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Abstract

Spatial perception is a fundamental ability necessary for
autonomous mobile robots to move robustly and safely in
the real-world. Recent advances in SLAM enabled a sin-
gle camera-based system to concurrently build 3D maps of
the world while tracking its location and orientation. How-
ever, such systems often fail to track themselves within the
map and cannot recognize previously visited places due to
the lack of reliable descriptions of the observed scenes.
We present a spatial perception framework that uses an
object-aware visual scene representation to enhance the
spatial abilities. The proposed representation compensates
for aberrations of conventional geometric scene represen-
tations by fusing those representations with semantic fea-
tures extracted from perceived objects. We implemented
this framework on a mobile robot platform to validate its
performance in home situations. Further evaluations were
conducted with the ScanNet dataset which provides large-
scale 3D photo-realistic indoor scenes. Extensive tests
show that our framework can reliably generate maps by re-
ducing tracking-failure, and better recognize overlap in the
map.

1. Introduction

Spatial perception is the ability to be aware of the spa-
tial relationships with respect to the position of one’s body
despite distracting information [10]. Reliable navigation,
object manipulation, autonomous surveillance, and many
other tasks of spatial Al systems from mobile robots to self-
driving vehicles require accurate, robust, and fast spatial
abilities [6]. Hence, the research areas of spatial percep-
tion such as structure from motion (SfM), visual odometry,
and simultaneous localization and mapping (SLAM) have
drawn considerable attention from robotics, computer vi-

sion, and Al communities [22, 2, 21, 8].

The underlying representation of scene geometry is a
crucial element of such spatial perception frameworks since
they usually map a cloud of points using geometric primi-
tives including points, lines, patches, and non-parametric
surface representations. In particular, visual SLAM was
traditionally introduced as a method for tracking geometric
keypoint descriptors along successive frames and then min-
imizing an objective function based on reprojection errors
to estimate the mobile agent’s poses [5, 7].

Since geometric representations have advantages of be-
ing directly observed by visual sensors and measured based
on continuous quantities, they have been used to generate a
map of the real-world. However, geometric representations
are limited when it comes to bad situations having a lack of
reliable descriptions of the observed scenes. This limitation
makes a spatial perception system tend to fail to localize
itself on the map, hence becoming unable to correctly rec-
ognize previously visited places [26].

To perceive spatial layouts based on extremely partial
and ambiguous cues, human spatial abilities have evolved
to give attention to semantic contents as representations of
geometrical uncertainties [|7]. For example, our brain con-
tinuously assigns values to distinguishable parts such as ob-
jects and human faces, forming a priority or a saliency map
of the visible space by saccades [! 1, 9]. Thus, although
our eyes receive incomplete and uncertain information, the
spatio-visual perception system in our brain is usually able
to construct a stable representation of the world successfully
[23].

Recently, some semantic mapping approaches also have
focused on using semantic representations. Salas-Moreno
et al. proposed the SLAM++ system which trains domain-
specific object detectors corresponding to repeated objects
like tables and chairs. The trained detectors are then in-
tegrated into the SLAM framework to recognize and track



those objects resulting in the semantic map [20]. Choud-
hary et al. also worked on object discovery in the maps for
the purpose of closing loops [3]. Siinderhauf et al. devel-
oped a method for object-oriented semantic mapping, where
individual object instances are critical entities in the maps
[24]. Tateno et al. proposed a novel framework that in-
tegrates depth prediction based on the convolutional neu-
ral networks (CNN) into the SLAM system. They fused
semantic segmentation labels with the global 3D model to
obtain dense depth maps along texture-less surfaces [25].
However, the majority of the semantic mapping approaches
are still limited to mapping objects that are present in a pre-
defined database and attempt to retrieve a dense description
of the environment at the overly cost.

To cope with such limitations and enhance the spatial
abilities of the autonomous driving system, we present an
object-aware visual feature augmentation framework which
utilizes semantic features to augment sparse geometric vi-
sual features instead of the previous approaches that com-
pletely describe the environment. In our framework, the se-
mantic features extracted from objects observed in the envi-
ronment compensate for aberrations derived from geometric
features. Therefore, they perform a crucial role in core pro-
cesses such as feature matching and relocalization, which
are widely implemented in the spatial perception systems.

