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Abstract

Spatial perception is a fundamental ability necessary for

autonomous mobile robots to move robustly and safely in

the real-world. Recent advances in SLAM enabled a sin-

gle camera-based system to concurrently build 3D maps of

the world while tracking its location and orientation. How-

ever, such systems often fail to track themselves within the

map and cannot recognize previously visited places due to

the lack of reliable descriptions of the observed scenes.

We present a spatial perception framework that uses an

object-aware visual scene representation to enhance the

spatial abilities. The proposed representation compensates

for aberrations of conventional geometric scene represen-

tations by fusing those representations with semantic fea-

tures extracted from perceived objects. We implemented

this framework on a mobile robot platform to validate its

performance in home situations. Further evaluations were

conducted with the ScanNet dataset which provides large-

scale 3D photo-realistic indoor scenes. Extensive tests

show that our framework can reliably generate maps by re-

ducing tracking-failure, and better recognize overlap in the

map.

1. Introduction

Spatial perception is the ability to be aware of the spa-

tial relationships with respect to the position of one’s body

despite distracting information [10]. Reliable navigation,

object manipulation, autonomous surveillance, and many

other tasks of spatial AI systems from mobile robots to self-

driving vehicles require accurate, robust, and fast spatial

abilities [6]. Hence, the research areas of spatial percep-

tion such as structure from motion (SfM), visual odometry,

and simultaneous localization and mapping (SLAM) have

drawn considerable attention from robotics, computer vi-

sion, and AI communities [22, 2, 21, 8].

The underlying representation of scene geometry is a

crucial element of such spatial perception frameworks since

they usually map a cloud of points using geometric primi-

tives including points, lines, patches, and non-parametric

surface representations. In particular, visual SLAM was

traditionally introduced as a method for tracking geometric

keypoint descriptors along successive frames and then min-

imizing an objective function based on reprojection errors

to estimate the mobile agent’s poses [5, 7].

Since geometric representations have advantages of be-

ing directly observed by visual sensors and measured based

on continuous quantities, they have been used to generate a

map of the real-world. However, geometric representations

are limited when it comes to bad situations having a lack of

reliable descriptions of the observed scenes. This limitation

makes a spatial perception system tend to fail to localize

itself on the map, hence becoming unable to correctly rec-

ognize previously visited places [26].

To perceive spatial layouts based on extremely partial

and ambiguous cues, human spatial abilities have evolved

to give attention to semantic contents as representations of

geometrical uncertainties [17]. For example, our brain con-

tinuously assigns values to distinguishable parts such as ob-

jects and human faces, forming a priority or a saliency map

of the visible space by saccades [11, 9]. Thus, although

our eyes receive incomplete and uncertain information, the

spatio-visual perception system in our brain is usually able

to construct a stable representation of the world successfully

[23].

Recently, some semantic mapping approaches also have

focused on using semantic representations. Salas-Moreno

et al. proposed the SLAM++ system which trains domain-

specific object detectors corresponding to repeated objects

like tables and chairs. The trained detectors are then in-

tegrated into the SLAM framework to recognize and track



those objects resulting in the semantic map [20]. Choud-

hary et al. also worked on object discovery in the maps for

the purpose of closing loops [3]. Sünderhauf et al. devel-

oped a method for object-oriented semantic mapping, where

individual object instances are critical entities in the maps

[24]. Tateno et al. proposed a novel framework that in-

tegrates depth prediction based on the convolutional neu-

ral networks (CNN) into the SLAM system. They fused

semantic segmentation labels with the global 3D model to

obtain dense depth maps along texture-less surfaces [25].

However, the majority of the semantic mapping approaches

are still limited to mapping objects that are present in a pre-

defined database and attempt to retrieve a dense description

of the environment at the overly cost.

To cope with such limitations and enhance the spatial

abilities of the autonomous driving system, we present an

object-aware visual feature augmentation framework which

utilizes semantic features to augment sparse geometric vi-

sual features instead of the previous approaches that com-

pletely describe the environment. In our framework, the se-

mantic features extracted from objects observed in the envi-

ronment compensate for aberrations derived from geometric

features. Therefore, they perform a crucial role in core pro-

cesses such as feature matching and relocalization, which

are widely implemented in the spatial perception systems.

