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Abstract

Despite recent advances on the topic of direct camera

pose regression using neural networks, accurately estimat-

ing the camera pose of a single RGB image still remains a

challenging task. To address this problem, we introduce a

novel framework based, in its core, on the idea of implic-

itly learning the joint distribution of RGB images and their

corresponding camera poses using a discriminator network

and adversarial learning. Our method allows not only to

regress the camera pose from a single image, however, also

offers a solely RGB-based solution for camera pose refine-

ment using the discriminator network. Further, we show

that our method can effectively be used to optimize the pre-

dicted camera poses and thus improve the localization ac-

curacy. To this end, we validate our proposed method on

the publicly available 7-Scenes dataset improving upon the

results of direct camera pose regression methods.

1. Introduction

Camera re-localization is an important topic in computer

vision applications such as simultaneous localization and

mapping (SLAM) [29, 44] in case of tracking failure, aug-

mented reality [26] or in robotics for navigation [4]. Cur-

rent methods have focused on computing the camera pose

given 2D-3D correspondences between the input image and

a 3D model of the scene, in essence predicting the camera

pose by solving the perspective-n-point problem. Most of-

ten correspondences are computed using for example SIFT

[19] features or implicitly learned using regression forests

[36, 41] as well as deep learning methods [5, 6, 8]. On the

other hand, direct camera pose estimation approaches have

been developed, that regress the camera pose using convo-

lutional neural networks (CNNs), providing a very fast so-

lution to solve this task and, in contrast to previous meth-

ods, solely relying on RGB information [22, 20, 21, 42].

This advantage makes such methods easily applicable in in-

door as well as outdoor scenarios without requiring a 3D

model or depth information. However, despite recent ad-
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Figure 1: Given an RGB input image, our method regresses

a camera pose estimate p̂t=0
(red) in reference to a known

scene. By incorporating adversarial training and following

pose refinement, the regressed pose is updated and pushed

further towards the ground truth pose pgt (green), resulting

in the final prediction p̂t=50
(blue).

vances of these methods, accurately regressing the camera

pose of a corresponding RGB image still remains a difficult

task, especially if very little training data is available. The

performance of correspondence-based methods, in compar-

ison, can most often be accounted to an iterative pose refine-

ment step using RANSAC, that due to the absence of a 3D

model has not yet been investigated in the context of direct

camera pose regression frameworks. Therefore, in this pa-

per we make an attempt at providing a deep learning based

solution for RGB-based camera pose refinement.

For this aim, we draw inspiration from the framework

of Generative Adversarial Networks (GANs) [16], which

has recently shown great success in improving the perfor-

mance of deep neural networks trained for tasks such as

object detection [43], human pose estimation [12, 45] or re-

alistic image composition [25]. Such GANs consist of two



networks, a generator that captures the underlying data dis-

tribution and a discriminator that estimates the probability

of a sample coming from the actual distribution or the gen-

erated one, i.e. can tell the real distribution and distribution

of generated data apart. During training, the two networks

are in competition with each other as the generator tries to

better mimic the ground truth data distribution such that it

becomes more and more difficult for the discriminator to

correctly classify a sample representation. More precisely,

in every training step, the generator is updated in a way such

that it is more likely to fool the discriminator.

In order to improve direct camera pose regression mod-

els, and to better model the connection between RGB im-

ages and their camera poses, we first follow the training

procedure of GANs and combine a camera pose regression

network and a pose discriminator network that learns to dis-

tinguish between accurate real and potentially erroneously

regressed poses and the input RGB image. This way, we at-

tempt to implicitly model the joint distribution between an

RGB image and the corresponding camera pose capturing

the geometric mapping between the two in the discrimina-

tor network. Once learned, we show how the information

contained in the discriminator network can be leveraged to

further refine the predicted poses during inference. To sum-

marize our contributions, we propose a novel framework

for camera pose regression, that 1) includes the effect of

adversarial learning in the aforementioned frameworks and

2) introduces a solely RGB-based solution for refining the

resulting camera poses giving an additional boost in perfor-

mance. An example result of our method is shown in Fig-

ure 1, where we visualize regressed and optimized camera

poses in comparison to the ground truth pose.