In the rest of this paper, we first explain our proposed
framework, and then quantitative and qualitative evalua-
tions proves that the framework is beneficial for reliable
mapping and better recognition of the overlap in the map.
Finally, we discuss the experimental results and insights ob-
tained.

2. Methods

The underlying spatial perception system we use is based
on the visual SLAM which is widely used in autonomous
robots and virtual reality applications. Conventional visual
SLAM systems rely on the extraction of geometric local
features from image frames to carry out a sparse reconstruc-
tion of the observed scene and to estimate the camera pose.

In this work, we implement our framework into the vi-
sual SLAM system by adding a feature augmentation mod-
ule that fuses the geometric feature with the corresponding
semantic feature which is a distribution of per-pixel object-
class probabilities estimated based on the CNN-based ob-
ject detection algorithm.

The implemented module can be applied directly to vi-
sual SLAM processes including feature matching and re-
localization, as depicted in Figure 1. Specifically, the
main contributions of this framework lie in the semantic-
augmented visual vocabulary which is an improved scene
representation based on similarity measure of descriptors
and an efficient selection algorithm for keyframe candi-
dates.
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Figure 1: System overview

2.1. Semantically Augmented Scene Representation

The spatial features of the traditional visual SLAM con-
sist of a keypoint and a descriptor. The keypoint is a distin-
guishable point usually detected on edges or corners, and
the descriptor is highly distinctive and partially invariant
value which represents the keypoint. To classify informa-
tive frames, the visual SLAM system also uses a bag-of-
words model-based visual vocabulary generated by a dis-
tribution of frequently observed descriptors. Our proposed
module augments such descriptors and visual vocabulary
vectors by adding semantic features.

For each image frame f, let Ly denote a set of key-
point labels, each of which has the highest probability value
among the semantic features for the corresponding key-
point, and sz be a set of keypoints with label /. Similarly,
let By and Py’ denote a set of visual vocabulary indices and
a set of keypoints with the index v of the visual vocabulary,
respectively.

As in typical bag-of-words models, we define a weight
w as a number of occurrences of either the semantic label or
the visual vocabulary index.

The weight for keypoint label [ is proportional to the
number of keypoints in frame f with label . Similarly, for
each visual vocabulary index v, the weight is proportional
to the number of keypoints with visual vocabulary index v
in frame f. Consequently, the augmented scene representa-
tion at frame f can be defined as follows:

Ly ::{<l,w>|l €Ly, w :7\Pfl\}

ey
U{(v,w)|v e By, w= nv\Pf”\},
where -y is a constant factor for labels that balances the in-
fluence of semantic features at a similar level to visual fea-
tures, and 7,, is a factor for visual vocabulary depending on
the frequency of visual vocabulary determined in advance.



2.2. Improved Similarity Measure of Descriptors

Descriptor distance, which measures the similarity be-
tween descriptors, plays an essential role in visual SLAM
since the system is basically a feature matching system.
When comparing two keypoints in different frames, without
further information, the fact that their labels are the same
does not guarantee that they are identical since they might
just be the two different points on the same object. Discrep-
ancy in labels, in contrast, can be seen as a clear evidence
that the keypoints do not match. In this sense, a distance
factor § between descriptors p and ¢, with a penalty factor £
greater than 1, can be defined as follows:

dZSt(p7 q) ::61711 ! Hp7an7 (2)
1 ifl, =1,
Opq 1= £ o.w.

where [, and [, are labels of p and ¢, respectively, and
lp, ql|,, is an arbitrary distance between p and g.

The distance factor ¢, is then multiplied to ||p, ¢||,, in
order to update the distance in a way that considers per-
ceived objects. This update method is not restricted to cer-
tain types of distance, and thus applicable to arbitrary visual
perception systems based on any distance metrics.

