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Abstract

In this paper, we tackle the challenge for VSLAM of han-

dling non-static environments. We propose to include se-

mantic information obtained by deep learning methods in

the traditional geometric pipeline. Specifically, we com-

pute a confidence measure for each map point as a func-

tion of its semantic class (car, person, building, etc.) and

its detection consistency over time. The confidence is then

applied to guide the usage of each point in the mapping

and localization stage. Points with high confidence are

used to verify points with low confidence in order to select

the final set of points for pose computation and mapping.

Furthermore, we can handle map points whose state may

change between static and dynamic (a car can be parked

or in motion). Evaluating our method on public datasets,

we show that it can successfully solve challenging situ-

ations in dynamic environments which cause state-of-the-

art baseline VSLAM algorithms to fail and that it main-

tains performance on static scenes. Code is available at

github.com/mthz/slamantic

1. Introduction

The accuracy of estimated camera poses in a visual si-

multaneous localization and mapping (VSLAM) algorithm

relies on valid geometric representations of the observed

environment. During operation, a VSLAM algorithm ex-

tends its map (3D scene model) by adding new 3D mea-

surements which are generated by estimating the depth of

image points or areas captured from different viewpoints at

different points in time. If an object has moved in between

these points in time, the triangulation of image points repre-

senting the object does not yield to the correct distance from

the camera and therefore does not lead to the correct camera

pose. Hence, reliable results can usually only be achieved

in static and distinctive (in terms of texture and structure)

environments. This shortcoming is the main challenge for

(baseline) (ours)

Figure 1. A challenging scenario for VSLAM caused by dynamics:

The car with the observing camera is approaching a truck which

has stopped at a crossing (left). When the truck gradually starts

moving, the baseline VSLAM (middle) fails because it wrongly

estimates a backward motion. Using semantics, our proposed ap-

proach (right) is able to cope with such situations.

VSLAM algorithms in real-world scenarios.

In order to cope with dynamic scenes, many algorithms

assume that image points originating from static scene el-

ements are dominant. Such approaches do not treat image

points from dynamic elements separately, but assume that

these points violate the geometric model and can therefore

be classified as outliers in the pose estimation or bundle ad-

justment step and, hence, excluded from further computa-

tion.

In the presence of minor dynamic objects such as a single

car or a person within texture-rich environments, the dom-

inant static scene assumption combined with RANSAC-

based outlier detection is often sufficient. Traditional ap-

proaches start to fail when dynamic 3D-points become

dominant. Particular problems arise in scenes where ob-

jects are first considered as static, which allows 3D-points

from these objects to become an integral part of the map,

and becoming gradually dynamic afterwards. An illustra-

tive example of such a scenario is shown in Figure 1, where

a car is approaching a truck that has stopped at an inter-

section. When the truck starts moving again, the rear car

falsely interprets this as backward motion.

Advances in scene understanding, especially semantic

segmentation [13], enable new strategies for overcoming



this problem. A popular one is to use semantic infor-

mation to mask out classes which are assumed to be dy-

namic, such as persons or cars [3, 14, 2]. However, parked

cars are a valuable source, in some cases even the primary

source, of high-quality 3D-points for local odometry es-

timation. Furthermore, semantic information may not be

available at camera framerate or not always provide accu-

rate data. If an image region is assigned to a wrong seman-

tic class, it could be unnecessarily excluded from the pose

estimation which can be critical in sparsely textured envi-

ronments. The current solution to this problem is to explic-

itly detect motion [25] within the scene using, e.g., optical

flow [1, 21, 32].

Contrarily, we propose a novel way of tackling this chal-

lenge by integrating semantic information into geometric,

feature-based VSLAM methods without the need for mo-

tion detection. We combine semantic class label assign-

ments with map point observation consistency in order to

estimate a reliability measure for each 3D-point and utilize

it during the pose estimation and map optimization steps.