In the rest of this paper, we first explain our proposed

framework, and then quantitative and qualitative evalua-

tions proves that the framework is beneficial for reliable

mapping and better recognition of the overlap in the map.

Finally, we discuss the experimental results and insights ob-

tained.

2. Methods

The underlying spatial perception system we use is based

on the visual SLAM which is widely used in autonomous

robots and virtual reality applications. Conventional visual

SLAM systems rely on the extraction of geometric local

features from image frames to carry out a sparse reconstruc-

tion of the observed scene and to estimate the camera pose.

In this work, we implement our framework into the vi-

sual SLAM system by adding a feature augmentation mod-

ule that fuses the geometric feature with the corresponding

semantic feature which is a distribution of per-pixel object-

class probabilities estimated based on the CNN-based ob-

ject detection algorithm.

The implemented module can be applied directly to vi-

sual SLAM processes including feature matching and re-

localization, as depicted in Figure 1. Specifically, the

main contributions of this framework lie in the semantic-

augmented visual vocabulary which is an improved scene

representation based on similarity measure of descriptors

and an efficient selection algorithm for keyframe candi-

dates.

Figure 1: System overview

2.1. Semantically Augmented Scene Representation

The spatial features of the traditional visual SLAM con-

sist of a keypoint and a descriptor. The keypoint is a distin-

guishable point usually detected on edges or corners, and

the descriptor is highly distinctive and partially invariant

value which represents the keypoint. To classify informa-

tive frames, the visual SLAM system also uses a bag-of-

words model-based visual vocabulary generated by a dis-

tribution of frequently observed descriptors. Our proposed

module augments such descriptors and visual vocabulary

vectors by adding semantic features.

For each image frame f , let Lf denote a set of key-

point labels, each of which has the highest probability value

among the semantic features for the corresponding key-

point, and P l
f be a set of keypoints with label l. Similarly,

let Bf and P v
f denote a set of visual vocabulary indices and

a set of keypoints with the index v of the visual vocabulary,

respectively.

As in typical bag-of-words models, we define a weight

ω as a number of occurrences of either the semantic label or

the visual vocabulary index.

The weight for keypoint label l is proportional to the

number of keypoints in frame f with label l. Similarly, for

each visual vocabulary index v, the weight is proportional

to the number of keypoints with visual vocabulary index v

in frame f . Consequently, the augmented scene representa-

tion at frame f can be defined as follows:

Lf :=
{

〈l, ω〉 | l ∈ Lf , ω = γ|P l
f |
}

∪
{

〈v, ω〉 | v ∈ Bf , ω = ηv|P
v
f |

}

,
(1)

where γ is a constant factor for labels that balances the in-

fluence of semantic features at a similar level to visual fea-

tures, and ηv is a factor for visual vocabulary depending on

the frequency of visual vocabulary determined in advance.



2.2. Improved Similarity Measure of Descriptors

Descriptor distance, which measures the similarity be-

tween descriptors, plays an essential role in visual SLAM

since the system is basically a feature matching system.

When comparing two keypoints in different frames, without

further information, the fact that their labels are the same

does not guarantee that they are identical since they might

just be the two different points on the same object. Discrep-

ancy in labels, in contrast, can be seen as a clear evidence

that the keypoints do not match. In this sense, a distance

factor δ between descriptors p and q, with a penalty factor ξ

greater than 1, can be defined as follows:

dist(p, q) :=δpq · ‖p, q‖n , (2)

δpq :=

{

1 if lp = lq
ξ o.w.

where lp and lq are labels of p and q, respectively, and

‖p, q‖n is an arbitrary distance between p and q.

The distance factor δpq is then multiplied to ‖p, q‖n in

order to update the distance in a way that considers per-

ceived objects. This update method is not restricted to cer-

tain types of distance, and thus applicable to arbitrary visual

perception systems based on any distance metrics.