2. Related Work

Methods working on the topic of camera pose estimation

can mainly be divided into three groups: correspondence-

based, image-retrieval-based and direct pose regression ap-

proaches.

Correspondence-Based. In classical SLAM or structure

from motion scenarios the camera is tracked in an unknown

environment and a corresponding sparse 3D map or recon-

struction of the environment is built. Each 3D point in the

map has a corresponding image feature descriptor associ-

ated to it. Therefore, the main component of these methods

is the detection of key-points in a query image and feature

extraction, e.g. SIFT features, at these respective points.

2D to 3D point correspondences between the image and the

3D model can then be established using feature descriptor

matching. Finally, given these correspondences, the camera

pose can be computed by solving the perspective-n-point

problem. However, despite usually providing good cam-

era localization accuracy, these methods can easily fail in

case of texture-less surfaces and require efficient feature

matching techniques to achieve reasonable computational

times for camera re-localization applications. For this pur-

pose, Sattler et al. [32, 33, 34] propose an optimized pri-

oritization scheme based on vocabulary-based quantization

for efficient feature matching. Additionally, by using co-

visibility constraints or semantic consistency checks [39],

wrong matches can be removed, which further improves

the methods accuracy. In contrast, Schmidt et al. [35]

focus on optimizing extracted features used for correspon-

dence matching. Here, a deep learning method is applied

and a neural network is trained on a contrastive loss func-

tion, pushing features of pixels to be similar only if they

correspond to the same 3D point. Implicitly giving a map-

ping between image pixels and 3D points, Shotton et al.

[36] train a regression forest on RGB and depth features

extracted at pixel locations to estimate the corresponding

scene coordinate directly. Further extensions and analysis

of this method have been proposed, including uncertainty

of the forests predictions [41], online adaption of the re-

gression forest [11], ensemble prediction [17], backtrack-

ing schemes [28] and a comparison to neural networks [27].

Switching from regression forests to convolutional neural

networks, Brachmann et al. [5, 6] propose an end-to-end

trainable pipeline, consisting of a scene coordinate regres-

sion and a pose hypothesis scoring CNN, connected by a

differentiable version of RANSAC, which they call DSAC.

These methods have shown remarkable results in retriev-

ing accurate camera poses. They, however, usually require

depth information or a 3D model.

Image-Retrieval-Based. In contrast to correspondence-

based methods, image retrieval methods focus on com-

puting a lower dimensional representation of a full query

image, which can then efficiently be matched against a

database of images with corresponding camera poses. Find-

ing the nearest neighbor according to the resulting features

will in this case also retrieve the closest camera pose, but

therefore also restricts the search space to the camera poses

contained in the database, especially if RGB images are the

only source of information available. Glocker et al. [15]

rely on a fern-based encoding approach, which computes a

binary encoding for each frame and thus enables fast sim-

ilarity comparisons based on the Hamming distance. Relja

et al. [1] construct a new feature aggregation layer, in-

spired by VLAD [19], which can be included in any ex-

isting convolutional neural network and shows great capa-

bilities in aiding image retrieval tasks in the context of cam-

era pose estimation. Additionally, Taira et al. [38] propose

to learn dense features using a convolutional neural network

for camera pose estimation. After retrieval of nearest neigh-

bor database images, dense features at different layers of

the network are used to find 2D-3D correspondences, given



Figure 2: Given an RGB image, a corresponding camera pose is estimated with a pose regression network. Alongside the

estimated pose, a feature representation of the corresponding image is extracted and used to train a discriminator network.