Furthermore, our method is able to handle hybrid cases such

as cars and does not require the availability of semantic la-

bels for each individual frame.

We evaluate our approach on a representative selection

of difficult scenarios identified in public datasets. We show

that our method is able to cope with dynamic environments

and particularly challenging situations that cannot be han-

dled by the current state-of-the-art, while maintaining per-

formance in predominantly static environments. We im-

plemented our approach on top of ORB-SLAM2 [20], and

make our available at github.com/mthz/slamantic.

2. Related Work

VSLAM algorithms can be seen as a mature research

field, since the technology has proven itself in numerous

real-world applications, such as mobile robotics. Tradi-

tional VSLAM methods are either based on feature match-

ing [15, 20], image alignment [9], or patch alignment [10,

8]. To reduce drift and to directly recover scale, some meth-

ods integrate inertial measurements [4, 16], [23, 22] or uti-

lize learning-based techniques [29, 30, 18]. A more com-

prehensive overview about the past, present, and future of

SLAM is given by Cadena et al. [6].

While impressive results have been achieved in con-

trolled environments with slowly moving cameras, more re-

search is required to increase robustness in less constrained

environments. Saptura et al. [25] present a thorough sur-

vey of VSLAM in dynamic environments and explain in

detail multiple ways of addressing this problem. A popu-

lar method of dealing with scene dynamics in VSLAM is

to detect and exclude motion within an image. This can be

done with optical flow [1, 21, 32], optical flow + semantic

labeling [33], deep learning [31] or background subtraction

methods [28, 17]. Other methods rely on multiple inde-

pendent cameras [35] or RGBD data [19]. Contrarily, our

approach does not need explicit motion detection within the

image itself, but uses semantic information to compute the

confidence of a 3D-point regarding its dynamics. In the fol-

lowing, we highlight the most important works which we

consider relevant for our method.

DynaSLAM [3] first uses instance segmentation to mask

out potential dynamic objects and then performs a geomet-

ric motion detection step on the remaining static scene el-

ements. This allows to cope with situations where classes

that are considered to be static are actually moving (e.g. a

book which is carried). In contrast, our approach is mo-

tivated by the inverse case of using potentially dynamic

classes while actually being static (e.g. a parked car). This

allows us to maximize the area of the image being used for

VSLAM. In particular, we do not need an additional motion

detection step but we are able to leverage the implicit ge-

ometric verification of VSLAM. Contrary to DynaSLAM,

our approach adds only a couple of milliseconds to the over-

all processing time.

In the work of Kaneko et al. [14], semantic classes are

used to mask-out features which are labeled as sky or car.

Their main motivation is to better distribute features within

scenes which are static and rich in visual information. The

method relies on perfect semantic labeling of the input im-

age and was tested only on synthetic data.

Barnes et al. [2] show a method for robust monocular

visual odometry in urban environments. They compute a

map without dynamic objects using multiple scene traver-

sals. This static-only map is used to train a convolutional

neural network (CNN) which infers a mask that is used

to differentiate between long-term static and dynamic ele-

ments. While this work presents a very interesting approach

to handle dynamic scenes with machine learning, it requires

multiple 3D mapping runs in the target environment and it

cannot distinguish between, e.g., parked and moving cars.

Rosen et al. [24] proposes a bayesian filter with a sur-

vival time prior for each 3D-point. They suggest using

semantics to select an empirically characterized prior for

a particular class. This is comparable to our approach of

defining a class-specific dynamics factor. While their main

goal is to estimate a long-term probability for a 3D-point,

our approach aims to improve online VSLAM and the con-

sideration of state changes during observation.

To the best of our knowledge, none of the existing meth-

ods is able to handle hybrid cases without explicit motion

detection, which is one of the main contributions of our ap-

proach.

