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Abstract

We propose a novel and efficient representation for

single-view depth estimation using Convolutional Neural

Networks (CNNs). Point-cloud is generally used for CNN-

based 3D scene reconstruction; however it has some draw-

backs: (1) it is redundant as a representation for planar sur-

faces, and (2) no spatial relationships between points are

available (e.g, texture and surface). As a more efficient rep-

resentation, we introduce a triangular-patch-cloud, which

represents the surface of the 3D structure using a set of tri-

angular patches, and propose a CNN framework for its 3D

structure estimation. In our framework, we create it by sep-

arating all the faces in a 2D mesh, which are determined

adaptively from the input image, and estimate depths and

normals of all the faces. Using a common RGBD-dataset,

we show that our representation has a better or comparable

performance than the existing point-cloud-based methods,

although it has much less parameters.

1. Introduction

Image-based 3D reconstruction and modeling are impor-

tant problems for a variety of applications such as robotics,

autonomous vehicles, and augmented reality. The repre-

sentative techniques include Structure from Motion (SfM),

Multi-View Stereo (MVS), and Simultaneous Localization

and Mapping (SLAM).

Recently, there have been many studies that used Con-

volutional Neural Networks (CNNs) for 3D reconstruction.

CNN-based single-view dense depth map prediction is a

successful example [3, 4, 7]. In those works, the point-

cloud is used for general representation since it is easy to

use in CNNs, but it has some drawbacks: (1) the parameter

size is too large, and (2) the spatial relationships between

the points are not described. On the other hand, a mesh

is one representation that can solve these issues and repre-

sent 3D structures more efficiently, because it can simplify

surfaces (e.g., room wall) and maintain the texture and sur-

face information of the object. However, due to the incom-

patibility of meshes with CNNs, conventional CNN-based
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Figure 1: We present a single-view depth prediction method

using triangular-patch-cloud. Our representation has better

performance than that of the point-cloud methods, despite

having much less parameters.

approaches [5, 11] cannot be used for general 3D scene re-

construction. They are only suitable for the representation

of simple 3DCG models [1].

To solve these problems, we introduce a novel intermedi-

ate representation, namely triangular-patch-cloud, between

the point-cloud and mesh, and create a novel CNN archi-

tecture for the 3D structure estimation (shown in Fig. 2).

The representation is a set of triangular patches created by

separating all the faces of a 2D mesh, which is determined

adaptively to the input image (in Fig. 3). Since it is derived

from a mesh, it has the same properties as that of the mesh

representation, which means a more efficient representation

than point-cloud, while still being a CNN-friendly repre-

sentation. In our framework, we estimate the depths and

normals of all the faces of the representation using CNNs,

and finally obtain the 3D structure. We evaluated the perfor-

mance of our method on NYU Depth v2 [10]. Our method

achieved better or comparable performance to the existing

pixel-wise-based dense depth map estimation methods. It

should be noted that our representation has much less pa-

rameters than the existing methods.



Figure 2: Illustration of our framework. After determining a 2D mesh adaptively to the input image, the CNNs estimate

the 3D position of each face of the 2D mesh. We train the CNNs by back-propagating the loss between the rendered results.

2. Proposed Method

2.1. Formulation of Triangular-patch-cloud

We introduce a novel representation, the triangular-

patch-cloud, as an intermediate representation between the

point-cloud and mesh, which means that it has the best of

both worlds. It is created by ignoring the adjacency con-

nection between the faces in a 2D mesh, and the faces are

treated as independent triangular patches. Each triangular

patch represents a partial surface of the 3D structure. In our

framework, we first determine the base 2D mesh adaptively

to the input image, and estimate the 3D positions of all the

patches using CNNs, as illustrated in Fig. 3. The detailed

procedure of our approach is summarized as follows:

1. 2D mesh extraction. We extract an appropriate 2D

mesh for an input image, as shown in Fig. 4. We con-

struct partially connected vertices from the simplifica-

tion of the Canny edge and obtain the final mesh by ap-

plying Constrained Delaunay Triangulation (CDT) [2]

to these vertices. The 2D mesh has an adaptive number

of vertices and faces to the input image.

