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Abstract

Linear regression has achieved the promising prelimi-

nary results for face classification. But, most existing meth-

ods are incapable of tackling color images classification.

The major reason is that they need to transform each color

image to a vector or matrix, leading to the loss of multi-

dimensional structure information embedded in color im-

ages. To address this problem, we study the tensor linear

regression problem, and develop a novel tensor low-rank

method, which utilizes tensor-Singular Value Decomposi-

tion (t-SVD) based tensor nuclear norm to emphasize the

spatial structure embedded in color images. Applying it

to color face classification, extensive experiments on three

datasets demonstrate that our method is superior to several

state-of-the-art methods.

1. Introduction

Face recognition is a biometric recognition technology

based on human facial feature information for identification

and has been one of the hot topics in pattern recognition and

computer vision. Both feature extraction and classification

are two of the most important problems for face recognition.

We herein focus on classification. For classification, meth-

ods based on linear regression (LR) have achieved impres-

sive results [3, 14, 2]. For example, Hoerl [7] used linear

regression model for data classification and proposed ridge

linear regression model which presents each probe data as

a linear combination of all training samples. To improve

performance, Naseem et al. developed a linear regression

classifier (LRC) [14] for face recognition. In LRC, each

probe face image can be described as a linear combination

of the class-specific samples and classifies the probe image

by minimizing the class-reconstruction error. In fact, sever-

al previous works, such as nearest feature line [10], nearest

feature plane, and nearest feature space method [4] are all

variants of LR based methods.
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However, standard linear regression model always en-

counters the problem of over-fitting and does not make

sense in many applications [7] when the coefficients are

not limited. To tackle this problem, one of the most pop-

ular methods is to add l1-norm based regularization on LR

model, which is called Lasso. Applying it to face image

classification, Wright et al. proposed a sparse representa-

tion based classification (SRC) [18]. Since the coefficients

in SRC encode discriminative, SRC has achieved impres-

sive performance in the experiments. Zhang et al. [23] an-

alyzed the working mechanism of SRC and indicated that,

compared with SRC, collaborative representation (CR) has

competitive performance with significantly lower complex-

ity. Then, CR based classification (CRC) is proposed for

face recognition.

LRC, SRC and CRC employ l1-norm or l2-norm to mea-

sure the representation residual of error vector and have

achieved impressive results when representation error fol-

lows a Gaussian or a Laplacian distribution. However, this

distribution is very strict and cannot be satisfied in real-

world face recognition [20, 17]. To improve robustness

of LR, He et al proposed correntropy-based sparse repre-

sentation (CESR) [6] by maximizing correntropy criterion

for face recognition. Although motivations of the afore-

mentioned methods are different, all of them use the one-

dimensional pixel-based error model, in which the error on

each pixel is characterized one by one, individually. Thus,

they ignore spatial structure of representation error which is

important for classification [22, 16].

Most existing works [22, 16] have demonstrated that nu-

clear norm can well characterize the whole structural infor-

mation of data. Ma et al. integrated the rank minimization

into sparse representation for dictionary learning and ap-

plied the model for face recognition [24]. Motivated by the

fact that contiguous occlusion in image generally leads to

low-rank representation error image, Qian et al. [15] pro-

posed a model by adding a low-rank constraint of error im-

age on Ridge regression. Yang et al. consolidated the work

of Qian et al by incorporating nuclear norm based matrix re-

gression (NMR) [19] which makes full use of the low-rank



structure.

The above mentioned methods are limited to handling 1-

way (vector) or 2-way (matrix) data. In face recognition, the

real face images are usually described by multi-dimensional

way [13, 9]. For example, a color image is a 3-way object

with column, row and color modes. However, existing mod-

els have to convert the multi-dimensional images into vec-

tors or matrixes when dealing with multi-dimensional im-

ages. Thus, all of them fail to encode the multi-dimensional

structure information embedded in color images. This moti-

vates us to investigate how to exploit the multi-dimensional

structure information.

Inspired by the following four observations that, First,

a color probe image can be represented as a linear repre-

sentation of a small number of dictionary atoms. Second,

error image usually has low-rank structure due to the fact

that the elements of error image are correlated in real appli-

cations. Third, the multi-dimensional structure information

help improve robustness of regression models. Fourth, the

recently proposed tensor-nuclear norm [12], which is based

on tensor singular value decomposition (t-svd), is an effec-

tive convex relaxation of l1-norm and well encodes discrim-

inative information. We impose low-rank constraint of er-

ror image with tensor form in tensor linear regression, and

present a new type of tensor nuclear norm (t-TNN) algorith-

m to optimize the objective function. Different form most

existing tensor rank methods, t-SVD enjoys many similar

properties as the matrix case and is more appropriate to de-

scribe the multi-dimensional information of color image.