This network is trained to distinguish between ground truth and regressed poses considering the input image and can then be

leveraged to refine the regressed camera pose.

that depth information is available for the database images,

from which the pose can be computed. Additionally, the

estimated pose is verified by comparing the query image to

the synthesized view obtained using the 3D model and re-

trieved camera pose.

Direct Pose Regression. Very recently, direct camera

pose regression approaches have emerged, mainly using

CNNs to estimate the rotation, most often represented as

quaternions, and position of the camera given a single RGB

image as input. Starting with the introduction of PoseNet

[22], Kendall et al. presented a computationally very fast

solution for solving the camera pose estimation problem re-

lying solely on RGB information and also showing great

capabilities when applied on large-scale scenes. This, on

the other hand, came at a large drop in general accuracy

compared to earlier state-of-the-art methods. Thus, several

extensions and modifications of this method have been pro-

posed, including uncertainty estimation [20, 21, 10], LSTM

units [42], frame-to-frame information [2, 24, 13, 7] and

previous pose fusion [40, 30]. The latter, however, more

closely resembles a camera tracking scenario rather than re-

localization as the method relies on pose information of the

previous frame.

Since in this work, we want to explore re-localization

methods utilizing RGB information only, we build on top

of recent research on direct camera pose regression meth-

ods. However, we additionally attempt to model the con-

nection between an RGB image and its camera pose implic-

itly, rather than trying to simply learn this mapping directly.

For this purpose, we show the advantage that leveraging an

adversarial network can have on such methods. To the best

of our knowledge, we are the first to investigate adversarial

learning in the context of camera pose estimation. There-

fore, we propose a novel framework based on a camera pose

regression network and a discriminator network that, given

a regressed pose and the RGB input image, learns to distin-

guish between regressed and ground truth poses. Further,

once the model has learned a representation of this connec-

tion, as our main contribution, we show how the trained

model can be used for camera pose refinement. By lever-

aging the learned information encoded in the discriminator

network, the localization accuracy can be improved beyond

the one of a simple camera pose regression network.

3. Methodology

Following previous camera pose regression approaches,

we attempt to train a convolutional neural network, hereby

referred to as the pose regressor, to learn the mapping Ω :
x → p between an input image x and a camera pose p.

However, we additionally attempt to learn the distribu-

tion of camera poses and their respective RGB images cap-

tured by the camera. More precisely, we train a pose dis-

criminator network to distinguish between regressed and

ground truth pose with respect to the input image. The

pose regressor and discriminator are trained in an alternat-

ing manner, where the pose regressors goal is to fool the dis-

criminator, such that it can not clearly distinguish between

regressed and real camera poses anymore. Finally, once the

discriminator has learned the geometric mapping between

an input image and a camera pose, the information captured

by the discriminator can be leveraged to update and refine

the regressed camera pose. By freezing the discriminator

networks weights and optimizing solely the regressed cam-

era pose, we aim at pushing the regressed pose closer to-

wards the manifold of real poses to ultimately better fit the



input image. An overview of our method can be seen in

Figure 2.

3.1. Camera Pose Regression

Given an RGB image x ∈ R
h×w×3, our objective is to

predict the camera pose p = [q, t] given as orientation, rep-

resented as vector q, and translation t ∈ R
3. For this aim, a

CNN, is trained on the following loss function

Lpose = ‖t − t̂‖e−β + β + ‖q − q̂‖e−α + α, (1)

where t̂ and q̂ represent the predicted translation and rota-

tion, respectively, β and α are trainable parameters to bal-

ance both distances, and ‖ · ‖ is chosen to be the ℓ1 norm.

Readers are referred to [21] for further details about the loss

function, and its derivation.