2. 3D structure prediction. The faces of the obtained 2D

mesh are treated independently as a triangular-patch-

cloud, and the CNNs estimate the 3D positions (depths

and normals) of the faces.

2.2. Network Architecture

The architecture of the proposed CNN framework for 3D

structure estimation is illustrated in Fig. 2. The framework

is roughly composed of two parts:

1. Face Feature Encoder. We first extract the global fea-

ture map of the input image using DRN-54 [13] and

convert it to the face features of the prepared 2D mesh

(whose number of faces M is adaptive for each input

image). For the face feature extraction, we reduce the

information from one feature vector per pixel to one

Figure 3: Triangular-patch-cloud. For each face, three

parameters are used to determine its 3D position.

(a) Scene Image (b) Canny Edge (c) Final 2D mesh

Figure 4: 2D Mesh Extraction. We create a 2D mesh based

on (b) the Canny edge of (a) the input image.

feature vector per face region (silhouette). We adopt

two methods: (1) Superpixel Pooling [6], which ex-

tract the max values in the region, and (2) Face Cen-

troid Sampling, which extracts the value on the cen-

troid position of the region.

2. Face Feature Decoder. By using the features — face

pooling feature and face centroid feature —, we finally

estimate the parameters representing the 3D position

of each face. A patch of the triangular-patch-cloud has

similar properties as that of a point in a point-cloud

because both of them are unordered and interact with

each other. Therefore, we created a CNN composed of

a shared multi-layer perceptron (MLP) network, which

is similar to PointNet [9].



(a) Input (b) GT (c) Ours (d) Eigen et al. [3] (original, naive) (e) Laina et al. [7] (original, naive)

Figure 5: Depth Map Predictions. Qualitative results showing our depth map results, the results of the pixel-wise-based

methods [3, 7] (left) and their mesh-based naive methods (right). Each depth map is scaled for better visualization.

2.3. Loss Function

Here, we explain the method to optimize the proposed

CNN framework. We use general RGBD datasets for the

training of our framework and define the loss (Ldepth) be-

tween the depth map D rendered by Neural Mesh Ren-

derer [5] and its ground truth (GT) depth map D
∗. In ad-

dition, we include the normal loss (Lnormal) between the

corresponding normal map N and the GT normal map N
∗

calculated by [12] in our loss function, as follows.

Lsum = Ldepth + λnLnormal

=
1

n

∑

i

(Di −D
∗

i ) + λn(−
1

n

∑

i

(Ni ·N
∗

i )) (1)

where i is the valid pixel id, n is the total number of valid

depth pixels, and λn is a balancing factor (we use λn = 0.5
as the best value).

3. Experimental Results

For the evaluation of our proposed approach, we trained

our framework using NYU depth v2 [10], which is one of

the largest RGBD datasets for indoor scene reconstruction.

This dataset is composed of pairs of an RGB image and the

depth image of 464 scenes captured by Microsoft Kinect.

We followed the official splitting, i.e., 249 scenes for train-

ing and 215 scenes for testing. For this evaluation, we

used approximately 48K pairs, which were sampled spa-

tially uniformly from the scenes in the raw training dataset

for training, and used 654 labelled images for evaluating the

final performance. The input image to the network was re-

sized to 228 × 304 following previous works [3, 7, 8]. We

augmented them with some random transformations (small

rotations, scaling, color jitter, color normalization, and flips

with 0.5 chance) [8].

We trained our method for approximately 50 epochs with

a batch size of 4 on a single NVIDIA Tesla P40 with 24GB

of GPU memory. We used 1% of the training dataset sepa-

rately as a validation dataset for the hyperparameter search.

Table 1: Comparison with point-cloud-based methods.