Thus, the complementary information among color chan-

nels can be explored more efficiently and thoroughly in our

proposed tensor regression model. The main contributions

of our method are summarized as follows:

• Our work extends matrix regression to tensor regres-

sion via proposing a new tensor regression model that

is able to maintain more structural information with-

out using the tensor-to-matrix or tensor-to-vectors con-

verting step. Thus, our model well encodes multi-

dimensional structure information embedded in color

images

• In practice, contiguous occlusion generally leads to a

low-rank error image. We use the whole structural in-

formation of an error image by minimizing the tensor

nuclear norm to determine the regression coefficients.

By doing it, the model becomes more robust against

the the occlusion, disguise and so on.

2. Related work

2.1. Notations and preliminaries

For convenience, we summarize the notations used in our

paper in Table 1. Given A ∈ R
n1×n2×n3 , denote by A the

Table 1. Symbols and Meanings

symbol meaning

A a tensor

A a matrix

a a vector

a a scalar

aijk (i, j, k)-th entry of A

A(i) the i-th frontal slice of A

Ā(i) the i-th frontal slice of Ā

discrete Fast Fourier transform (FFT) of tensor A along the

third dimension i.e., A = fft(A, [], 3). Similarly, thus A

can be obtained by inverse FFT (IFFT) of A along the third

dimension, i.e., A = ifft(A, [], 3).

Definition 1 [8] For a 3-way tensor A ∈ R
n1×n2×n3 , we

denote the Frobenius norm as ‖A‖F =
√

∑

ijk |aijk|
2

Definition 2 [8] For a 3-way tensor A ∈ R
n1×n2×n3 , we

denote A as a block diagonal matrix with each block on

diagonal as the frontal slice A
(i)

of A. A has the following

form:

A = bdiag(A) =

⎡

⎢

⎢

⎢

⎢

⎣

A
(1)

A
(2)

. . .

A
(n3)

⎤

⎥

⎥

⎥

⎥

⎦

(1)

Definition 3 [8] For a 3-way tensor A ∈ R
n1×n2×n3 , its

block circulant matrix is a matrix of n1n3 × n2n3 having

the following form:

bcirc(A) =

⎡

⎢

⎢

⎢

⎣

A(1) A(n3) ... A(2)

A(2) A(1) ... A(3)

...
...

. . .
...

A(n3) A(n3−1) ... A(1)

⎤

⎥

⎥

⎥

⎦

(2)

Definition 4 [8] For a tensor A∈ R
n1×n2×n3 , we have

unfold(A) =
[

A(1);A(2); · · · ;A(n3)
]

fold(unfold(A)) = A
(3)

Definition 5 [8] (t-product) Let A ∈ R
n1×n2×n3 and

B ∈ R
n2×l×n3 , then the t-product between them is E ∈

R
n1×l×n3 , i.e.,

E = A ∗B = fold(bcirc(A)·unfold(B)) (4)

t-product between A and B can be computed efficiently by

1. Calculate A = fft(A, [], 3) and B = fft(B, [], 3);

2. Multiply the each pair of the frontal slices of Ā and B̄

to obtain Ē ;



3. Calculate E = ifft(Ē , [], 3);

Meanwhile, note that the t-product reduces to the stan-

dard matrix-matrix product when n3 = 1.

Definition 6 [8] The conjugate transpose of a tensor A ∈
R

n1×n2×n3 is the tensor AT ∈ R
n2×n1×n3 obtained by

conjugate transposing each of the frontal slice and then re-

versing the order of transposed frontal slices 2 through n3.

Definition 7 [8] A tensor is called f-diagonal if each of its

frontal slices is diagonal matrix.

Theorem 1 [8] Block-circulant matrix can be block-

diagonalized by

(Fn3
⊗ In1

)·bcirc(A)·(Fn3

−1 ⊗ In2
) = A (5)

where ⊗ denotes the Kronecker product, Fn3 is the n3 ×
n3 Discrete Fourier Transform (DFT) matrix, In1

and In2

denote n1 × n1 and n2 × n2 identity matrices, respectively.