3. Semantic VSLAM

We aim to improve the performance of feature-based

monocular or stereo VSLAM in dynamic environments. In



a feature-based VSLAM such as [20], the world is repre-

sented as a graph consisting of frames and 3D-points as

nodes with their observations as edges. This graph is op-

timized by minimizing the reprojection errors of the obser-

vations. In the case of erroneous correspondences or scene

structure changes caused by dynamic elements, the repro-

jection error increases. If the error is above a certain thresh-

old, the 3D-point is labeled as an outlier and consequently

removed.

More precisely, a central assumption is that the more

often a 3D-point passes the optimization and implicit geo-

metric verification process, the higher is the probability that

this point is reliable. Thus, too many violations of this as-

sumption will very likely cause VSLAM to fail. We suggest

solving this problem by introducing a confidence measure

df ∈ R[0, 1] for each 3D-point which reflects the uncer-

tainty caused by dynamics in the scene and we call it the

dynamics factor. It will be used during pose estimation to

differentiate static from potentially dynamic and dynamic

3D-points under consideration of their semantic class as-

signment.

As mentioned above, the number of observations over

time of the same 3D-point is a powerful measure of the re-

liability of the point. Instead of just counting the observa-

tions, we suggest using them to adjust the confidence of a

3D-point being static depending on the associated semantic

class. Intuitively, classes such as road or building are con-

sidered to be more likely static and need fewer observations

than 3D-points from people or classes such as cars which

are considered hybrid.

The dynamics factor df is defined as

df = max(dfobs + s · dflabel, dflabel, 0) (1)

and consists of three components. The first is the main

component which depends on the number of observations

(dfobs) and semantic (dflabel) information associated with a

3D-point. The scalar s allows the scaling of the influence

of the semantic information. By applying the maximum

function, term dflabel imposes a semantic class dependent

lower-bound to cope with hybrid classes. The third compo-

nent ensures that df does not become negative.

Observation Term The term dfobs includes the obser-

vation information of a 3D-point. It lowers the value df
with an increasing number of observations which indicates

a higher probability of a point being static. We model this

with

dfobs(Nobs) = −
Nobs(Nobs − 1)

k
+ d, (2)

where Nobs is the number of observations, k ∈ R > 0 is

an arbitrary scalar defining the declination rate, and d is set

to the desired value at Nobs = 1. Because the first observa-

tions are the most critical with the highest uncertainty, we

select a quadratic function to gradually adjust the dynam-

ics factor df while enabling a fast convergence to its lower-

bounds. The line “no label” in figure 2 shows the curve of

the function dfobs for k=20 and d=0.5. A low k would delay

the use of the 3D-point while a high value would result in its

immediate use. A good choice lies in between because a 3D

point should become part of the potential-dynamic group

while it is still observed. We set the declination parameter

k of the observation term dfobs to 20 to achieve a saturation

at around 4 observations. All mentioned parameters were

kept constant throughout all experiments.

Semantic Term The term dflabel integrates the semantic

class information into the dynamics factor df . The seman-

tic information consists of a set of labels such as person,

car, road or building. Table 1 shows the label set of the

Cityscapes [7] and Virtual-KITTI [11] datasets.

While the dynamics assignment of classes such as

person and building appear clear, hybrid classes exist

which can be both static or dynamic. For example, in

the case of autonomous driving and a front-facing cam-

era, moving cars are an erroneous source whereas parked

cars are often the primary source of high-quality 3D-points.

Therefore a binary classification between static and dy-

namic based on the semantic class, which is used in mask-

out approaches such as [2, 14, 3], is not sufficient, which

motivates our hybrid approach. For each semantic class,

we specify the assumed dynamics using the factor ldL ∈

R[−1, 1] (label dynamics factor). It describes the likelihood

of a label to originate from a static (ldL < 0) or dynamic

(ldL > 0) object. Our label dynamics factor assignments

are also shown in Table 1. The assignment is based on the

nature of the class since it roughly categorizes available la-

bels. It was kept constant through all experiments.

