
   

 

 

 

Abstract 

 

We propose a hierarchical framework for processing 

high-resolution images on mobile devices for visual SLAM.  

It is based on the insights from analysis of new progress in 

primary features’ detection, object detection and pose 

estimation. A rectification/unwarping operation is applied 

in  regions of interest (ROIs) to improve the object/parts 

classification/detection performance; the object-part 

spatial relationships are created and contribute in map 

building, object detection, and localization;  and a 

geometric constraints based pose refinement is followed to 

further improve the localization accuracy.  Our design 

facilitates the more accurate pose estimating and 

localization using mobile devices for SLAM, and 

Augmented Reality/Mixed Reality applications.  

 

1. Introduction 

The resolution of cameras on mobile devices, such as 

smart phones and AR glasses/wearables, has increased 

rapidly in recent years. For example, Apple iPhone X has 

dual 12-megapixel cameras, Huawei P30 has a 40-

megapixel camera, and Xiaomi announced that it would 

introduce a smartphone featuring a 100-megapixel sensor 

in late 2019. 

However, the stereo and monocular systems for object 

detection, depth computing and their corresponding 

benchmarks are still mostly focused on low-resolution 

images [23]. For example, in KITTI dataset [4], the 

corresponding camera resolution is 1.4 megapixel, and 

many stereo images in its database have only 0.4 megapixel 

resolution, which is far more less than the typical smart 

phone camera resolution.   

On one hand, the high-resolution images provided from 

the new devices will make it possible to achieve high 

accuracy in object detection and localization, facilitate the 

computation of AR applications and improve user’s 

immersive experiences. If a user can get accurate location 

information by just moving its phones to capture pictures 

and match the 3D map (in the cloud or downloaded locally 

or created using the video sequence from the phone 

cameras), it would offer great experience for the users. On 

the other hand, the higher computation requirements for 

processing such big images inevitably create new 

challenges. 

In addition, the baselines of the multiple cameras on the 

smart phones are smaller, and their lens can also have 

limitations. Nonetheless, a user can move the phone to 

create multiple virtual cameras with bigger baselines and 

larger coverage if the camera poses can be calculated 

accurately in real time. Moreover, researches of computing 

depth from monocular images have made a lot of progress.   

Therefore, a new processing framework is desired to 

handle the challenges and make it practical to fully integrate 

the new achievements in mobile devices’ computation 

power, camera resolution and computer vision models. 

Note that the recent DNN based vision models were mostly 

developed and suited for low-resolution images. 

To address the challenges, we propose a novel 

computation framework to process high-resolution images 

in a hierarchical way to support high-accuracy object 

detection, map building, and localization. The framework, 

as shown in Figure 1, includes the following components 

and stages: 

1. Use down-sampling to get low resolution images for 

primary features’ detection:  lines (vertical lines, 

parallel lines, horizontal lines, and semantic lines), 

planes (walls, furniture surfaces, road/ground 

surface). Depth information can be fused for the 

detection if available.  See details in Sec. 3.1. 

2. Initially estimate the camera pose based on the 

obtained primary features. This might be just 

camera’s orientation/viewpoint relative to the world 

(not exactly location information, i.e. transformation 

is not fully fixed yet. For example, the camera pose 

is recovered up to a scale or similarity 

transformation).  See details in Sec. 3.2. 

3. For planar regions (or can be treated as planar 

regions), rectify the corresponding regions (from 

high resolution images) to get front view, rectified 

(and cropped) images and conduct more accurate 

object/parts detection and locating. As a result, the 

perspective transforms and affine transforms can be 
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eliminated from the rectified/unwarped images, and 

higher accuracy can be achieved in the followed 

vision tasks. See details in Sec.3.3. 

4. Build object model from the detected parts and 

create the object-part spatial relationships and use 

them in map building and object 

detection/localization. See details in Sec.3.4. 

5. From the object model, re-project to the original 

high-resolution image (or the edge/feature maps) for 

high resolution alignment optimization to minimize 

geometric errors. This can give more accurate object 

pose relative to the camera and facilitate the 

applications with high accuracy localization 

requirement (such as AR/MR, navigation 

applications, etc.). See details in Sec. 3.5. 