Theorem 2 [8](T-SVD). Let A ∈ R
n1×n2×n3 , then A can

be factored as

A = U ∗ S ∗ VT (6)

where U ∈ R
n1×n1×n3 and V ∈ R

n2×n2×n3 are orthogo-

nal, S ∈ R
n1×n2×n3 is a f-diagonal tensor.

Definition 8 [12](tensor nuclear norm). Given A ∈
R

n1×n2×n3 , its nuclear norm is

‖A‖
⊛
=

∑n3

i=1

∥

∥

∥
A

(i)
∥

∥

∥

∗
=

∥

∥(Fn3 ⊗ In1) · bcirc(A) · (F−1
n3

⊗ In2)
∥

∥

∗
= ‖bcirc(A)‖∗

(7)

2.2. NMR

Given n image matrices A1, ...,An ∈ R
p×q , then a

probe B ∈ R
p×q is represented as

B = c1A1 + c2A2+, ...,+cnAn +E
∆
= A(c) +E

(8)

where, c1, c2, ..., cn is a set of representation coefficients,

A(c) = c1A1 + c2A2 + ...+ cnAn, and E is residual.

NMR [19] utilizes the minimal nuclear norm of repre-

sentation error image as a criterion, and formulates the ob-

jective function as

min
c

‖A(c)−B‖∗ +
1

2
λ ‖c‖

2
2 (9)

Despite the promising classification results for face

recognition in the presence of occlusion and illumination

variations, NMR needs to transform each color image to a

gray matrix, results in the loss of spatial structure informa-

tion hidden in color image. Consequently, the performance

of NMR is limited in color image classification. To address

this problem, we extend NMR to the tensor form, and de-

velop a novel tensor nuclear norm method in the following

section.

3. The classification of nuclear norm based ten-

sor regression model and its ADMM algo-

rithm

3.1. Nuclear norm based tensor linear regression

Given a set of training samples A1,1,...,A1,p1 ,...,

AN,1,...,AN,pN
∈ R

n1×n2×n3 . The set of training samples

has N classes and the i-th class has pi samples. For a new

test sample X ∈ R
n1×n2×n3 , it can be represented linearly

using Ai,m ∈ R
n1×n2×n3 as the following equation:

X = x1,1A1,1 + ...+ x1,p1A1,p1 + ....

+xN,1AN,1 + ...+ xN,pN
AN,pN

+ E
(10)

where, x1,1, ..., x1,p1 , ...., xN,1, ...., xN,pN
is a set of repre-

sentation coefficients and E is the representation residual.

We have the following linear mapping for convenience.

A(x) = x1,1A1,1 + ...+ x1,p1A1,p1 + ....+
xN,1AN,1 + ...+ xN,pN

AN,pN

(11)

So, Eq. (10) becomes

X = A(x) + E (12)

For the probe image, ideally, the representation of a set of

training samples is closed to the probe as possible in regres-

sion analysis, it may lead to the structural low-rank of the

error image. Meanwhile, in more general cases, the illumi-

nation such as shadows and the occlusion such as sunglass

and a scarf yield a low-rank error image for grayscale im-

ages. So we extend the low-rank of representation residual

image matrix to the low-rank of representation residual im-

age tensor as to make full use of the low-rank structural

information. We formulate the optimal problem as:

min
x,E

‖E‖
⊛

st.X = A(x) + E
(13)

To avoid over-fitting, we need to add the limit on regres-

sion coefficients. Borrowing the idea of the Ridge regres-

sion, we add a similar regularization term to the objective

function. Finally, we obtain the following model:

min
x,E

‖E‖
⊛
+ λ ‖x‖

2
2

st.X = A(x) + E
(14)

3.2. Optimization

Due to the operations of tensor are different from matrix,

in order to solve Eq. (14) and find the optimal solution, we

given the following Lemma and Theorem.

Lemma 1 [1] Let Y = UY ∗ DY ∗ VT
Y be the SVD of

Y ∈ R
m×n, τ > 0, for the following optimization problem:

argmin
X

1

2
‖X−Y‖

2
F + τ‖X‖∗ (15)



Then, the optimal solution of the model (15) is

Dτ [Y] = UY Pτ (Y)VT
Y (16)

where,

Pτ (Y) = diag(γ1, γ2, · · · , γl)

γi = sign(σi(Y))max(σi(Y)− τ, 0)

σi(Y) denotes the i largest singular value of Y.

Theorem 3 For A ∈ R
n1×n2×n3 , let the t-SVD of A be

A = U ∗ S ∗ VT .