The parameterization used to regress the rotational com-

ponent of an object or a camera pose has been extensively

addressed in many literature [7, 14]. In this work, first,

we choose to evaluate our method on the representation of

quaternions, which is already well established in image-

based localization. Here, a quaternion can be described

as q = [w, u] ∈ R
4 where w is a real valued scalar and

u ∈ R
3. To ensure that the resulting quaternions lie on

the unit sphere, they are normalized during the training. As

shown in [21], no additional constraints are enforced while

training the pose regression network, as the resulting quater-

nions become sufficiently close to the ground truth so that

there is no significant difference in ℓ1 norm and spherical

distance. Second, we use the logarithm of a unit quaternion,

which is computed as

qlog = log q =

{
u

‖u‖ arccos(w), if ‖u‖ �= 0

0, otherwise
, (2)

and has the advantages of not being over-parameterized.

Further, it relaxes the need of normalization during the

training. The the unit quaternion can be recovered by

q = [cos(‖qlog‖),
qlog

‖qlog‖
sin(‖qlog‖)].

3.2. Discriminator

Both the regressed poses p̂, and the ground-truth poses

p, and a lower dimensional representation, f(x), of the cor-

responding input images, form ”fake” and ”real” examples,

respectively, used to train the discriminator network. The

aim of this network is to minimize the following loss func-

tion defined as

LD = σ({f(x), p}, creal) + σ({f(x), p̂}, cfake), (3)

where σ(·, ·) is the binary cross-entropy loss, creal
and cfake are set to 1 and 0, respectively. There-

fore, the discriminator models the conditional distribution

P (y| p, f(x)) of y ∈ {creal, cfake} conditioned on the pose

p and image features f(x), and thus implicitly captures the

joint distribution of p and x. Our framework is, in fact,

inspired by GANs to ensure that the geometric mapping be-

tween camera poses and the corresponding RGB images are

exploited in the network, however differs from the original

GAN framework as our pose regression network is purely

discriminative.

3.3. Feature Extraction

A pre-trained network architecture on ImageNet [31],

see Section 4.1.3, is used to extract a feature representa-

tion f(x) given an RGB input image. The weights of the

network are frozen during the training, as its purpose is

mainly to provide the discriminator with a lower dimen-

sional representation of the image. Given the fact that most

of the state-of-the-art network architectures produce a rather

high dimensional feature representation (compared to the

six or seven dimensional camera pose vector), and inspired

by the concept of dimensionality reduction, we apply a lin-

ear mapping to better balance the dimensionality between

feature representation and camera pose. To easily integrate

this linear mapping to the network architecture, we sim-

ply add one additional fully-connected layer, without bias

or activation function, right after the last layer, and keep

its weights frozen during training. This way, the discrimi-

nator is discouraged to adapt the extracted features during

training and solely base its decision on the features them-

selves. The camera pose vector is then copied, to fit the

dimensionality of the extracted feature representation, and

concatenated with said representation to form a feature map

that is used as the input to the discriminator network. Intu-

itively we would want the discriminator to learn the connec-

tion between RGB images and corresponding camera poses.

Therefore, such that the network is discouraged to solely

focus on the information provided by either one, the design

choices described above were made. However, in addition

we have experimented with fine-tuning the feature extrac-

tion network as well as only fine-tuning individual layers.

Both resulted in worse performance.

3.4. Adversarial Learning

Following the training procedure introduced for genera-

tive adversarial networks, we alternate between training the

camera pose regressor and the discriminator network, up-

dating the regressor on

LG = Lpose + λσ({f(x), p̂}, creal)
︸ ︷︷ ︸

Ladv

, (4)

such that the network learns to predict more and more real-

istic poses and thus eventually is able to fool the discrimi-

nator. Here, the parameter λ balances the influence of the

adversarial loss on the pose regressor.