2.3. Efficient Selection Algorithm for Keyframe
Candidates

When tracking fails due to rapid camera motion, occlu-
sion or motion blur, it is necessary to compute the cam-
era pose with respect to the map again [27]. This process
is called a relocalization, and it is crucial for any spatial
perception system because tracking-failure causes a chaotic
map and several risks associated with the map.

In this process, selecting an appropriate number of
keyframes to be matched is important because keypoint
matching for all frames is highly inefficient. Here, we can
use the semantic-augmented visual vocabulary described in
Section 2.1 for selecting the candidate keyframes by using
Algorithm 1. In the proposed algorithm, we represent 3
steps as Equation 3 to 5 while selecting the final candidates.

C fl is a set of pairs of a keyframe k containing the same
labels as f, and n, the number of such labels. C]% is a set
of keyframes such that for the pair (k, m) € C} containing
each keyframe £, m is greater than the maximum n of C}

multiplied by constant o < 1. C'? is a set of pairs consisting
of a keyframe k that has the maximum L1-norm of f, and
a, the summation of the L1-norm.

Algorithm 1 Candidate keyframe selection

Input : current frame f, map M
Qutput : candidate keyframe list
1: initialize C1, C2, C3, Candidates
2: for each k € all keyframes in M do
3 n < number of labels in both f and &
4 if n # 0 then
5: add (k,n) to C1
6 end if
7: end for
8: for (k,m) € C'1do
9: if m > a+(max n in C'1) then
10: add k to C2
11:  endif
12: end for
13: for each k € C2 do
14: Ny < neighboring frames of k
15:  a <+ sum of L1_norm(f, k') over k' in N},
16:  kpest < k' in Ny, maximizing L1_norm(f, k)
17:  add (kpest, a) to C3
18: end for
19: sort C3 by a
20: for (k,b) € C3 do
21:  if b > f-(max a in C3) then

22: add k to Candidates
23:  end if
24: end for

25: return Candidates

1. (k,n>|k:€KF,LfﬂLk7é¢
s { n=|Ly 0Ly @
k| {(k,m)e C},m>a-
o7 :{ [ (kym) €Cf,m > a <kf{f>agc}(n)} @)
. {<k,a> ke € CF, ke = ar%maw(llLf7chflll)}
f.— c
a=73 5 ILgLill,

S

Here, KF is a set of all keyframes in the map, k. is
a neighboring keyframe of k. in C fQ, and a is the summa-
tion of L1-norm of augmented scene representation for all
keyframes in k.'. Finally, keyframe candidates C are se-
lected as in equation 6. This equation selects a keyframe
with constraints such that its sum of L1-norms b is greater
than the maximum b of CJ? multiplied by constant 5 < 1.

Cy = {k|<k’,b>60f,b>ﬁ- max (a)} (6)

(k,a)GC?



3. Experiments

We analyzed the performance of our proposed frame-
work and showed its operations in SLAM system on 3D
photo-realistic environments and the real-world. In each
of these operations, we evaluate the position errors during
mapping and success rates of the relocalization task with its
distance errors of the estimated positions.

Since we focused on using semantic labels to aug-
ment binary descriptors and the bag-of-words representa-
tion based on geometric features, the experimental results
are compared to the RGB-D version of ORB-SLAM system
(ORB-SLAM?2) [15, 16]. Although there have been many
deep neural network-based methods recently [25, 1, 14, 13],
ORB-SLAM?2 is still an advanced method that works ro-
bustly in real-world environments based on advantages of
the ORB descriptor.

3.1. Experimental Setup

First, we tested our framework on the ScanNet [4] which
provides large-scale indoor RGB-D scans consisting of
1513 reconstruction trajectories taken from 706 different
environments, with 2.5M frames in total, along with dense
3D semantic annotations obtained manually via Mechani-
cal Turk. The raw data was recorded from a structured light
depth camera which returns absolute depth values.