For a minimization problem:

argmin
X

1

2
‖X −A‖

2
F + τ‖X‖

⊛
(17)

Then, the optimal solution of Eq. (17) can be expressed by

the operator defined as:

X = Dτ (A) = U ∗ ifft(Pτ (A)) ∗ VT (18)

where Pτ (A) is a tensor and Pτ (A
(i)
) is the i-th frontal

slice of Pτ (A).

Proof:

In Fourier domain, the optimization problem of Eq. (17)

can be reformulated as:

X
∗
= argmin

X

1

2

∥

∥X −A
∥

∥

2

F
+ τ‖bdiag(X )‖∗ (19)

According to the character of F-norm and the character of

nuclear norm of block diagonal matrix, we can get the fol-

lowing equation further:

X
∗
= argmin

X

n3
∑

i=1

1

2

∥

∥

∥
X

(i)
−A

(i)
∥

∥

∥

2

F
+ τ

∥

∥

∥
X

(i)
∥

∥

∥

∗
(20)

where X
(i)

and A
(i)

are the i the frontal slice of X and

A respectively. Thus all X
(i)

are independent, so are A
(i)

.

Then Eq. (20) can be divided into n3 subproblems.

For the i-th (i = 1, 2, · · · , n3) subproblem, we have

X
(i)∗

= argmin
X

(i)

1

2

∥

∥

∥
X

(i)
−A

(i)
∥

∥

∥

2

F
+ τ

∥

∥

∥
X

(i)
∥

∥

∥

∗
(21)

According to Lemma 1, the solution X
(i)∗

of Eq. (21) is

Dτ (A
(i)
) = U

(i)
Pτ (A

(i)
)V

(i)T

and it is the i-th frontal

slice of X
∗
.

According to Definition 5, we can easily get

X ∗ = Dτ (A) = U ∗ ifft(Pτ (A)) ∗ VT (22)

where U = ifft(U , [], 3) and U
(i)

is the i-th frontal slice

of U , V = ifft(V , [], 3) and V
(i)

is the i-th frontal slice

of V .

Our objective function in Eq. (14) simultaneously learns

the residual error E and the coefficients x. Each of them

can be solved efficiently by fixing the other. The alternat-

ing direction method of multipliers or the augmented La-

grange multipliers (ALM) method is an efficient solver for

our problem [11]. Eq. (14) can be solved by minimizing the

following unconstrained ALM problem:

min
x,E

‖E‖
⊛
+λ ‖x‖

2
2 +

µ

2

∥

∥

∥

∥

E −X +A(x) +
Y

µ

∥

∥

∥

∥

2

F

(23)

where µ is a positive scalar, Y ∈ R
n1×n2×n3 is an estimate

of the Lagrange multiplier, ‖·‖
⊛

denotes the tensor nuclear

norm, ‖·‖2 denotes the vector l2 norm, ‖·‖F denotes the

tensor Frobenius norm. We separate our problem into the

following subproblems.

1. x-subproblem: To update x, we solve the following

optimization problem by fixing the other variables

argmin
x

µk

2

∥

∥

∥
Ek −X +A(x)− Yk

µk

∥

∥

∥

2

F
+ λ ‖x‖

2
2

(24)

For Eq. (24), We denote ek = vect(Ek),
z = vect(X ), yk = vect(Yk), D =
(

vect(A1,1), vect(A1,2), ... , vect(AN,pN
)
)

,

where vect(·) is notation which transforms tensor into

vector. This transformation is reasonable according

to the definition of F-norm. So Eq. (24) becomes the

following optimization problem:

argmin
x

µk

2

∥

∥

∥
ek − z+Dx− yk

µk

∥

∥

∥

2

F
+ λ ‖x‖

2
2

(25)

taking the derivative of Eq. (25) w.r.t x and setting the

derivative to zero. We have the solution as the follow-

ing:

xk+1 = (µkD
TD+ 2λI)−1 ∗ µk

∗ (DT z+DT yk

µk

−DTek)
(26)

2. E -subproblem: To update E , we solve the following

optimization problem by fixing the other variables

argmin
E

1
2

∥

∥E − (X+µ−1
k Yk −A(xk+1))

∥

∥

2

F

+ 1
µk

‖E‖
⊛

(27)

According to Theorem 3, the optimal solution of Eq.

(27) is

Dµ
−1
k

(X+µ−1
k Yk −A(xk+1)) (28)

The optimization process of solving Eq. (14) is summa-

rized in Algorithm 1.