2. Related Work and Motivation 

2.1. Sensor fusion using guided geometries 

Infra-red based depth sensors were already added to 

mobile devices, such as supporting Apple faceID 

application. Different sensor types have different 

limitations in obtaining the depth information in the 

environment, either in resolution, density, or working 

ranges.  

Combining multiple sensors to improve the environment 

perception and localization is an interesting research field.  

Guided stereo matching [14] makes use of sparse, yet 

precise depth information collected from an external source, 

such as a LiDAR to assist state-of-the-art deep learning 

frameworks for stereo matching. 

DenseFusion[21]  estimates 6D object pose using RGB-

D images. DeepLiDAR[15] combines LiDAR data and 

color images and makes use of surface normal to guide 

depth prediction for outdoor scene.  

These researches show that simple and sparse geometric 

information (such as surface normal) are very helpful for 

depth computing and pose estimation. In our proposed 

system design, the geometric information (from color 

images or other sensors) is utilized for 

converting/unwarping the image regions for better 

performance of object detection and localization. 

2.2. Data representation optimization 

In Pseudo-LiDAR[20], the images from the stereo 

cameras are used to generate a 3D point cloud which is then 

rotated in 3D to produce a top-down perspective of a 

vehicle’s surroundings. This allows for improved accuracy 

that puts their approach on par with LiDAR solutions. On 

the popular KITTI benchmark, achieves impressive 

improvements over the existing state of-the-art in image-

based performance — raising the detection accuracy of 

objects within 30m range from the previous state-of-the-art 

of 22% to an unprecedented 74%. 

Ma et al. [13] provide a stacked U-Net for document 

image unwarping, and it greatly improves the effectiveness 

of the state-of-the-art text detection systems. Due to the 

output from single U-Net may not be satisfactory, a second 

U-Net is used for further refining the unwarped image. 

Their evaluation showed that unwarping improved the 

multi-scale structural similarity (MS-SSIM) from previous 

0.13 to 0.41. 

Tai et al. [18] propose Equivariant Transformers 

(differentiable image to image mappings) via specially 

derived canonical coordinate systems, and use the estimated 

pose parameters to apply an inverse transformation to the 

image. The equivariant transformers improve the error rate 

of the baseline on projective MNIST by 2.79%, a relative 

improvement of 43%.  

The insight is that the data representation has a big 

impact on the performance of the computer vision tasks (up 

to 3X in accuracy based on the above examples). This might 

be because the majority of the training examples for the 

deep learning models of object recognition are front view 
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images, and the data augmentation cannot fully fill the gap 

of lacking complete coverage of different view angles. 

Affine transformations except translation are not easy to 

augment with since that requires accessing the full three-

dimensional scene models. Augmenting data with 

combinations of different transformations would result in 

an enormous dataset. The fact that objects are composed of 

parts, makes it even harder to catch all possible 

configurations of object parts. 

It is also clear that humans prefer to see objects with front 

views (for example, people like cameras’ correction 

functions to adjust a skewed presentation picture to a 

straight view angle). Therefore, we believe that the object 

recognition and pose estimation can gain significant 

improvement if the rectified front view image can be used 

as input to the object/part recognition and pose estimation 

models. 

2.3. Limitations of end to end based pose estimation  

In our workflow, object/part localization/pose 
refinement is separated from the classification/recognition 
stage: First execute classification/recognition on the 
rectified images, then refining the pose using the original 
high-resolution images. 

One motivation for additional pose refinement is that 

there are accuracy limitations using end to end DNN for 

pose estimation.  Sattler et al. [16] investigate the camera 

pose estimation using end to end DNN, and claim that end 

to end approaches based on convolutional neural networks 

do not achieve the same level of pose accuracy as 3D 

structure-based methods for camera pose estimation. They 

predict that absolute pose regression (APR) techniques are 

not guaranteed to generalize form training data in practical 

scenarios (APR is more closely related to image retrieval 

approaches than to methods that accurately estimate camera 

poses via 3D geometry). 

