy, the average of ground truth importance score of the

selected six segments is divided by the maximum value of

six importance scores that the video can have.

4.2. Implementation details

We optimize our model using distributed synchronous

stochastic gradient descent with Nesterov momentum of 0.9

[11, 30]. The learning rate initially set to 0.001 for a batch

size of 256, and divide it by 10 after the validation loss

saturates. Here, we use the various batch size between 32

and 256, and we adjust the learning rate by applying the

linear scaling rule [11] to obtaining the same performance

for different batch sizes. We also use gradual warmup as in

[11], and assign a weight decay of 1e-4. We select random

32 frames sequence from the given segment and random

crop the frame to 128× 128 size. To boosting performance,

only a final model uses 224 × 224 input size of the im-

age. Frames were selected temporally-ordered for 3D CNN

experiments and temporally-orderless for 2D CNN experi-

ments. Since the videos provided in the CoVieW 2019 have

different frame rates, we sampled the frames with a fixed

frame rate of 25. We used ResNet-18 [13] and SE-ResNeXt-

101 [46, 17] as backbone networks, random initialization

for only the last fully-connected layer, and all convolution

layers initialized to weights of pre-trained on Places 365

[48] and ImageNet [34], as explained in Section 3.1.

4.3. CoVieW 2019 results

Experimental results based on the CoVieW 2019 met-

ric for our models are given in Table 1. For this experi-

ment, only the 2D CNNs were used as the backbone ar-

chitecture, and the weights of 2D CNNs before conv5 x

blocks were frozen. In Table 1, we show segment-level re-

sults and CoVieW 2019 evaluation metric results, and it

has two types of results based on the selection methods of

important segments; based on regressed importance score,

and our prediction based importance score post-processing

methods (explained in Section 3.4). Experimental results

show that when selecting important segments based on the

importance score regression result, it is difficult to find any

pattern of scene and action performance according to the

feature aggregation method. This indicates that the learning

of the importance score is very difficult. Therefore, apply-

ing our prediction based selection method with scene and

action classification results, we can find and analyze some

patterns of results, and scene and action performances are

significantly improved. Aggregating features with only a

AQPr has a slightly better scene performance, but action

performance becomes slightly degraded. The performance

was improved by performing the feature fusion of scene

and action using concat or CCM, and CCM has more im-

proved performance than concat fusion methods. The Mul-

titask Transformer achieves the best performance than other

aggregation methods.

Furthermore, we also train the Multitask Transformer us-

ing the SE-ResNeXt-101 as the deeper backbone network



Submission ID summary score rank scene & action score rank Final rank (rank sum)

ID 13 0.8512 1 0.7325 3 1 (4)

ID 3 0.8343 3 0.8036 2 2 (5)

ID 19 0.8409 2 0.7294 4 3 (6)

ID 5 (ours) 0.7594 7 0.8114 1 4 (8)

ID 15 0.8151 4 0.3872 5 5 (9)

ID 16 0.7985 5 0.3831 6 6 (11)

ID 14 0.7696 6 0.0494 7 7 (13)

Table 3. Performance comparison of different methods on CoVieW 2019 testset. In CoVieW 2019 challenge, scene & action score is

measured by the top-5 hamming score.
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Figure 3. Training and validation loss curves for the different finetuning backpropagated positions of feature extractor using GAP aggre-

gation method, which is a basic feature aggregation method. (a) is a result of training from scratch. (b) is a result of freezing pre-trained

weights and training only a last fully-connected layer for classification. (c) is a result of finetuning from the conv5 x block as in [12].

to boosting performance for CoVieW 2019 challenge, and

the results are given in Table 2. The ten-crop methods ap-

plied only on the spatial domain, and we used the standard

ten-crop method as used in [21]. In the case of ‘All’ at the

input size of T , all the frames in the segment are used as an

input. Since all frames have different frame rates, it can-

not be fixed to one value. Both the result using ten-crop

and the result of using ‘All’ as temporal input are trained

with a 32 × 224 × 224 input size, and they differ only the

test method. Interestingly, with ten-crop testing, the perfor-

mance of the scene is improved, but the performance of the

action is slightly decreased. Furthermore, using the tempo-

ral input size as all frames did not much helpful for improv-

ing performance.

Finally, we submitted the results for CoVieW 2019 chal-

lenge using the Multitask Transformer Network of the 32×
224 × 224 input size with ten-crop testing with the back-

bone architecture of the SE-ResNeXt-101 model. As a re-

sult, our model took 4th place in CoVieW 2019 challenge,

and 1st place on scene & action score as shown in Table

3. Our Multitask Transformer Network uses only segment-

level inputs, so it is weak for regressing importance score,

but it can captures important frames on untrimmed video

well, so our model achieves the best performance on scene

and action classification task.

CNN - Finetuning level Scene Action

2D CNN - A 53.826 52.302

2D CNN - B 55.879 52.799

3D CNN - A - 45.876

3D CNN - B - 51.899

Table 4. Comparison of 2D CNN and 3D CNN on the various fine-

tuning level using ResNet-18 architecture with GAP aggregation

method.