3.3. Classification

Similar to the strategy of NMR, we use the training

samples of all classes to form the set of regressors. Let

A1,1,...,A1,p1
,..., AN,1,...,AN,pN

be training sample im-

ages of all classes. For a given test image X , we use all

training samples to represent it and obtain the representa-

tion coefficient vector by solving Eq. (14) via Algorithm 1

and obtain the optimal solution.

Let δi: R
n → R

n be the characteristic function that s-

elects the coefficients associated with the i-th class. For

x ∈ R
n, δi(x) is a vector whose only nonzero entries are

the entries in x that are associated with Class i. Using the

coefficients associated with the i-th class, one can get the

reconstruction of X in Class i as X̂ i = A(δi(x)). The

corresponding class reconstruction error is defined by

di(X ) =
∥

∥

∥
X − X̂ i

∥

∥

∥

2

F
(29)

The decision rule is defined as: if dl = min
i

di(X ), then

X is assigned to Class l.

Algorithm 1: Solving Eq. (14) by ADMM

Initialize: E0 = Y0 = x0 = 0, ρ = 1.1, µ0 = 1e − 3,

µmax = 1e10, ε = 1e− 8
whlie not converged do

1. update xk+1 by

xk+1 = argmin
x

µk

2

∥

∥

∥
Ek −X +A(x)− Yk

µk

∥

∥

∥

2

F

+ λ ‖x‖
2
2

2. updateEk+1 by

Ek+1 = argmin
E

1
2

∥

∥E − (X+µ−1
k Yk −A(xk+1))

∥

∥

2

F

+ 1
µk

‖E‖
⊛

3.Yk+1 = Yk + µk(X −A(xk+1)− Ek+1)
4.update µk+1 by µk+1 = min(ρµk, µmax)
5.check the convergence conditions

‖A(xk+1)−A(xk)‖∞ ≤ ε,

‖Ek+1 − Ek‖∞ ≤ ε

‖X −A(xk+1)− Ek+1‖∞ ≤ ε

end while

6. Output E , x

3.4. Convergence Analysis

Corollary 1 The sequence {Yk} is generated by Algorithm

1 is bounded.

Proof: Based on the Lagrange multiplier updating method

in step of Algorithm1, we have:

‖Yk+1‖F = ‖Yk + µk(X −A(xk+1)− Ek+1)‖F
= µk

∥

∥µ−1
k Yk +X −A(xk+1)− Ek+1

∥

∥

F

= µk × 1√
n3

∥

∥

∥
bdiag(µ−1

k Yk +X −A(xk+1)− Ek+1)
∥

∥

∥

F

= µk × 1√
n3

∥

∥

∥
bdiag(µ−1

k Yk +X −A(xk+1))−

bdiag(Ek+1)
∥

∥

F
(30)

Denote by Uk ∗ Sk ∗ VT
k the SVD of the tensor

X+µ−1
k Yk − A(xk+1) in the (k + 1)-th iteration. Based

on the solution of tensor nuclear norm, we have

Ek+1=Uk ∗ ifft(Pτ (X+µ−1
k Yk −A(xk+1))) ∗ V

T
k

(31)

According to Theorem 2, we have

‖Yk+1‖F = µk × 1√
n3

∥

∥bdiag(Uk) • (bdiag(Sk)

−bdiag(Pτ (X+µ−1
k Yk −A(xk+1)))•bdiag(Vk

T
)
∥

∥

∥

F

=µk × 1√
n3

∥

∥bdiag(Sk)−

bdiag(Pτ (X+µ−1
k Yk −A(xk+1)))

∥

∥

∥

F

≤ µk × 1√
n3

√

n3
∑

j=1

∑

i

(

1
µk

)2

(32)

Thus, {Yk} is bounded.

Corollary 2 The sequences {xk} and {Ek}is generated by

Algorithm 1 is bounded.

Proof: To annlyze the boundedness of

Γ(Ek+1,xk+1,Yk, µk) , first we can see the follow-

ing inequality hold becase in step 1 and step 2 we have

achieved the globally optimal solutions of the E and x

subproblems:

Γ(Ek+1,xk+1,Yk, µk) ≤ Γ(Ek,xk,Yk, µk) (33)

We update Y according to step 3, then we have:

Yk+1 = Yk + µk(X −A(xk+1)− Ek+1) (34)

Further, X −A(xk+1)− Ek+1 = µ−1
k (Yk+1 −Yk)

There is,

Γ(Ek,xk,Yk, µk)=Γ(Ek,xk,Yk−1, µk−1)