Therefore, more accurate pose estimation should be 

based on 3D geometry structures, i.e. regression to 

minimize the geometric errors. For example, Liu et al. [11]  

first use an anchor-based method for regression of the 

dimension and orientation of the object, then sample a large 

number of candidates in the 3D space and project the 3D 

bounding boxes to 2D image individually to get the best 

candidate by exploring the spatial overlap between the 

proposals and the object (using a FQNet). Wang et al. [21] 

use re-projection errors between multi-view images for 

computing the geometric consistency cost. 

Stereo R-CNN in [9] combines 2D boxes with sparse key 

points, viewpoints, and object dimensions to calculate a 

coarse 3D object bounding box, then recovers the accurate 

3D bounding box by a region-based photometric alignment 

to achieve sub-pixel matching accuracy. In their method, 

Object RoI is treated as a geometric constraint entirely, and 

the dense alignments bring significant improvements 

(precision was improved from around 40% to over 80%) 

Accordingly, in our system architecture, the final pose 

refinement stage is based on minimizing the geometric 

errors via projecting object model features to the original 

images and utilizing the object-part spatial relationships.   

Mathematic analysis from the stereo vision shows that 

the accuracy of locating geometric structures in images 

directly influences the accuracy of depth computation. As 

shown in Figure 2, a 3D physical point has projections on 

the images of the two cameras in a stereo vision system, the 

disparity is the x coordinate difference for the image points 

in left image and right image:  

  Assume the camera focal length is f and the camera 

centers’ distance is b (the baseline), the depth value of the 

physical point is then computed as follows: 

 

z                                                                      (1) 

The depth error is related with disparity error [3] in the 

following way: 

 

 –   =                          (2) 

 

The computation of disparity is based on the feature 

correspondence for the 3D geometric structure, if assuming 

the accuracy of disparity is about pixel level, then the image 

resolution determines the accuracy of the depth estimation. 

For the same size of field of view, 16-megapixel camera 

has the pixel size of 1/4 of the pixel size of 1-megapixel 

camera in X/Y dimension, so the depth error can be reduced 

up to only 1/4 of the depth error of 1-megapixel camera.   

As a result, pose refinement based on minimizing 

geometric errors can take full advantage of the high-

resolution images from modern smart phone cameras, and 

will not be limited by the accuracy of the end to end neural 

network models.  
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2.4. Object-part spatial relationships 

An object can be seen as a geometrically organized set of 

interrelated parts. For many man-made objects, different 

parts might be treated as on different planes. Kosiorek et al. 

[7] describe an unsupervised version of capsule networks to 

discover parts and objects directly from an image: Stacked 

Capsule Autoencoders. The highly structured decoder 

networks are used to train the encoder networks which can 

compose the parts into coherent objects. The trainable fixed 

object-part relations are composed with the detected object 

pose and compared with the detected part poses for 

estimating the part likelihood.   

It is more robust for an object detection system to make 

explicit use of the geometric relationships among the 

object’s parts since the relationships are viewpoint 

invariant.  

 To improve the map representation and localization 

accuracy for visual SLAM, we propose to split the objects 

into parts based on the planar regions of the object (as 

shown in Figure 3), and store the rectified images to 

associate with the detected objects’ parts, and encode the 

geometrical relationships among the object’s parts via the 

3D planar bounding box representations of the part in the 

object coordinate system. Therefore, viewpoint invariant 

localization can be conducted robustly in this scheme for 

visual SLAM, and the object/parts detection based on 

appearance matching can be simplified based on the 

rectified images.   

Figure 3: Parts of an object with plane representation (different 

colors are used to label different planar parts of the object). 

2.5. Our contributions 

Different from the prior arts of only handling low-

resolution images, or not considering the challenges from 

view angle differences, our proposed system framework 

integrates the prime feature detection, region unwarping, 

detection using object-part spatial relationships, and 

geometric constraints based pose refinement in one unified 

architecture, and make the computation more efficient and 

more accurate for using high-resolution images for visual 

SLAM: 

� Primary features’ detection makes automatic 

unwarping feasible, and the ROI based 

unwarping and detection can significantly 

reducing the computation requirements;  

� The front view appearance from unwarping 

operation and the object-part spatial 

relationship information used in detection will 

improve the recognition robustness and 

accuracy significantly; 

� The geometric constraints based refinement will 

achieve high accuracy in localization.   