It is advantageous to have low error metrics (REL, RMSE,

log10) and high accuracy metrics (δ1 ∼ δ3).

Method rel rms log
10

δ1 δ2 δ3 #param.

Eigen and Fergus [3] 0.158 0.641 - 0.769 0.950 0.988 921K

Laina [7] 0.127 0.573 0.055 0.811 0.953 0.988 921K

Ours 0.146 0.530 0.062 0.803 0.954 0.988 32K

Table 2: Comparison with naive mesh-based methods.

For each method, we use the results provided by the authors.

Method rel rms log
10

δ1 δ2 δ3

ver. Eigen and Fergus [3] 0.163 0.559 0.069 0.762 0.948 0.987

ver. Laina [7] 0.154 0.535 0.064 0.793 0.949 0.987

Ours 0.146 0.530 0.062 0.803 0.954 0.988

The final score of the test dataset was evaluated using the

trained model with the highest validation score. As the

quantitative evaluation metrics, we used the general error

metrics (RMSE, REL, log10, δ1 ∼ δ3) [3, 7] for perfor-

mance comparison.

3.1. Comparison with Point-cloud-based methods.

We compare our method with the baseline methods of

dense depth map prediction (point-cloud-based methods).

To perform an evaluation similar to the point-cloud-based

methods, we use the depth map rendered from the estimated

3D mesh (see Fig. 6). The results are provided in Table 1.

The performance of our method was better or comparable

to that of the existing methods, despite having much less

parameters. The parameter size implies the size of the 3D

points registered in the 3D map in SfM and visual SLAM.

3.2. Comparison with Naive mesh-based methods.

Next, we compare the performance of our method with

those of the naive mesh-based methods, since there are no

CNN-based 3D scene mesh reconstruction methods. Here,

a naive method involves the following procedure: (1) A

dense mesh is constructed by connecting the adjacent ver-

tices of the dense depth map obtained by a point-cloud-

based methods [3, 7]. (2) The dense mesh is simplified until



Figure 6: 3D Predictions of Triangular-patch-cloud. Vi-

sualization results of our predictions from multi views.

it has the same number of faces as that in our method. This

process gives the results rendered by a mesh with a similar

parameter size.

The results are shown in Table 2. Our method achieved

better accuracy than both methods for all the evaluation

metrics. Furthermore, according to the qualitative results

displayed in Fig. 5, the naive methods could only esti-

mate rough and poor depth maps (see the top line), but our

method could estimate the depth maps that reflected the ob-

ject boundaries clearly. This results demonstrate that the

depth map prediction based on our representation is effec-

tive for complex 3D scenes.

4. Conclusions

We presented a novel approach for CNN-based 3D scene

reconstruction of complex indoor scenes, using interme-

diate representation between the mesh and point-cloud.

Our representation is CNN-friendly and more efficient than

point-cloud. We showed that our framework could predict a

visually clean 3D structure, and the results indicated equal

or better performance than that of the existing methods even

though our representation had much less parameters.

As a future work, we plan to partially connect the faces

that are completely separated in this work. The triangular-

patch-cloud is created by separating all the faces of a 2D

mesh to represent complex shapes (especially occlusions);

however, there are many faces that should be connected.

By connecting the faces partially, we will create a mesh,

a so-called partially-disconnected-mesh, whose appearance

would surely become clearer while the number of parame-

ters are reduced further.

In addition, we will solve the limitation of our method

by improving the 2D mesh extraction process. Currently the

process is created based on the Canny edge, which means

that it does not work well in the scenes where it is difficult to

recognize the geometric boundary from the RGB informa-

tion (shown in Fig. 7). We plan to make 2D mesh extraction

trainable from a dataset in order to improve their robustness.

(a) Input (b) GT (c) Predictions

Figure 7: Failure Cases. The current approach cannot es-

timate the 3D structure correctly in the scenes where the

geometric edges are hard to detect from RGB information.
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