+ µk−µk−1

2 ‖X −A(xk)− Ek‖
2
F

+ 〈Yk −Yk−1,X −A(xk)− Ek〉
= Γ(Ek,xk,Yk−1, µk−1)

+ µk−µk−1

2

∥

∥

∥
µ−1

k−1
(Yk −Yk−1)

∥

∥

∥

2

F

+
〈

Yk −Yk−1, µ
−1
k−1

(Yk −Yk−1)
〉

= Γ(Ek,xk,Yk−1, µk−1)

+ µk+µk−1

2µ2
k−1

‖Yk −Yk−1‖
2
F

(35)



Denote by Θ the bound of ‖Yk −Yk−1‖
2
F for k (k =

1, ...,∞). We have:

Γ(Ek+1,xk+1,Yk, µk) ≤ Γ(E1,x1,Y0, µ0)

+Θ
∞
∑

k=1

µk+µk−1

2µ2
k−1

(36)

Since the penalty parameter {µk} satisfies
∞
∑

k=1

µk+1

µ2
k

< +∞, we have:

∞
∑

k=1

µk + µk−1

2µ2
k−1

≤
∞
∑

k=1

µk

µ2
k−1

< +∞ (37)

Thus, we know that Γ(Ek+1,xk+1,Yk, µk) is also upper

bounded. The boundedness of {Ek} and {xk} can be easily

deduced as follows:

‖Ek‖⊛ + ‖xk‖
2
2

= Γ(Ek,xk,Yk−1, µk−1) +
µk−1

2 ( 1
µ2
k−1

‖Yk−1‖
2
F

−
∥

∥

∥
X −A(xk)− Ek + 1

µk−1
Yk−1

∥

∥

∥

2

F
)

= Γ(Ek,xk,Yk−1, µk−1)−
1

2µk−1
(‖Yk‖

2
F − ‖Yk−1‖

2
F )

(38)

Because Γ(Ek+1,xk+1,Yk, µk) and {Yk} is bounded

, in addition, ‖Ek‖⊛ and ‖xk‖
2
2 all are nonnegative, thus

{xk} and {Ek} generated by the propose algorithm are all

bounded.

Theorem 4 The sequence {X −A(xk+1)−Ek+1} gener-

ated by Algorithm 1 satisfy:

lim
k→∞

‖X −A(xk+1)− Ek+1‖∞ = 0 (39)

Proof: From corollary 1 and corollary 2, we know {xk},

{Ek} and {Yk} generated by the propose algorithm are all

bounded. There exists at least one accumulation point for

{xk,Ek,Yk}. Specifically, we have:

lim
k→∞

‖X −A(xk+1)− Ek+1‖F

= lim
k→∞

1
µk

‖Yk+1 −Yk‖F = 0
(40)

According to the equivalence property of between norm-

s, we have

lim
k→∞

‖X −A(xk+1)− Ek+1‖∞ = 0 (41)

4. Experimental results

Extensive experiments were carried out to illustrate the

efficacy of the proposed approach. Essentially, three stan-

dard color databases, i.e. the AR, the Georgia Tech and

the FET have been addressed. We compare our model with

NMR, LRC, SRC, and CRC. (1) NMR [19]: Learning the

regression coefficients by incorporating nuclear norm based

Figure 1. The data for experiments, the first row is the testing data

without shelter, the second row is the testing data with shelter, the

third row is the training data without shelter, the fourth row is the

training data with shelter.

matrix regression for a probe; (2) LRC [14]: Learning the

regression coefficients of each class by linear regression for

a probe and divide it into the class whit the minimum recon-

struction error; (3) SRC [18]: It is a general classification

algorithm for object recognition based on a sparse represen-

tation computed by l1-minization; (4) CRC [23]: Learning

the coefficients by collaborative representing based on ridge

regression.

4.1. AR Database

The AR database consists of 126 (70 men and 56 wom-

en) subjects. Each of them has 26 images including 14 un-

obstructed images and 12 occluded (Sunglasses and scarf)

images. We conduct two different types of experiments on

the AR database. To simulate the real situation, each type

of experiments consists of four cases: 1. train samples and

test samples are all clean; 2. test samples are contaminated

and train samples are clean; 3. test samples are clean and

train samples are contaminated; 4. train samples and test

samples are all contaminated.