3. System Design 

3.1. Primary features’ detection 

The first stage in our system architecture is detecting 

primary features, such as vanishing points, planes, 

orthogonal or parallel lines.  These primary features offer 

important information for camera pose estimation. Recent 

progress in deep learning brought architectures and 

methods for detecting planes and lines with more 

information and semantic meanings.  

For example, Sun et al. [19] proposed HorizonNet to 

detect the boundaries of floor-wall, ceiling-wall, and wall-

wall.  These boundaries help to reconstruct the 3D room 

layout and infer the room shape. 

Planar regions are popular in outdoor/indoor 

environments, especially abundant in man-made 

environments, such as building/architectures in city scenes. 

Planar regions offer key geometric cues for scene 

understanding, viewpoint/orientation estimation and robot 

navigation. Recently deep-learning-based methods were 

proposed for planar region detection. 

Liu et al. [10] propose a PlaneRCNN to detect planes in 

monocular images, and planar regions in the images can be 

detected and the corresponding plane parameters, depth 

map can be reconstructed.  The reconstructed 3D planes 

will be used for further (and finer) classification, 

recognition, and pose estimation/locating in our scheme. 

Lee et al. [8] proposes a semantic line detector using 

convolutional neural network with multi-task learning 

(classification about whether a candidate is a sematic line 

or not, and regression about determining the offset for 

refining the line location).  The resulting semantic lines are 

important for some computer vision tasks, such as 

estimating the levelness of an image. 

By the way, the 3D planes’ intersections are 3D lines, 

and these intersection lines generally have semantic 

meanings (such as intersection between walls and ground) 

and are useful for estimating the camera’s pose in the 

environment.  

Vanishing points are also useful for camera pose 

estimation, and CNN networks were proposed for 

vanishing point detection [6].   



   

 

 

Although in some situations using the detected primary 

features, the camera pose is only recovered up to a 

similarity transform [5], but that is good enough for the 

image rectification in the following sections. 

3.2. Camera pose estimation using primary features. 

As discussed in Sec. 1, better camera pose estimation can 

benefit the stereo vision using smart phones.   

3D plane pairs or 3D line pairs from two cameras can be 

used to estimate the relative relationship among the 

cameras, therefore facilitate the depth information 

computing using large baselines (via moving camera) to 

improve the accuracy. 

The book “multi-view geometry in computer vision” [5] 

lists ways of using points and line features for camera 

calibration: For example, vanishing lines may be computed 

given equally spaced coplanar lines.  

3.3. Image rectification/unwarping  

Image rectification in general refers the transforming one 

image from stereo images to match the other image, as a 

result, the rectified image has the row to row 

correspondence to the image from the other camera and 

supports the disparity computation. 

Here, we talk a different rectification: unwarp the 

original image regions according to the camera pose 

information and the orientation of the object/part of interest 

and generate a new image with front view for the 

object/part. 

This process can be treated as using a virtual camera 

which has front view of the object(s), as illustrated in Figure 

4.    

As shown in Figure 5  for each pixel in the unwarped 

image, the pixel value is obtained by projection the pixel to 

the object plane, get the intersection point, and re-project 

the intersection point to the original image to fetch the 

corresponding pixel value. The formulas for the projection 

are explained in equations in Sec. 3.4.  

The orientation of the virtual camera can be based on the 

plane normal estimation from the image in the original 

camera (obtained in Sec. 3.1 and Sec. 3.2). 

The unwarped images have one to one correspondence 

for the planar regions (or nearly planar regions) in the low-

resolution image but are generated using the original high-

resolution image. 

Object/part recognition based on the front view image 

would achieve high accuracy (as discussed in Sec. 2.2), and 

the  pose can be refined further once there are the object 

models (which are available for man-made structures from 

the corresponding CAD model,  or 3D model/map created 

based on SLAM). 