A further aspect which has to be considered is that the

semantic label may not always be correctly detected. Thus,

we introduce the label consistency lc ∈ R[0, 1] for each 3D-

point as

lc =

{

lpL Nobs = 1
NL

Nobs

Nobs ≥ 2
, (3)

where lpL is the label probability obtained from the seman-

tic labeling which we use as initialization value for a 3D-

point with a single observation. In the case of multiple ob-

servations, we define the consistency being the ratio of the

number of observations NL in which the 3D-point is as-

signed to a label and the number of total observations Nobs.

If the ratio is below 50%, we initiate a re-labeling which

selects the label with the most occurrences.

This leads to the final semantic term

dflabel = ldL · lc. (4)

Summarizing, in the first term of Equation 1 the semantic



term dflabel adjusts the base function dfobs according to the

label dynamics factor ldL and its label consistency lc. To

allow a distinction between static and hybrid classes, a se-

mantic class dependent lower-bound is imposed with dflabel
in the second term of Equation 1.

3D-Points Grouping By using the dynamics factor df ,

we aim to differentiate 3D-points based on their estimated

level of dynamics. A 3D-point originating from a pedes-

trian is considered a non-reliable source of geometric scene

information. Contrarily, a point corresponding to a building

or pole will not move during observation and is thus as-

sumed to be reliable. 3D-points from hybrid classes, how-

ever, can be either static or dynamic and might change their

state during observation. This motivates to split the 3D-

points into three groups based on their computed dynamics

factor df :

df ≤ 0.25 static (S),

0.25 < df ≤ 0.5 static-dynamic (SD),

df > 0.5 dynamic (D).

(5)

Figure 2 shows examples of the dynamics factor df com-

putation on a static (house, ldL=-1), hybrid (car, ldL=0.5)

and dynamic (person, ldL=1) class with a low (Llc) and

high (Hlc) label consistency lc. In this example, the seman-

tic labeling sequence for Hlc labeled lines is L,L, L, L, L
with L denoting a correct label assignment. The low con-

fident lines Llc are assigned a labeling sequence which

includes occurrences of a wrong label O and are set to

L,O,L,O, L. The example uses a declination factor of

k=20, the value for dfobs(1) is set to 0.5 (d=0.5) and the se-

mantic influence factor to s=0.5. The group definition from

Equation 5 is visualized as background color in Figure 2

(green=static, blue=static-dynamic, red=dynamic).
Without a specific label assignment, df starts at the

upper-bound of the static-dynamic group and with an in-

creasing number of observations it may change to the static
group. In case of a 3D-point of label house with its cor-

responding label dynamics factor (ldL=-1), the 3D-point

is initially part of the group static but it might tempo-

rally switch to other groups due to inconsistent label assign-

ments. Contrarily, a 3D-point of label person with a high

dynamic assumption (ldL=1) remains within the dynamic
group. In hybrid cases such as car, the 3D-points are first

assumed to be dynamic and change their group assignment

to static-dynamic with an increasing number of consistent

observations. The lower-bound imposed by dflabel prevents

3D-points of this group from being classified as static.

Dynamics Factor Application The three groups are used

for pose estimation performed during the tracking stage of

VSLAM as indicated in Figure 3. In the first step, the
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Figure 2. Examples of dynamics factor (df ) computation: no label,

static (house), hybrid (car), and dynamic (person). Hlc means high

and Llc means low label consistency lc. The background color

refers to the group definitions of static (green), static-dynamic
(blue) and dynamic (red). Persons remain in the dynamic group.

Cars move to and remain in the static-dynamic group with an

increasing number of observation. 3D-points from houses require

fewer observations to become part of the static group.

matches between 2D image features and 3D-points are split

into static, static-dynamic and dynamic, according to

their dynamics factor df . The static group is used to es-

timate an initial pose. With this pose, the matches of the

static-dynamic group are validated based on the reprojec-

tion error. The final pose is computed using matches be-

tween pixel locations from the group static and valid 3D-

points from the group static-dynamic.