4.1.1 Recognition with natural occlusion

In the first experiment, 7 images randomly chosen form 14

unobstructed images of per subject are used for training da-

ta without shelter, the other are used for testing data without

shelter. Additional, we choose 7 images randomly which in-

clude 4 unobstructed images and 3 occluded images (Sun-

glasses or scarf) to use for training data with shelter. We

choose 7 images randomly which include 4 unobstructed

images and 3 occluded images (Sunglasses and scarf) to use

for testing data with shelter. These data for experiments are

shown in fig. 1. We use the four experiments to test the per-

formance of the proposed model. We conduct face recog-

nition tests and show the recognition rates of LRC, CRC,

SRC, NMR and our model in Table 2.

In this set of experiments, generally speaking, the con-

tiguous occlusion caused by sunglass and scarf leads to a

low-rank error image. It is more reasonable to use nuclear

norm to measure the representation error. NMR takes the



Table 2. Recognition accuracy rate for natural occlusion on the AR

database
ACC(%) 1 2 3 4

LRC 0.9548 0.9286 0.8905 0.8536

CRC 0.9678 0.9583 0.9214 0.8833

SRC 0.9798 0.9036 0.9583 0.9274

NMR 0.9714 0.8964 0.9548 0.9202

OURS 0.9917 0.9429 0.9833 0.9774

Figure 2. The data for experiments, the first row is the testing data

without shelter, the second row is the testing data with shelter, the

third row is the training data without shelter, the fourth row is the

training data with shelter

low-rank into account while LRC and CRC treat the con-

tiguous occlusion as a random noise point. So the result of

NMR is better than RLC and CRC. Meanwhile compared

with the NMR, our model is significantly superior, because

our model considers the depth information. Our model is

lower than SRC in the second experiment, but is better than

SRC in the other experiment, which shows that our model

is more stable, compare to SRC.

4.1.2 Recognition with artificial occlusion

In the second type experiments, 7 images randomly chosen

from 14 unobstructed images of per subject were used for

training without shelter, while the other are used for test-

ing without shelter. The testing data with shelter are gen-

erated by this way where three images chosen from testing

data without shelters randomly are corrupted by a random-

ly located square block images and the rest of testing data

without shelters are unchanged. We can obtain the training

data with shelter via corrupting any three images from the

training data without shelter by a randomly located square

block image and keep the rest of training data without shel-

ters to be unchanged. These data for experiments are shown

in fig. 2. We conduct face recognition tests and show the

recognition rates of LRC, CRC, SRC, NMR and our model

in Table 3.

The difference between these experiments and the pre-

vious experiments is that we added an additional occlusion

block to the unoccluded images, but our model performs the

best among all methods. Particularly, our models is signif-

icantly superior to other methods in those cases where the

training data or the testing data include occlusion blocks. It

Table 3. Recognition accuracy rate for artificial occlusion on the

AR database
ACC(%) 1 2 3 4

LRC 0.9667 0.9214 0.8452 0.8202

CRC 0.9702 0.9607 0.8976 0.9119

SRC 0.9690 0.9179 0.9619 0.9310

NMR 0.9643 0.9405 0.9583 0.9286

OURS 0.9893 0.9821 0.9786 0.9667

Figure 3. The data for experiments, the first row is the samples

without noise, the second row is the samples with noise

Table 4. Accuracy for artificial occlusion on the first sub-database

ACC(%) 1 2 3 4

LRC 0.9300 0.8800 0.8833 0.8667

CRC 0.9066 0.8900 0.8633 0.8700

SRC 0.8967 0.8433 0.8833 0.8433

NMR 0.9033 0.8533 0.8730 0.8670

OURS 0.9733 0.9233 0.9300 0.8933

shows that our model is more robust to occlusion blocks.

4.2. FEI Database

FEI database includes four sub-databases. Per sub-

database consists of 50 subjects and each of them has 14

images. We perform the same experiments on these four

sub-databasea to verify the performance of our model re-

spectively. For each sub-database, 8 images chosen ran-

domly from each subject are used for the training data with-

out noise, while the remaining 6 images served as the testing

data without noise. In addition, we randomly add noise like

salt noise to any three images of the training without noise

samples to form the training data with noise. We also ran-

domly add noise like salt noise to any three images of the

testing without noise samples to form the testing data with

noise. To simulate the real situation, experiment consists of

four cases: 1. train samples and test samples are all clean; 2.

test samples are contaminated and train samples are clean;

3. test samples are clean and train samples are contaminat-

ed; 4. train samples and test samples are all contaminated.

These data for experiments are shown in fig. 3. Finally, we

put the four sub-databases together and do the same exper-

iments as the sub-databases above. Tables show a detailed

comparison of our model with LRC, CRC, SRC, NMR.