2.3. Efficient Selection Algorithm for Keyframe
Candidates

When tracking fails due to rapid camera motion, occlu-

sion or motion blur, it is necessary to compute the cam-

era pose with respect to the map again [27]. This process

is called a relocalization, and it is crucial for any spatial

perception system because tracking-failure causes a chaotic

map and several risks associated with the map.

In this process, selecting an appropriate number of

keyframes to be matched is important because keypoint

matching for all frames is highly inefficient. Here, we can

use the semantic-augmented visual vocabulary described in

Section 2.1 for selecting the candidate keyframes by using

Algorithm 1. In the proposed algorithm, we represent 3

steps as Equation 3 to 5 while selecting the final candidates.

C 1

f is a set of pairs of a keyframe k containing the same

labels as f , and n, the number of such labels. C2

f is a set

of keyframes such that for the pair 〈k,m〉 ∈ C1

f containing

each keyframe k, m is greater than the maximum n of C1

f

multiplied by constant α < 1. C 3

f is a set of pairs consisting

of a keyframe k that has the maximum L1-norm of f , and

a, the summation of the L1-norm.

Algorithm 1 Candidate keyframe selection

Input : current frame f , map M

Output : candidate keyframe list

1: initialize C1, C2, C3, Candidates

2: for each k ∈ all keyframes in M do

3: n ← number of labels in both f and k

4: if n �= 0 then

5: add 〈k, n〉 to C1
6: end if

7: end for

8: for 〈k,m〉 ∈ C1 do

9: if m > α·(max n in C1) then

10: add k to C2
11: end if

12: end for

13: for each k ∈ C2 do

14: Nk ← neighboring frames of k

15: a ← sum of L1 norm(f , k′) over k′ in Nk

16: kbest ← k′ in Nk maximizing L1 norm(f , k′)

17: add 〈kbest, a〉 to C3
18: end for

19: sort C3 by a

20: for 〈k, b〉 ∈ C3 do

21: if b > β·(max a in C3) then

22: add k to Candidates

23: end if

24: end for

25: return Candidates

C 1

f :=

{

〈k, n〉 | k ∈ KF, Lf ∩ Lk �= ø

n = |Lf ∩ Lk|

}

(3)

C 2

f :=

{

k | 〈k,m〉 ∈ C 1

f , m > α · max
〈k,n〉∈C1

f

(n)
}

(4)

C 3

f :=

{

〈k, a〉 | kc ∈ C 2

f , k = argmax
kc

′

(‖Lf ,Lkc
′‖

1
)

a =
∑

kc
′ ‖Lf ,Lkc

′‖
1

}

(5)

Here, KF is a set of all keyframes in the map, kc
′ is

a neighboring keyframe of kc in C 2

f , and a is the summa-

tion of L1-norm of augmented scene representation for all

keyframes in kc
′. Finally, keyframe candidates Cf are se-

lected as in equation 6. This equation selects a keyframe

with constraints such that its sum of L1-norms b is greater

than the maximum b of C 3

f multiplied by constant β < 1.

Cf :=

{

k | 〈k, b〉 ∈ C 3

f , b > β · max
〈k,a〉∈C3

f

(a)

}

(6)



3. Experiments

We analyzed the performance of our proposed frame-

work and showed its operations in SLAM system on 3D

photo-realistic environments and the real-world. In each

of these operations, we evaluate the position errors during

mapping and success rates of the relocalization task with its

distance errors of the estimated positions.

Since we focused on using semantic labels to aug-

ment binary descriptors and the bag-of-words representa-

tion based on geometric features, the experimental results

are compared to the RGB-D version of ORB-SLAM system

(ORB-SLAM2) [15, 16]. Although there have been many

deep neural network-based methods recently [25, 1, 14, 13],

ORB-SLAM2 is still an advanced method that works ro-

bustly in real-world environments based on advantages of

the ORB descriptor.

3.1. Experimental Setup

First, we tested our framework on the ScanNet [4] which

provides large-scale indoor RGB-D scans consisting of

1513 reconstruction trajectories taken from 706 different

environments, with 2.5M frames in total, along with dense

3D semantic annotations obtained manually via Mechani-

cal Turk. The raw data was recorded from a structured light

depth camera which returns absolute depth values.