We used RGB and depth image sequences as input
frames for SLAM, and the annotated labels were used to ex-
tract semantic features in a pixel-wise manner. To build an
evaluation dataset for the relocalization test, we extracted
data from every 30th frame in each environment of the
dataset. Maps for each of 201 environments in the Scan-
Net dataset were then created using ORB-SLAM?2 and the
SLAM based on our framework, respectively.

Our mapping procedure is designed to rewind 50 frames
and to restart the procedure again when tracking-failure
happens. When it continues to fail after five restarts, the
system removes the problematic frame, rewinds 50 frames,
and resets. This process is essential because the tracking
fails frequently during the mapping phase, which causes
map deficiency in several frames.

3.2. Evaluation Procedure

To simulate tracking-failure situations, our evaluation
system displays a blank frame between different test frames.
All test frames are repeated five times for relocalization pro-
cess, and returns its camera position if it succeeds. The
success rate of relocalization tasks is the frequency of suc-
cessful cases in which the camera position is returned at
least once in five repeated test frames. We use an estimated
ground-truth based on the camera poses with neighboring
frames for the evaluation of relocalization tasks, because the
original poses in the dataset are not actually corresponding
to our test frames in simulated tracking-failure status.

To avoid any accidental results and noises in experi-
ments, we use the median value derived from 10 trials.

3.3. Performance

Table 1 presents the quantitative experimental results
consisting of the absolute and relative mapping errors, suc-
cess rate of the relocalization task, and the distance between
the estimated position and the ground-truth position mea-
sured in different environments.

In the table, the higher success rate of relocalization in-
dicates that the SLAM system was more successful at es-
caping the simulated tracking-failure status, and the lower
average distance error indicates that the estimated poses af-
ter the relocalization are more accurate.

While the mapping qualities of both systems have
no big difference, our system showed superior perfor-
mances for the success rates of relocalization tasks (Total
Avg.=78.95%) at the most of the environments compared
to the ORB-SLAM?2 system (Total Avg.=71.17%), which
means that our framework enabled the system more robust
and reliable.

Figures 2b and 2c present relocalization task with trajec-
tories tested on one of the office environments in the dataset.
The results show that relocalization success rate of our sys-
tem (77.78%) is greater than ORB-SLAM?2 (66.67%) with
less distance error while both systems drew similar trajec-
tories to the ground-truth shown in Figure 2a.

3.3.1 Effects Related to the Number of Objects

To investigate the relocalization performance with respect
to the number of objects observed in each environment,
we analyzed the experimental results by partitioning them
according to the number of objects in each sample of the
dataset. Considering the fact that even the environments
with the same type may contain different numbers of ob-
jects, we categorized environments according to the ratio of
the number of objects to the size of the environment.

Figure 3 presents the relocalization success rates, aver-
aged for each category grouped by the number of objects
corresponding O to 4, 4 to 8, 8 to 16, and 16 or more, re-
spectively.

The experimental results show that the success rates of
our system are greater than ORB-SLAM?2, and we also dis-
covered that the performance slightly increases according
to the number of objects. These findings indicate that our
proposed module works well for enhancing spatial abilities
through the object-aware augmentation as we intended.

3.3.2 Robustness over Trajectory Length

To examine robustness over trajectory length, we analyzed
the change in absolute position errors as the mapping pro-
gressed. Figure 4 presents the average of absolute position



Absolute Position Error (m) Relative Position Error (m) Relocalization Success Rate Mean Distance (m)