As an extension, combining with camera-aware neural 

network properties [2], it might be possible to train a neural 

network to take the camera information and ROI region’s 

plane information to do image unwarping and get the 

rectified image (as shown in Figure 6).  One note is that for 

generalizing this kind of neural networks, data 

normalization might be needed (as used in [2] and [5]). 

 

 
Figure 6: Illustration of rectification network. 

3.4. Detection and locating based on object-part spatial 

relationships. 

The architecture of building and using object model for 

detection and localization is shown in Figure 7. The detected 

parts and their associated poses from the rectified images 

are used to compose the object model, which keeps the 

object-part spatial relationships, and the generated object 

models also contribute to map building and pose refinement 

for high-accuracy localization.  

From the detected parts, object encoder network [7] 

might be used to compose the parts to objects and generate 

the object-part relationships. Alternatively, the semantic 
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Figure 4: Illustration of rectification to obtain front view.
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segmentation results [1] [12] might be used to group parts 

to objects. The object model building is explained in the 

following.  

For each planar part, its 2D bounding box (on the part 

plane) might be used for the part representation. 

The intersections of the part planes are 3D lines and can 

be trimmed as 3D line segments based on the bounding 

boxes for the associated parts. Therefore, we can use the 

geometric center of the end points of the intersected line 

segments as the object center, i.e. the origin of the 3D object 

coordinate system is defined as follows: 

 

                                 (3)  

 

Where N is the number of line segments, and  

are the end points of the ith line segment. 

Alternatively, the object center might be the centroid of 

all the corner points of the bound boxes of its parts. 

Z axis of the 3D object coordinate system can be based 

on the plane normal of its main part, and X axis and Y axis 

might be based on the intersected line segments of this 

plane with other planes, as shown in Figure 3. 

Every part of the object will be represented by a 3D 

transformation   which maps the unit square on the XY 

plane (with plane equation of z= 0) to the part plane 

bounding box in the object coordinate system. The unit 

square on the XY plane has the following corner points: 

(0,0,0), (1, 0,0), (0,1,0), (1, 1, 0). Hence, the origin and axis 

directions of the part coordinate system are well defined 

based on the bounding box.   contains x-scale, y-scale 

and rigid transforms, and an example is shown in Figure 8, 

where  includes a rotation of 90 degrees around X axis, 

and a 2X scale in X direction. The unit square is 

transformed to a rectangle in X’Z’ plane in the X’Y’Z’ 

coordinate system as shown with : 

 

  

The corresponding rectified image (front view of the 

part) is also associated with the part in the object model. 

As shown in the following structure of the object model, 

the intersections between the parts of the object are also 

good features, and can be combined with the features of 

each part for pose refinement and accurate localization (see 

Sec. 3.5): 
 

 

 

 

Borrowing the idea from capsule network [7], the object 

detection accuracy can be improved based on the part 

relationships (such as 3D distances between parts, angle 

Figure 7:  Object detection, map building, and localization using object-part spatial relationships. 
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between part planes, etc.) without using a large number of 

training examples. The rectified images (front views of the 

parts) might be used as part templates [7], and may also 

make few-shot learning feasible. 

The generated object models can be included in the 

environment maps of SLAM and used for high accuracy 

localization as explained in the next section. 

Please note that the pose refinements (in Sec. 3.5) can 

also be applied for part pose refinements in building the 

object model. 

3.5. Geometric constrained pose refinements 

In the pose refinement stage, the objective is to minimize 

the projection errors from the object 3D model to the 

camera images (if there are multiple cameras, all of them 

can be used for refining the object 3D pose, as shown in  

Figure 9, two images are used for projecting). 

 
Figure 9: Projection of object model features to image space 

(only the features from the front part are illustrated as examples). 

 

As long as we know (or have hypothesis of) the camera 

pose relative with the object, we can project the object 

model features to the image planes. The projecting and re-

projecting equations are listed in the following: 

                                                      (4)  

                                           (5) 

                                        (6) 

                               (7) 

where, is the 3D model point, is the corresponding 

image point, and  compose as the camera matrix 

that represents the projective transformation.  ,  are 

computed based on the intrinsic parameters of the camera 

and the camera pose (relative to the object) information. 