We used RGB and depth image sequences as input

frames for SLAM, and the annotated labels were used to ex-

tract semantic features in a pixel-wise manner. To build an

evaluation dataset for the relocalization test, we extracted

data from every 30th frame in each environment of the

dataset. Maps for each of 201 environments in the Scan-

Net dataset were then created using ORB-SLAM2 and the

SLAM based on our framework, respectively.

Our mapping procedure is designed to rewind 50 frames

and to restart the procedure again when tracking-failure

happens. When it continues to fail after five restarts, the

system removes the problematic frame, rewinds 50 frames,

and resets. This process is essential because the tracking

fails frequently during the mapping phase, which causes

map deficiency in several frames.

3.2. Evaluation Procedure

To simulate tracking-failure situations, our evaluation

system displays a blank frame between different test frames.

All test frames are repeated five times for relocalization pro-

cess, and returns its camera position if it succeeds. The

success rate of relocalization tasks is the frequency of suc-

cessful cases in which the camera position is returned at

least once in five repeated test frames. We use an estimated

ground-truth based on the camera poses with neighboring

frames for the evaluation of relocalization tasks, because the

original poses in the dataset are not actually corresponding

to our test frames in simulated tracking-failure status.

To avoid any accidental results and noises in experi-

ments, we use the median value derived from 10 trials.

3.3. Performance

Table 1 presents the quantitative experimental results

consisting of the absolute and relative mapping errors, suc-

cess rate of the relocalization task, and the distance between

the estimated position and the ground-truth position mea-

sured in different environments.

In the table, the higher success rate of relocalization in-

dicates that the SLAM system was more successful at es-

caping the simulated tracking-failure status, and the lower

average distance error indicates that the estimated poses af-

ter the relocalization are more accurate.

While the mapping qualities of both systems have

no big difference, our system showed superior perfor-

mances for the success rates of relocalization tasks (Total

Avg.=78.95%) at the most of the environments compared

to the ORB-SLAM2 system (Total Avg.=71.17%), which

means that our framework enabled the system more robust

and reliable.

Figures 2b and 2c present relocalization task with trajec-

tories tested on one of the office environments in the dataset.

The results show that relocalization success rate of our sys-

tem (77.78%) is greater than ORB-SLAM2 (66.67%) with

less distance error while both systems drew similar trajec-

tories to the ground-truth shown in Figure 2a.

3.3.1 Effects Related to the Number of Objects

To investigate the relocalization performance with respect

to the number of objects observed in each environment,

we analyzed the experimental results by partitioning them

according to the number of objects in each sample of the

dataset. Considering the fact that even the environments

with the same type may contain different numbers of ob-

jects, we categorized environments according to the ratio of

the number of objects to the size of the environment.

Figure 3 presents the relocalization success rates, aver-

aged for each category grouped by the number of objects

corresponding 0 to 4, 4 to 8, 8 to 16, and 16 or more, re-

spectively.

The experimental results show that the success rates of

our system are greater than ORB-SLAM2, and we also dis-

covered that the performance slightly increases according

to the number of objects. These findings indicate that our

proposed module works well for enhancing spatial abilities

through the object-aware augmentation as we intended.

3.3.2 Robustness over Trajectory Length

To examine robustness over trajectory length, we analyzed

the change in absolute position errors as the mapping pro-

gressed. Figure 4 presents the average of absolute position



Environments Num. of

Scenes

Absolute Position Error (m) Relative Position Error (m) Relocalization Success Rate Mean Distance (m)