3.5. Pose Refinement

Once the model is trained and the discriminator is suc-

cessfully ”fooled”, meaning it can not distinguish properly

between regressed and ground truth poses with respect to

the input image, the discriminator network can be used dur-

ing testing to refine the regressed camera poses. For this

aim, the test image is fed to the pose regression network to

obtain an initial pose estimate. Then, the predicted pose to-

gether with the extracted feature representation of the image

is used as input to the discriminator. In succession, however,

the weights of the discriminator are frozen, and the initially

regressed pose p̂ for the image x is updated iteratively by

minimizing the loss function as

Lref = σ({f(x), p̂}, c), (5)

where the class label c is set to 0.5. This stems from the

fact, that at the end of training, the discriminator will not

be able to distinguish between regressed and ground truth

camera pose anymore, thus predicting values close to 0.5 in

both cases. Intuitively, this amounts to moving along the

manifold towards a region where the discriminator reliably

confuses real and regresses poses. Therefore, any predicted

pose of an unseen query image should be pushed towards

this manifold. As the gradients coming from the discrimi-

nator do not necessarily follow a geometrically meaningful

direction, in case of using the quaternion representation, we

restrict the quaternion update, so that its movement along

the unit sphere is ensured [9, 3]. Thus, the update for one

iteration is described by

qt = qt−1
cos(γl) +

v

γ
sin(γl), (6)

with γ = ‖v‖2, l being the step size, and v ∈ R
4 being the

projection of the quaternion gradient ∇q into the tangent

space, given as

v = (I −∇q∇qT )∇q, (7)

where I ∈ R
4×4 is the identity matrix. To further ensure

that the resulting poses are valid, the updated quaternion

is normalized after each iteration. However, no such con-

straints have to be be enforced to update the translational

component of the camera pose. Though, for simplicity, it is

updated with the same step size l.

3.6. Training Procedure

As a first step, the pose regression network is trained for

a few epochs to initially give reasonable poses, before in-

cluding the adversarial loss in the training procedure, where

the parameters β and α are set following the state-of-the-art

[7] and λ is set to 1 · 10−3. Afterwards, the pose regressor

and discriminator are alternately trained on the LG and LD

loss functions, respectively.

Table 1: Effect of adversarial training and pose refinement

on the camera pose accuracy, evaluated on the Heads scene.

Median rotation and translation errors are reported. Opti-

mizing the camera pose regression network with the adver-

sarial loss results in an improvement in accuracy, which is

further increased by our proposed camera pose refinement.

Scene Base Model Ours Ours+Ref.

Heads 14.5◦, 0.18m 14.1◦, 0.17m 12.4◦, 0.16m

Implementation Details. Following the state-of-the art

[7], input RGB images are down-sampled to a resolution of

341 × 256 pixels, normalized, and then fed in mini batches

of size 64 to train the neural networks. As a camera pose

regressor, a ResNet-34 network architecture is used as the

base network, where the classification layers are removed

and two fully connected layers for camera pose regression

are placed after the average pooling layer. The discrimina-

tor consists of three convolutional layers followed by expo-

nential linear units as activation function. All networks are

implemented in PyTorch. For training the networks, we use

the Adam Optimizer with a learning rate of 1 ·10−4 and op-

timize for 300 epochs on an 11GB NVIDIA GeForce RTX

2080 graphics card. Once the networks are trained, the re-

gressed camera poses are refined as described in Section 3.5

until convergence, but up to a maximum of 50 iterations at

a step size of l = 1 · 10−3. The effect of the step size and

the number of iterations on the resulting pose accuracy can

also be found in more detail in Section 4.1.2.

4. Experiments and Evaluation

We evaluate our method on the publicly available

7-Scenes [36] dataset. This dataset from Microsoft consists

of RGB-D frames of seven indoor scenes, captured with a

hand-held Kinect camera, and corresponding ground truth

camera poses computed using Kinect Fusion. The scenes

are of varying spatial extent and also differ significantly in

the amount of training data available. Training and test data

are specified and consist of distinct camera trajectories. It

has been widely used to evaluate camera re-localization

methods as it contains several challenging scenarios such as

motion blur, repeating structures and texture-less surfaces.