From Table 4, Table 5, Table 6, Table 7, Table 8, we can

see our method is generally better than other methods. From

Table 6, our model is lower than SRC in the second exper-

iment. SRC is based on assumption that the representation

errors are pixel-wise and are of independent identical dis-



Table 5. Accuracy for artificial occlusion on the second sub-

database
ACC(%) 1 2 3 4

LRC 0.9233 0.8733 0.8533 0.8467

CRC 0.9433 0.8933 0.9200 0.8733

SRC 0.9367 0.8900 0.8900 0.8633

NMR 0.9267 0.9033 0.9000 0.8600

OURS 0.9800 0.9600 0.9467 0.9333

Table 6. Accuracy for artificial occlusion on the third sub-database

ACC(%) 1 2 3 4

LRC 0.8933 0.8667 0.8367 0.8333

CRC 0.9133 0.8733 0.8833 0.8400

SRC 0.9100 0.9667 0.8600 0.8133

NMR 0.9200 0.8700 0.8767 0.8300

OURS 0.9633 0.9367 0.9400 0.9200

Table 7. Accuracy for artificial occlusion on the fourth sub-

database
ACC(%) 1 2 3 4

LRC 0.9267 0.9000 0.8933 0.8700

CRC 0.9366 0.8766 0.8966 0.8433

SRC 0.9267 0.8833 0.8700 0.8333

NMR 0.9367 0.9000 0.8933 0.8567

OURS 0.9667 0.9433 0.9467 0.9300

Table 8. Accuracy for artificial occlusion on the FEI database

ACC(%) 1 2 3 4

LRC 0.8692 0.8100 0.7925 0.7608

CRC 0.8517 0.7550 0.7141 0.6417

SRC 0.8567 0.6608 0.7708 0.6142

NMR 0.8108 0.6717 0.7308 0.6092

OURS 0.9250 0.8150 0.8508 0.7608

tribution. The representation error image is not a low-rank

when pixels of testing sample are contaminated. But our

model is better than SRC in the other experiments. It shows

that our model is more robust to noise, compared with SR-

C. From Table 8, our model has the same recognition rate

with RLC when the testing data and the training data are all

contaminated, but our model is significant superior to RLC

in other cases. Meanwhile, as the number of categories in-

creases, the performance of all the methods is dramatically

degraded especially NMR, but our model is more stable.

4.3. Georgia Tech Database

The Georgia Tech Database consists of 50 subjects with

15 images per subject. It characterizes several variations

such as pose, expression, cluttered background, and illumi-

nation. 8 images chosen randomly from each subject are

used for the training data without noise, while the remain-

ing 7 images served as the testing data without noise. In

addition, we randomly add noise like salt noise to any three

Figure 4. The data for experiments, the first row is the samples

without noise, the second row is the samples with noise

Table 9. Accuracy rate for on the Georgia Tech Database

ACC(%) LRC CRC SRC NMR OURS

1 0.9829 0.9743 0.9743 0.9829 0.9886

2 0.9657 0.9371 0.9868 0.9771 0.9857

images of the testing samples to form the testing data with

noise and randomly add noise like salt noise to any three im-

ages of the training samples to form the training data with

noise. These data for experiments are shown in fig. 4. To

simulate the real situation, experiment consists of two cas-

es: 1. train samples and test samples are all clean; 2. test

samples are contaminated and train samples are clean. Ta-

ble 9 shows a detailed comparison of our model with LRC,

CRC, SRC, NMR.

From the Table 9, it is clear that our model performs the

best in the first experiment. However, our model performs

slightly worse than SRC in the second experiment. NMR

and our model all take the whole structural information into

account when training images or testing images are in the

existence of occlusion, but our model is much better than

the NMR in terms of the performance. It shows that our

model can retain more structural information of the picture

by using the color images directly, which is useful for the

task like face recognition.

5. Conclusion

We present a tensor nuclear norm based linear regres-

sion for color face recognition and develop an efficient al-

gorithm to solve optimal solution. Our model avoids trans-

forming each color image to a matrix or a vector, thus the

multi-dimensional structure information, which is embed-

ded in color image, can be well preserved. Extensive exper-

iments on several standard databases indicate that our model

is superior to most state-of-art classifier methods. In the fu-

ture work, we will consider how to integrate deep learning,

which has achieved impressive results [5, 21], and our pro-

posed classifier method into unified framework to further

improve classification accuracy
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