Since the dynamics factor df has a lower-bound on

the semantic term dflabel, a hybrid class such as car re-

mains in the static-dynamic (or dynamic) group. The

static-dynamic group allows to cope with situations where

3D-points from hybrid classes have become a valid geo-

metric part of the map (e.g. parked car) but change their

state within the mission (e.g. car starts moving). Further-

more, this allows accurate pose estimation even in cases

with fewer matches from static than dynamic 3D-points,

where RANSAC-based algorithms fail.

If a frame is selected for keyframe computation (map-

ping), all dynamic matches are additionally validated to

allow the mapping algorithm the generation of new obser-

vations and therefore update of the dynamics factor df .

If too few matches from static 3D-points are available

for computing a pose, or if the pose estimation does not

succeed, the algorithm tries to estimate the pose with the

static and static-dynamic matches without validation. If

the pose estimation still does not succeed, the pose is esti-

mated without considering the dynamics factor.

4. Experimental Evaluation

Datasets VSLAM algorithms are often evaluated on a se-

lection of well-known datasets such as KITTI [12], TUM-
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Figure 3. Schematic overview of the proposed integration of se-

mantic information (purple) into a feature-based VSLAM.

RGBD [26] or EuRoC [5]. However, since these datasets

and benchmarks were designed to evaluate traditional ap-

proaches and were recorded in static or low-dynamic en-

vironments only, they rarely cover scenarios which violate

fundamental assumptions of traditional VSLAM. Hence

there is limited data with ground truth available that con-

tains test cases which can be used for quantitative evalua-

tion of our semantic VSLAM approach. For example, the

well-known KITTI-Odometry benchmark dataset only con-

tains very few sequences with persons or moving cars which

therefore are not suited to evaluate our approach. Only

TUM-RGBD contains a few explicit dynamic scenes, which

we use for comparison with the state-of-the-art in Sec-

tion 4.3. As a consequence, we selected the Cityscapes [7]

dataset as our primary dataset for evaluation in the target

domain because it contains complex dynamic scenes.

We started by using the synthetic dataset Virtual-

KITTI [11] (VKITTI1) to test concept and implementation.

For real-world experiments, we provide a qualitative anal-

ysis using hand-picked short sequences of the Cityscapes

dataset, where traditional VSLAM algorithms completely

fail and a quantitative evaluation on the full Cityscapes se-

quence recorded in Frankfurt.

In order to compare our method with the related work,

on the one hand we use the dynamic scenes of the TUM-

RGBD dataset, and on the other hand we use the primarily

static environment of the KITTI dataset.

Semantic Labeling The goal of semantic labeling is to

assign a class label for each pixel of an input image. Our

semantic labeling module is based on the implementation of

Yu et al. [34]. Their concept of Deep Layer Aggregation in-

cludes an efficient scale space integration, while simultane-

ously reducing the number of network parameters. We ap-

plied the provided dla-34 model with a down-sampling rate

of 2, trained and validated it on the 3475 densely labeled

1https://europe.naverlabs.com/research/computer-vision/proxy-virtual-

worlds/

Label ldL

Road, Building, Traffic Sign, Traffic Light, Pole,

Guard RailV , WallC , FenceC , SidewalkC
-0.5

Terrain, Vegetation, TreeV -0.2

Sky, VoidC , UndefinedV , MiscV 0

Truck, Car, VanV , BusC , TrainC , MotorcycleC ,

BicycleC
0.5

PersonC , RiderC 1.0

Table 1. Label dynamics factor (ldL) assignment to the seman-

tic classes of the Virtual-KITTI [11] and Cityscapes [7] datasets.
CCityscapes only. V Virtual-KITTI only.

images of Cityscapes. The model distinguishes between 19

semantic labels (Table 1) and achieves a mean-intersection-

over-union (mIoU) score of 75.1 on the Cityscapes valida-

tion data [34]. The algorithm performs at an average pro-

cessing speed of 8.9 fps on a single NVIDIA GTX 1080 Ti.