Ours ORB-SLAM2 Ours ORB-SLAM2 Ours ORB-SLAM2 Ours ORB-SLAM2

Bathroom 27 0.0929 0.0898 0.0110 0.0117 0.7534 0.6918 0.0277 0.0166

Bedroom 25 0.1419 0.1455 0.0124 0.0129 0.7985 0.6607 0.0357 0.0283

Bookstore 10 0.2594 0.2437 0.0114 0.0114 0.8381 0.7276 0.0104 0.0095

Classroom 7 0.2077 0.2300 0.0134 0.0132 0.8717 0.8248 0.0133 0.0360

Conference Room 13 0.6619 0.6808 0.0139 0.0147 0.7192 0.6441 0.0388 0.0727

Copy/Mail Room 7 0.4954 0.4799 0.0164 0.0163 0.7028 0.8159 0.0161 0.0186

Hallway 8 0.1149 0.1238 0.0126 0.0129 0.8417 0.8076 0.0125 0.0150

Kitchen 16 0.2055 0.2112 0.0103 0.0108 0.8251 0.7461 0.0183 0.0159

Living room 34 0.1561 0.1479 0.0132 0.0130 0.7580 0.6418 0.0294 0.0257

Lobby 8 0.2228 0.2153 0.0143 0.0132 0.8274 0.5860 0.0162 0.0153

Office 22 0.1360 0.1457 0.0104 0.0105 0.8486 0.7778 0.0117 0.0253

Misc. 24 0.1510 0.1457 0.0112 0.0111 0.7766 0.7791 0.0126 0.0234

Total 201 0.1994 0.1997 0.0121 0.0123 0.7895 0.7117 0.0226 0.0252

Table 1: Experimental results on global mapping and relocalization tasks. Small sampled environments are grouped as Misc.

(a) Ground-truth of a trajectory (b) Ours (c) ORB-SLAM2

Figure 2: Evaluation results on an office scene. (a) A trajectory of a hand-held camera on a 3D reconstructed office. (b)

Evaluation results of the relocalization on the map created using our framework and (c) the results using ORB-SLAM2. The

markers ’x’ and ’o’ stand for the actual location and the estimated location, respectively, thus the overlapped ones indicate

that the relocalization has been successful.

errors of all evaluated environments, according to the num-

ber of frames processed. Our system and ORB-SLAM2

show similar error curves at the early stage, but our system

presents lower errors when more frames are observed. The

reason for the drastic decrease in the error at about 1300th

frame is due to a statistical problem caused by rapid short-

age of the number of scenes that have 1300 or more frames.

3.3.3 Efficiency of the Keyframe Candidate Selection

To evaluate the efficiency of the proposed algorithm for

keyframe candidate selection, we investigated that declines

in the number of keyframes in comparison with the num-

ber of the initial keyframes detected in the observed scenes.

Typically, only a single keyframe (66.18%, average 1.89)

remained after the whole selection process performed on

initial keyframes. The number of keyframes decreased to

99.36%, 2.18%, and finally, 0.93% from the total number

of keyframes were detected in each scene, throughout three

steps of the algorithm.

3.4. Evaluation on Real Environment

We demonstrated and evaluated the efficacy of the pro-

posed framework in a real environment by using a mobile

robot platform, for which we computed the success rate of

relocalization and the distance error.



Figure 3: Relocalization performance considering the number of objects in the environments. Orange lines and green triangles

in each box indicate the median and mean values, respectively, and red dashed lines stand for the mean value of our system.

Figure 4: Absolute position errors along the increase of ob-

served frame

3.4.1 Experimental Setup

To test the performance of our framework running in real-

world scenarios, we built a model house. The house takes

up 60 square meters and consists of four different spaces,

including a living room, a kitchen, a bedroom and an en-

trance area as shown in Figure 5b.

We combined a map created using our visual SLAM sys-

tem into a 2D cost map of the ROS navigation stack. Ob-

jects placed in the environment are annotated using a CNN-

based object detector. From RGB data, the object detector

extracts bounding boxes and class labels for each object in

the observed scene. We used a YOLOv3 [18, 19] model

trained on the MS-COCO dataset [12] in consideration of

overall performance and computational cost. The map cre-

ated based on our framework is depicted in Figure 5a.

The computational cost depends on the object classifi-

cation model. In our experimental settings, the proposed

framework uses 1.6 GB of GPU memory and the imple-

mented SLAM system runs at 30 fps. This real-time perfor-

mance allowed us to apply visual SLAM in mobile robots

for real-world operations.