Environments Num. of
Scenes Ours ORB-SLAM2 Ours ORB-SLAM2 Ours ORB-SLAM2 Ours ORB-SLAM2
Bathroom 27 0.0929 0.0898 0.0110 0.0117 0.7534 0.6918 0.0277 0.0166
Bedroom 25 0.1419 0.1455 0.0124 0.0129 0.7985 0.6607 0.0357 0.0283
Bookstore 10 0.2594 0.2437 0.0114 0.0114 0.8381 0.7276 0.0104 0.0095
Classroom 7 0.2077 0.2300 0.0134 0.0132 0.8717 0.8248 0.0133 0.0360
Conference Room 13 0.6619 0.6808 0.0139 0.0147 0.7192 0.6441 0.0388 0.0727
Copy/Mail Room 7 0.4954 0.4799 0.0164 0.0163 0.7028 0.8159 0.0161 0.0186
Hallway 8 0.1149 0.1238 0.0126 0.0129 0.8417 0.8076 0.0125 0.0150
Kitchen 16 0.2055 0.2112 0.0103 0.0108 0.8251 0.7461 0.0183 0.0159
Living room 34 0.1561 0.1479 0.0132 0.0130 0.7580 0.6418 0.0294 0.0257
Lobby 8 0.2228 0.2153 0.0143 0.0132 0.8274 0.5860 0.0162 0.0153
Office 22 0.1360 0.1457 0.0104 0.0105 0.8486 0.7778 0.0117 0.0253
Misc. 24 0.1510 0.1457 0.0112 0.0111 0.7766 0.7791 0.0126 0.0234
Total 201 0.1994 0.1997 0.0121 0.0123 0.7895 0.7117 0.0226 0.0252

Table 1: Experimental results on global mapping and relocalization tasks. Small sampled environments are grouped as Misc.

Reloc. success rate: 77.78 | Avg. dist. error: 0.0086m Reloc. success rate: 66.67 | Avg. dist. error: 0.0114m

® true
O predicted

(a) Ground-truth of a trajectory

(b) Ours (c) ORB-SLAM2

Figure 2: Evaluation results on an office scene. (a) A trajectory of a hand-held camera on a 3D reconstructed office. (b)
Evaluation results of the relocalization on the map created using our framework and (c) the results using ORB-SLAM?2. The
markers "x’ and "0’ stand for the actual location and the estimated location, respectively, thus the overlapped ones indicate

that the relocalization has been successful.

errors of all evaluated environments, according to the num-
ber of frames processed. Our system and ORB-SLAM?2
show similar error curves at the early stage, but our system
presents lower errors when more frames are observed. The
reason for the drastic decrease in the error at about 1300th
frame is due to a statistical problem caused by rapid short-
age of the number of scenes that have 1300 or more frames.

3.3.3 Efficiency of the Keyframe Candidate Selection

To evaluate the efficiency of the proposed algorithm for
keyframe candidate selection, we investigated that declines
in the number of keyframes in comparison with the num-
ber of the initial keyframes detected in the observed scenes.
Typically, only a single keyframe (66.18%, average 1.89)

remained after the whole selection process performed on
initial keyframes. The number of keyframes decreased to
99.36%, 2.18%, and finally, 0.93% from the total number
of keyframes were detected in each scene, throughout three
steps of the algorithm.

3.4. Evaluation on Real Environment

We demonstrated and evaluated the efficacy of the pro-
posed framework in a real environment by using a mobile
robot platform, for which we computed the success rate of
relocalization and the distance error.
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Figure 4: Absolute position errors along the increase of ob-
served frame

3.4.1 Experimental Setup

To test the performance of our framework running in real-
world scenarios, we built a model house. The house takes
up 60 square meters and consists of four different spaces,
including a living room, a kitchen, a bedroom and an en-
trance area as shown in Figure 5b.

We combined a map created using our visual SLAM sys-
tem into a 2D cost map of the ROS navigation stack. Ob-
jects placed in the environment are annotated using a CNN-
based object detector. From RGB data, the object detector
extracts bounding boxes and class labels for each object in
the observed scene. We used a YOLOvV3 [18, 19] model
trained on the MS-COCO dataset [12] in consideration of
overall performance and computational cost. The map cre-
ated based on our framework is depicted in Figure 5a.

The computational cost depends on the object classifi-
cation model. In our experimental settings, the proposed
framework uses 1.6 GB of GPU memory and the imple-
mented SLAM system runs at 30 fps. This real-time perfor-
mance allowed us to apply visual SLAM in mobile robots
for real-world operations.