4.4. Ablation studies

To verify our Multitask Transformer Network on vari-

ous perspective, we conducted several ablation studies on:

backbone CNN architecture and finetuning, normalization

methods in AQPr, feature fusion method, MTx unit, and im-

portance score regression method. All ablation experiments

used segment-level scenes and action accuracies, which are

a more precise comparison metric to compare the model

than evaluate the accuracies only on selected important seg-

ments in our view.

Backbone CNN architecture and finetuning. Before

decided to use pre-trained models, we train the whole net-

work from scratch using ResNet-18, and the curves of train-

ing and validation error are given in Fig. 3. For this ex-

periment, we used 2D CNN for the scene, 3D CNN for



Normalization method Scene Action

None 56.133 53.704

None, bias 56.491 53.864

Batch Normalization 55.957 54.025

Instance Normalizaion 56.586 54.654

Table 5. Comparison of normalization methods in AQPr for gen-

erating a query of the Multitask Transformer Network using 2D

ResNet-18. The scene and action accuracies are computed on the

segment-level.

Feature fusion method Scene Action

Concat 55.603 55.018

CCM - backpropagated 55.708 53.500

CCM - no backpropagated 55.570 55.073

Table 6. Comparison of feature fusion methods using 2D ResNet-

18 with GAP aggregation method. The scene and action accuracies

are computed on the segment-level.

the action, and Places365-2D CNN and Kinetics-3D CNN

for the pre-trained models, respectively, and use the GAP

aggregation method. As shown in Fig. 3(a), which is the

result of the training from scratch, the training error is

consistently reduced, but the validation error can be seen

to never converge. Therefore, we used a well-trained pre-

trained model on large scale datasets, and we determined

to finetuning CNN or not by analyzing experimental results

in Figs. 3(b) and 3(c). This experiment shows that finetun-

ing conv5 x as in [12] has better performance. In addition,

we tried to replace the Kinetics-3D CNN for action recog-

nition with ImageNet-2D CNN, and the results are shown

in Table 4. As shown in Table 4, ImageNet-2D CNN has

better performance than Kinetics-3D CNN, and the fine-

tuning conv5 x block has best performance. Therefore, all

our experiments used Places365-2D CNN for scene recog-

nition and ImageNet-2D CNN for action recognition, and

we trained from the conv5 x block of pre-trained CNN

with feature aggregation module.

Normalization method in AQPr. To generate query fea-

ture of the Multitask Transformer Network, we use AQPr,

and it uses InstanceNorm (in Equation 1). We can replace

this InstanceNorm with BatchNorm or bias without us-

ing any normalization method. The experimental results

are shown in Table 5. We can find that the query gener-

ated through InstanceNorm is well-suited with the Multi-

task Transformer Network. This means that normalization

helps to prevent deactivating or activating too many features

and it is better to determine the activated features without

affected by other segments.

Feature fusion method. To determine the feature fu-

sion method, we compare the concatenation method and

the CCM method, and the results are given in Table 6. The

simple concatenation method performed very well, but the

Transformer unit Scene Action

Tx [9] 56.111 54.278

MTx (ours) 56.586 54.654

Table 7. The experimental results of replacing our proposed Multi-

task Transformer (MTx) unit with the existing Action Transformer

(Tx) unit. The scene and action accuracies are computed on the

segment-level.

Training labels Method IS

only IS
Video-level 0.760

Segment-level 0.776

IS+scene+action Segment-level 0.793

Table 8. Comparison of training methods for regressing impor-

tance score using 2D ResNet-18. The scene and action accuracies

are computed on the segment-level.

feature fusion method through CCM achieves better per-

formance. Interestingly, the experimental results show the

CCM, which does not backpropagate the gradient during

training, has much better performance for action recogni-

tion. It suggests that having the expertise for each task with-

out disturbed from other tasks would be better for multitask

learning.

MTx unit. To verify the effectiveness of our proposed

MTx unit, we replace the MTx units of our Multitask Trans-

former Network with the existing Action Transformer (Tx)

units, and the results are given in Table 7. As described in

Section 3.2, our MTx unit is able to compensate for the dis-

advantages of the existing Tx unit to achieve better perfor-

mance.

Importance score regression method. The ablation

study of the importance score training is given in Table 8.

Interestingly, learning the scene and action jointly achieves

the improved importance score performance than learning

only an importance score. However, if we backpropagate

the gradient of importance score error to feature extraction

module and feature aggregation module, the performance of

the scene and action degraded dramatically compared to the

improvement of the accuracy of importance score. There-

fore, we train the importance score jointly scene and action,

but the gradient of the importance score error only propa-

gated to the last two fully-connected that unaffected on the

scene and action prediction.

5. Conclusions

In this paper, we proposed the Multitask Transformer for

comprehensive video understanding in the wild. Our pro-

posed model consists of attention module and feature fu-

sion module for jointly multitask learning. We also applied

post-processing to the regression result of importance score

to solve the problem of noisy importance score labels for



CoVieW 2019 evaluation metric. Finally, we achieve the

high accuracy of the scene and action, even though the ac-

curacy of the importance score was slightly low.
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