3.4.2 Robot Platform

We used a Pepper of Softbank Robotics, a child-sized mo-

bile robot, for real-world tests. The robot has an omnidirec-

tional drivetrain and two 5-DOF arms that can be used for

simple object manipulation and gesture-based human-robot

interaction. It has several sensors including a 3D sensor

(ASUS Xtion), two RGB cameras (OmniVision OV5640), a

four-microphone array, three laser range sensors, two infra-

red sensors, and two sonars. We recorded video frames us-

ing a RGB-D camera, which returns absolute depth values.

3.4.3 Results

Figures 5c and 5d show trajectories of the robot during map-

ping processes and the results of relocalization tasks evalu-

ated on the model house. Although many parts of the house

including walls, floors, the dining table and chairs are made

of similar wooden patterns, which easily can cause tracking-

failure, both systems estimated reasonable poses concern-

ing to the structure of house.

Relocalization success rates and accuracy measured for

each scene of the dataset are presented in Table 2. We

found that the robot recovered from the tracking-failure sta-

tus more successfully using our system, and the accuracy

of estimated pose after relocalization is also significantly

higher for our system compared to the ORB-SLAM2 sys-

tem.

Reloc. success rate (%) Average distance (m)

Ours 79.25 0.0512

ORB-SLAM2 71.43 0.0945

Table 2: Relocalization success rate and its accuracy of

robot experiment compared to ORB-SLAM2.

4. Discussion

In Section 2.1, we defined γ as the constant factor to bal-

ance the weight of the semantic-augmented visual vocabu-



(a) Reconstructed map (b) Rooms

(c) Estimated poses and relocalization results (Ours)

(d) Estimated poses and relocalization results (ORB-SLAM2)

Figure 5: Evaluation results on real environment. (a) Gen-

erated 2D occupancy grid map and 3D map points with se-

mantic features. (b) Four different areas in our experimen-

tal model house. (c) The relocalization procedure on 2D

occupancy grid map created based on our framework and

(d) ORB-SLAM2. The markers x and o stand for the ac-

tual location and the estimated location, respectively, thus

the overlapped ones indicate that the relocalization has been

successful.

lary by determining the weight between semantic and visual

vocabulary. We have empirically found that the semantic

feature is appeared to dominate the visual feature when γ

is over 1.0. In our experiments, we assumed that semantic

features extracted by the object detection is reliable, so thus

γ has been set to 1.0.

Unless enough semantic information is given, our frame-

work depends more on the visual information that consists

of geometric features. For this reason, the performance of

our framework hardly goes below that of ORB-SLAM2,

even for feature-sparse environments such as urban navi-

gation scenarios.

We determined that environments with little semantic in-

formation is not specialized to our proposed framework and

therefore focused on large-scale indoor environments con-

taining many types of objects that can be observable in daily

life.

Finally, we argue that the proposed framework applies

not only to a specific SLAM system but to any conventional

visual SLAM system in a generic plug-in way. As men-

tioned above, this plug-in method has an advantage that its

performance can be improved by using semantic features

while keeping the performance of visual SLAM at the base

performance.

5. Conclusion

In this paper, we have presented a spatial perception

framework that uses an object-aware visual scene represen-

tation.

The proposed framework is implemented into a visual

SLAM system as an add-on feature augmentation module

that fuses geometric features with corresponding semantic

features, and effectively enhanced the performance of sev-

eral vital processes including feature matching and relocal-

ization. To this end, we also proposed an improved similar-

ity measure of descriptors and an algorithm that enables to

select keyframe candidates more efficiently working in our

framework.

The proposed framework has been tested and evaluated

using a mobile robot platform to validate its operation in

the real environment, and a large-scale 3D photo-realistic

dataset composed of several indoor environmental scenes.

Experimental results showed that our framework-based

spatial perception system has relatively higher mapping

performance when compared to ORB-SLAM2, and suc-

cessfully executed relocalization tasks with superior perfor-

mances.

Additionally, we analyzed the experimental results with

respect to the number of objects observed in the environ-

ment, and discovered that our system’s performance is in-

creased according to the number of objects, which indicates

the efficacy of the object-aware augmentation. An analysis

on trajectory length proved that our framework takes better

performance when it has observed the sufficient number of

objects as the mapping proceeds.
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