3.4.2 Robot Platform

We used a Pepper of Softbank Robotics, a child-sized mo-
bile robot, for real-world tests. The robot has an omnidirec-
tional drivetrain and two 5-DOF arms that can be used for
simple object manipulation and gesture-based human-robot
interaction. It has several sensors including a 3D sensor
(ASUS Xtion), two RGB cameras (OmniVision OV5640), a
four-microphone array, three laser range sensors, two infra-
red sensors, and two sonars. We recorded video frames us-
ing a RGB-D camera, which returns absolute depth values.

3.4.3 Results

Figures 5c and 5d show trajectories of the robot during map-
ping processes and the results of relocalization tasks evalu-
ated on the model house. Although many parts of the house
including walls, floors, the dining table and chairs are made
of similar wooden patterns, which easily can cause tracking-
failure, both systems estimated reasonable poses concern-
ing to the structure of house.

Relocalization success rates and accuracy measured for
each scene of the dataset are presented in Table 2. We
found that the robot recovered from the tracking-failure sta-
tus more successfully using our system, and the accuracy
of estimated pose after relocalization is also significantly
higher for our system compared to the ORB-SLAM?2 sys-
tem.

Reloc. success rate (%)

Ours 79.25
ORB-SLAM?2 71.43

Average distance (m)

0.0512
0.0945

Table 2: Relocalization success rate and its accuracy of
robot experiment compared to ORB-SLAM?2.

4. Discussion

In Section 2.1, we defined - as the constant factor to bal-
ance the weight of the semantic-augmented visual vocabu-
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Figure 5: Evaluation results on real environment. (a) Gen-
erated 2D occupancy grid map and 3D map points with se-
mantic features. (b) Four different areas in our experimen-
tal model house. (c) The relocalization procedure on 2D
occupancy grid map created based on our framework and
(d) ORB-SLAM?2. The markers x and o stand for the ac-
tual location and the estimated location, respectively, thus
the overlapped ones indicate that the relocalization has been
successful.

lary by determining the weight between semantic and visual
vocabulary. We have empirically found that the semantic

feature is appeared to dominate the visual feature when
is over 1.0. In our experiments, we assumed that semantic
features extracted by the object detection is reliable, so thus
~ has been set to 1.0.

Unless enough semantic information is given, our frame-
work depends more on the visual information that consists
of geometric features. For this reason, the performance of
our framework hardly goes below that of ORB-SLAM?2,
even for feature-sparse environments such as urban navi-
gation scenarios.

We determined that environments with little semantic in-
formation is not specialized to our proposed framework and
therefore focused on large-scale indoor environments con-
taining many types of objects that can be observable in daily
life.

Finally, we argue that the proposed framework applies
not only to a specific SLAM system but to any conventional
visual SLAM system in a generic plug-in way. As men-
tioned above, this plug-in method has an advantage that its
performance can be improved by using semantic features
while keeping the performance of visual SLAM at the base
performance.

5. Conclusion

In this paper, we have presented a spatial perception
framework that uses an object-aware visual scene represen-
tation.

The proposed framework is implemented into a visual
SLAM system as an add-on feature augmentation module
that fuses geometric features with corresponding semantic
features, and effectively enhanced the performance of sev-
eral vital processes including feature matching and relocal-
ization. To this end, we also proposed an improved similar-
ity measure of descriptors and an algorithm that enables to
select keyframe candidates more efficiently working in our
framework.

The proposed framework has been tested and evaluated
using a mobile robot platform to validate its operation in
the real environment, and a large-scale 3D photo-realistic
dataset composed of several indoor environmental scenes.

Experimental results showed that our framework-based
spatial perception system has relatively higher mapping
performance when compared to ORB-SLAM?2, and suc-
cessfully executed relocalization tasks with superior perfor-
mances.

Additionally, we analyzed the experimental results with
respect to the number of objects observed in the environ-
ment, and discovered that our system’s performance is in-
creased according to the number of objects, which indicates
the efficacy of the object-aware augmentation. An analysis
on trajectory length proved that our framework takes better
performance when it has observed the sufficient number of
objects as the mapping proceeds.
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