For evaluation, we utilize the recent state-of-the-art

method and implementation of MapNet [7], focusing on di-

rectly regressing the camera pose without the aid of tempo-

ral or geometric information. We investigate the effect of

our method on models either regressing quaternions them-

selves or the logarithm of a quaternion (baseline models of

[7]). Further, for evaluation of our framework, we introduce



Figure 3: Normalized histograms of rotation and translation errors before and after pose refinement on the Heads scene.

Results without refinement (Ours) are shown in blue, whereas errors after refinement (Ours+Ref.) are displayed in orange,

resulting in an overlap in brown.

the following models:

• Baseline: As a baseline model, we train the camera

pose regression network on the Lpose loss, which, as

already mentioned, effectively results in the state-of-

the art baseline method of [7]. However, we abbreviate

this model as “Base Model” whenever experiments are

conducted by us to explicitly highlight re-trained mod-

els and to better analyze the effect of our contributions.

• Adversarial Pose Regression: To analyze the effect

of adversarial training on the camera pose regression,

the regression model is trained on the LG loss function

(Eq.4), abbreviated as “Ours”.

• Pose Refinement: Finally, during testing, the trained

discriminator network is used to further improve the

regressed poses using Lref . The models are then ab-

breviated as “Ours+Ref”.

In the remainder of this section, these models will be used to

validate our contributions. We start by investigating the ef-

fect of optimizing a camera pose regression network includ-

ing the adversarial loss, after which we analyze the effect of

the proposed pose refinement on the localization accuracy.

Finally, setting our method in the context of recent research,

we compare our results to the current state-of-the-art meth-

ods on direct camera pose regression.

4.1. Ablation Studies

4.1.1 Adversarial Learning

First, to investigate the effect of adversarial learning on

the camera pose regression framework, we compare rota-

tion and translation errors of our baseline, “Base Model”,

and the model “Ours”. The results can be seen in Table 1,

showing median rotation and translation errors of the de-

scribed models on the Heads scene. That adversarial train-

ing can help in training deep networks has already been

shown, for example in [45] for the task of human pose es-

timation, which, however differs significantly from the task

of predicting the camera pose from a corresponding image.

Nevertheless, we found slight improvements in rotation, as

well as in translation accuracy by simply including adver-

sarial training into a camera pose regression framework due

to better and more stable convergence of the model.

4.1.2 Pose Refinement

As a second step, we evaluate our proposed pose refinement

based on the trained discriminator network. Surprisingly,

even though the gradients coming from the discriminator

have not specifically been trained to have geometric mean-

ingful information, it turns out that this information has im-

plicitly been encoded in the network. Thus, we can use the

gradients to update the regressed poses for any test image,

given the constraints described in Section 3.5 on the quater-

nion update. Table 1 and Figure 3 summarize our findings,

where we report the median rotation and translation error

as well as the overall distribution of the aforementioned er-

rors on the Heads scene of the 7-scenes dataset. Overall

we found improvements in pose accuracy by applying the

proposed pose refinement, examples of which are also vi-

sualized in Figures 1 and 4. Further examples for the re-

maining scenes of the 7-Scenes dataset can be found in the

supplementary material. It can be seen both quantitatively

and qualitatively that the regressed pose can effectively be

pushed further towards the ground truth pose by the pro-

posed refinement step, resulting for example in a relative

improvement in rotation of 12.0% and 31.1% for the Heads

and Stairs scene respectively.

Further, we investigate the effect of the step size l as well

as the number of iterations on the localization accuracy of

the proposed pose refinement. The results of our investiga-

tion are summarized in Figure 5, where we show median



(a) 15.3◦-11.0◦, 9cm-6cm (b) 8.8◦-3.1◦, 9cm -6cm (c) 8.0◦-3.6◦, 5cm-1cm (d) 15.7◦-11.5◦, 36cm-37cm

Figure 4: RGB input images (second row) and the corresponding camera poses (first row), visualized in a reconstruction

of the given scene. For each frame, the ground truth (green), initially regressed pose (red) and optimized pose using the

proposed refinement (blue) are displayed. Below each visualization the respective rotation and translation errors before and

after refinement are given.