One kind of geometric error metric is to compare the 

feature matching between the projected feature locations 

and the image feature locations, e.g. the cost function for 

bundle adjustment: 

    (8) 

Where i is the image index (or camera index) for the 

images used for the pose refinement, j is the part index, and 

k is the feature index;  is binary variable to denote 

whether feature k of part j is visible in image i;  is the 

image feature location detected in image i for feature k of 

part j, and    is the projected location of feature k of part 

j in image i based on the object model and pose information. 

For each point on the part feature, the corresponding 

physical position in the camera coordinate system is 

computed as follows: 

 *                                                       (9) 

 where is one point of the features in part j,  is the 

pose of part j in the object coordinate system, and  is the 

object pose in the camera coordinate system. Applying 

equations 4 and 5 on the transformed feature point (output 

of equation 9) generates . 

Another way is to compare the pixel values between the 

left/right images for the same 3D model feature points: 

                         

                                                                                      (10) 

Where  is the pixel intensity on image i for 

object feature k, and   is the pixel intensity on 

image j for object feature k.   This method can be treated as 

warping one image accordingly and compare with the other 

image with the same object.  Difference computation might 

be based on the normalized intensity.  

The feature locations in image might also be extracted 

using deep neural networks, such as the key points detection 

method used in [11].   

It is also possible to refine the object pose and adjust the 

part-object relationships (  in Sec. 3.4) simultaneously 

for map building. 

Traditionally, these kinds of regression are done using 

nonlinear optimization methods, such as Levenberg-

Marquardt minimization algorithms, and a coarse 3D pose 

can be used as the starting point for the optimization 

procedure.  However, these methods may require feature 

engineering to get the corresponding features among the 3D 

model and every input image with the object.  Deep neural 

networks were proposed for computing the geometric errors 

by training with labelled samples, such as FQNet in [11], 

which learns computing the geometric errors by learning 

from examples without manual feature engineering.  Still it 

requires to compare many samples of the 3D pose 

candidates.  

Therefore, a feasible way is to use an end to end neural 

network to compute the geometric errors (or comparing 

which candidate has better matching), and the minimization 

method will make use of this network for error/cost 

comparison. 



   

 

 

4. Advantages 

The down-sampling step can significantly reduce the 

computation requirements in primary feature detection and 

still obtain the coarse orientation and depth information for 

automatic rectification purpose. The high-resolution pose 

refinement is limited to the regions of objects of interest. 

Based on the insights from analysis of new progress of 

primary features’ detection, object detection and pose 

estimation, we have proposed to apply 

rectification/unwarping operation in regions of interest 

(ROIs) to improve the object/part classification/detection 

performance, and a geometric constraints based pose 

refinement to further improve the locating accuracy.  As 

such, our preliminary analytical model yields up to 3X 

precision improvement via ROI rectification and further 

improvement with geometric constraints (including the 

object-part relations) based pose refinement. 

5. Conclusion 

A hierarchical design is proposed to integrate primary 

features’ detection, 3D-orientation based ROI rectification 

for part detection, building and using object models with 

object-part spatial relationships, and geometric-constraints 

based pose refinement. This novel workflow will make 

good use of the high-resolution images available on modern 

mobile devices, to build maps using objects with better 

semantic meanings and spatial structures and achieve more 

accurate pose estimation and localization. Based on 

analysis of existing works, ROI rectification may improve 

the precision of object detection up to 3X, and object-part 

relationships and 3D structures are used for geometric-

constraints based pose refinement, which may further 

improve the accuracy to another fold. 

  Our staged system design also has the benefits of 

reducing the computing requirement for high-resolution 

images, generating object model with semantic meanings, 

easy troubleshooting and clear explanation of the roles in 

each stage, and will improve immersive user experience of 

AR/MR applications where pose estimation/localization 

accuracy is crucial.  

The proposed hierarchical architecture will potentially 

help in 3D map building and localization based on mobile 

devices and enhance the user experiences and unlock more 

applications. 
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