Note that experiments on the TUM-RGBD dataset were per-

formed using MaskRCNN [13] for semantic segmentation

because our dla-34-based model is not trained for indoor

scenes.

Figure 6 shows qualitative semantic labeling results on

sequence B and D. While sequence B depicts a high la-

beling accuracy and is representative for most frames of the

Cityscapes dataset, D shows an extreme failure case. This

is caused by the advertisements painted on the tram. To

cope with these cases, our method does not rely on single

label assignments but utilizes a consistency value which is

updated over time (Equation 3) as well as the observation

information of 3D-points (Equation 2). Additionally, we

normalize the labeling scores to generate a probability map

for initialization (lpL in Equation 3).

VSLAM Methods For easy comparison with the state

of the art, we implemented our method on top of ORB-

SLAM2 [20]. All our evaluations are conducted using a

stereo- or RGBD-VSLAM setup. However, our semantics-

based approach can be applied to monocular input data as

well. In our experiments the semantic labeling is performed

on the left camera image only.

4.1. Virtual-KITTI

We selected the scenes 18 and 20 from the synthetic

dataset Virtual-KITTI [11] representing interesting exam-

ples of our target domain of dynamic environments in au-

tonomous driving, namely road scenes with dense traffic.

Figure 4 shows exemplary frames of the sequences. The

unmodified VSLAM (baseline) algorithm (ORB-SLAM2)

was able to compute a pose for all frames of the sequences

and does not indicate an erroneous behaviour. However, the

comparison with the ground truth reveals a significant drift.

Figure 5 shows a bird’s-eye view of the sequences compar-



Scene 18 (339 frames)

Scene 20 (837 frames)

Scene 01 (447 frames)

Figure 4. Exemplary frames of scenes in variation “clone” from

the Virtual-KITTI [11] dataset. Scene 18 and 20: dense highway

traffic. Scene 01: mainly static environment.

ing ground truth (gt), baseline VSLAM (b) and ours (df ).

Especially in Scene 20, the difference between the ground

truth and the baseline VSLAM is visible while our proposed

method df aligns closely to the ground truth.

Table 2 shows the results using the metrics of the KITTI

odometry benchmark tools [12] and absolute trajectory er-

ror (ATE) from TUM-RGBD benchmark tool [27]. The fig-

ures confirm the plots in Figure 5. For Scenes 18 and 20 we

achieved an improvement on the translational trans.err.
and rotational rot.err. with the applied dynamics factor df .

The scenes provide only minor rotational movements, hence

the generally low rotational error. Since ground truth se-

mantic labels are available, we compute a lower-bound for

our approach (m) by masking-out all image areas labeled

as car (because these are the only dynamic areas in Scenes

18 and 20). The result confirms our assumption that pose

estimation is more likely to fail in the presence of dynamic

objects.

We also evaluated our approach on Scene 01, which

mainly consists of static objects except for a few non-

dominant oncoming and crossing cars, hence the low er-

ror in Table 2. In Scene 01, one of the primary sources

for good and valid 3D-points are parked cars. This obser-

vation is confirmed by the increased translational error as-

sociated with the VSLAM configuration with masked-out

cars (m) compared to the baseline (b). Since only negligi-

ble dynamic elements are present, we do not expect a ma-

jor difference between the baseline VSLAM (b) and applied

dynamics factor (df ). Because 3D-points from cars require

more observations to become valid and reliable 3D-points,

we expect a slightly worse performance on the error met-

rics in this scene. The results in Table 2 support this expec-

tation, which shows that our method does not significantly

influence the performance in static environments while be-

ing able to successfully handle highly dynamic scenes.