Figure 5: Effect of different numbers of iterations as well as

step sizes on the median rotation and translation errors for

the proposed refinement, shown on the Heads scene. Our

refinement can significantly improve the localization accu-

racy even in a few iterations of optimization.

rotation and translational error on the Heads scenes for dif-

ferent numbers of refinement iterations as well as step sizes.

A lower step size usually leads to smaller changes in the

pose, but, therefore, can also require a higher number of

iterations to converge to the desired pose. Since this opti-

mization process is required during testing, increasing the

number of iterations is directly proportional to an increase

in computational time. Experiments with larger step sizes

(l > 10−3) resulted in deterioration of the camera poses due

to the optimization procedure becoming unstable. Usually

only a few iterations of refinement are sufficient, though,

to improve the regressed poses and provide a good im-

provement in camera pose accuracy, whereas the run-time

of RANSAC-based methods, for example, depends on the

quality of correspondences found. As a trade-off, we chose

the parameter setting described in Section 3.6. For exam-

ple, on average the refinement has a computational time of

42ms for 30 iterations, but grows linearly with the number

of iterations. Although we were able to achieve promising

results with the proposed pose refinement strategy, it should

be noted that it remains an optimization procedure itself,

and thus depends on factors such as the quality of initializa-

tion. Therefore, in some cases the refinement might result

in a solution that is not preferable to the initially regressed

pose or difficult to recover from, if the predicted pose is far

away from the ground truth one, an example of which is

shown in Figure 4 d).

4.1.3 Influence of Feature Extractor

To evaluate the effect of the feature extraction network on

the discriminator and thus the camera pose refinement, we

evaluated our method using several different network archi-

tectures, namely AlexNet [23], VGG16 [37] and ResNet-18

[18]. Initialization is kept the same for all models and re-

finement is run for 30 iterations. Additionally we experi-

ment with feeding only the regressed camera poses to train

the discriminator network. For this experiment we replace

the convolutional layers of the discriminator network with

fully connected layers of roughly equal number of trainable

parameters as the convolutional variant of the discriminator.

Since a separate training is required for each architecture,

we report the relative decrease in rotation and translation er-

ror over the initially regressed pose quality of the respective

model. The results are summarized in Table 3. We found



Table 2: Comparison between recent state-of-the-art direct camera pose regression methods and our results without (Ours)

and with pose refinement (Ours+Ref.). Following the state of the art, displayed is the median rotation and translation error

evaluated on the 7-Scenes dataset.

Scene DSAC++

RGB [6]

PoseNet

RGB [21]

MapNet [7] Ours Ours+Ref. MapNet [7]

log q

Ours

log q

Ours+Ref.

log q

Chess 0.02m, 0.7◦ 0.14m, 4.5◦ 0.11m, 4.2◦ 0.13m, 4.9◦ 0.12m, 4.8◦ 0.11m, 4.3◦ 0.13m, 5.0◦ 0.12m, 4.8◦

Fire 0.03m, 1.1◦ 0.27m, 11.8◦ 0.29m, 11.7◦ 0.30m,11.0◦ 0.29m, 10.2◦ 0.27m, 12.1◦ 0.28m, 11.8◦ 0.27m, 11.6◦

Heads 0.12m, 6.7◦ 0.18m, 12.1◦ 0.20m, 13.1◦ 0.17m, 14.5◦ 0.15m, 12.0◦ 0.19m, 12.2◦ 0.17m, 14.1◦ 0.16m, 12.4◦

Office 0.03m, 0.8◦ 0.20m, 5.7◦ 0.19m, 6.4◦ 0.22m, 6.7◦ 0.21m, 6.6◦ 0.19m, 6.4◦ 0.20m, 7.1◦ 0.19m, 6.8◦

Pumpkin 0.05m, 1.1◦ 0.25m, 4.8◦ 0.23m, 5.8◦ 0.23m, 6.7◦ 0.22m, 6.5◦ 0.22m, 5.1◦ 0.22m, 5.4◦ 0.21m, 5.2◦

Red Kitchen 0.05m, 1.3◦ 0.24m, 5.5◦ 0.27m, 5.8◦ 0.27m, 5.9◦ 0.26m, 5.8◦ 0.25m, 5.3◦ 0.26m, 6.2◦ 0.25m, 6.0◦

Stairs 0.29m, 5.1◦ 0.37m, 10.6◦ 0.31m, 12.4◦ 0.32m, 13.5◦ 0.30m, 12.2◦ 0.30m, 11.3◦ 0.29m, 12.2◦ 0.28m, 8.4◦

Average 0.08m, 2.4◦ 0.24m, 7.9◦ 0.23m, 8.5◦ 0.23m, 9.0◦ 0.22m, 8.3◦ 0.22m, 8.1◦ 0.22m, 8.8◦ 0.21m, 7.9◦

Table 3: Relative decrease, in percentage, of the median ro-

tation and translation error after refinement in comparison

to initially regressed poses. Evaluated are different network

architectures used to obtain a feature representation of the

RGB image input, showing the influence of the feature ex-

tractor on the proposed refinement. Higher values corre-

spond to improved pose accuracy.

Heads Without

f(x)
AlexNet

[23]

VGG-16

[37]

ResNet-18

[18]

Rotation 4.25% 3.56% 8.32% 12.18%

Translation -3.0% 2.88% 4.7% 4.39%

that our proposed refinement is fairly robust to the extracted

features and were able to obtain improved pose accuracy re-

gardless of the network architecture used, except when us-

ing pose information only, without additional information

about the corresponding image representation. Neverthe-

less, we found an increase in localization performance de-

pending on the choice of network architecture with the best

performing model resulting in the ResNet-18 [18] network

architecture.

4.2. Comparison to the State of the Art

As our main focus in this work is to investigate the ef-

fect of our proposed framework on direct camera pose re-

gression methods using RGB information only, we show

a comparison to recent methods working on this topic,

namely PoseNet [21] and MapNet [7], which also forms

our baseline model. We choose PoseNet and MapNet ver-

sions solely relying on single image and RGB informa-

tion, for which we show the results in Table 2. We eval-

uate both models trained to predict quaternions as well as

the logarithm of quaternions to show the effectiveness of

our method regardless of the baseline representation used.

In comparison to both [21] and [7], we found overall im-

provements in pose accuracy using the proposed refinement,

where the effect of our method seems to be most profound

on scenes for which only a small number of training im-

ages is available, such as Heads and Stairs. In addition

we include a recent scene coordinate regression method,

DSAC++ [6], that given an initial depth estimate, can be

trained solely relying on RGB information. As can be seen,

the regressed 3D information, and following pose refine-

ment, greatly improve the accuracy of the predicted cam-

era poses, which leads to the method outperforming direct

camera pose regression methods and ours. This, however,

comes at a significant drop in computational time. Lastly,

although we focus on RGB only solutions in this paper, it

should be mentioned that our core regression method could

be easily extended to include further information, like rela-

tive pose information or geometric constraints as in [7].

5. Conclusion

In conclusion, we have presented a novel approach for

camera re-localization applications solely relying on RGB

information. Building on top of direct camera pose regres-

sion methods, we use the regressed camera poses and fea-

tures extracted from the input image to train a discrimina-

tor network that tries to distinguish between regressed and

ground truth poses, and thus implicitly tries to learn the

geometric connection between RGB image and the corre-

sponding camera pose. We have analyzed each component

of our framework to evaluate this assumption and were able

to achieve promising results. Further, we proposed a novel

RGB-based pose refinement, where we use the trained dis-

criminator network to update and optimize the initially re-

gressed poses, showing that the network can learn a mean-

ingful representation of the camera poses and image space,

and in turn can use this information to further improve lo-

calization accuracy.
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