4.2. Cityscapes

The Cityscapes [7] dataset provides sequences from a

car equipped with a stereo-camera, GPS and car-odometry
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Figure 5. Bird’s-eye view (X/Z plot) of Scene 18, 20 and 01 from

the Virtual-KITTI [11] dataset. Dense traffic in sequence 20 in-

duces drift in the baseline VSLAM (b). The VSLAM with applied

dynamics factor (df ) produces less drift and aligns closer to the

ground truth (gt).

trans.err. rot.err. ATE rmse
/% / deg

100m
/m

Scene18

b 0.60 0.13 1.19

df 0.22 0.15 0.37

m 0.22 0.12 0.34

Scene20

b 6.95 0.61 33.69

df 1.66 0.20 8.63

m 1.44 0.23 6.92

Scene01

b 0.34 0.15 0.88

df 0.40 0.16 0.96

m 0.54 0.21 1.29

Table 2. Relative translational, rotational and absolute trajectory

error on the primarily dynamic scenes 18, 20 and the primarily

static scene 01. Results are average of 6 runs.

(speed) captured in German cities. As opposed to the

Virtual-KITTI dataset, Cityscapes features more challeng-

ing scenes including pedestrians and occurrences of ob-

jects which become dynamic during observation such as

the example from Figure 1. For our evaluations, we use

the Frankfurt stereo sequence consisting of approximately

100k frames. Its GPS trajectory is shown in Figure 9.

Figure 6 shows frames of four short sequences for qual-

itative analysis where, caused by the static-environment as-

sumption, the baseline VSLAM was not able to estimate a

valid trajectory. Figure 7 plots the bird’s-eye view of the es-

timated car trajectories, while Figure 8 compares the ground

truth and estimated speed derived from the VSLAM tra-

jectory. In Sequence A (frame 42400-43400), which was

presented in the Introduction, the test-car equipped with a

stereo camera approaches a traffic-light controlled cross-

ing and stops behind a truck. While the car is approach-

ing and the truck becomes the dominant scene object within

the camera image, 3D-points originating from the truck are

added to the map. After the traffic light turns green, the

truck starts moving forwards. Since the 3D-points of the

truck are part of the map, the baseline VSLAM (b) es-

timates a backward motion as shown in Figure 7 and 8.

In sequence B (frame 13110-13400) a car is waiting at a
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Figure 6. Extracted frames of the selected Cityscapes [7] se-

quences with exemplary semantic labeling result.
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Figure 7. Extreme VSLAM failure cases from Cityscapes [7].

Bird’s-eye view of the VSLAM pose estimation. The baseline (b)

estimates an implausible trajectory. The VSLAM with applied dy-

namics factor (df ) produces a more probable trajectory.

crosswalk. While the pedestrians do not significantly in-

fluence the pose estimation, the oncoming left-turning car

becomes the dominant scene element and the VSLAM er-

roneously estimates a left-motion. In sequence C (frame

55050-55400), the car makes a right turn in front of a group

of walking pedestrians which falsely becomes part of the

map and consequently cause a slight trajectory shift. In se-

quence D (frame 76000-76300), a tram is crossing in front

of the car and completely corrupts the pose estimation.

As demonstrated in Figures 7 and 8, these situations can

be successfully handled by our proposed approach. Unfor-

tunately, the Cityscapes dataset provides no accurate 6 DOF

ground truth to show quantitative results with standard tra-

jectory metrics. Leveraging the fact that the dataset pro-

vides ground truth data for speed, we derive the speed of the

VSLAM trajectory and compute the direction by consider-

ing movements towards the optical axis as forward. Figure 8

shows the speed comparison with reference data where the
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Figure 8. Failure cases from Figure 7 of the baseline VSLAM (b)

with comparison to ground truth speed. Our applied dynamics

factor (df ) aligns closely to the ground-truth (gt).

Cityscapes verr/
m

s
rmse std

b 0.448 0.420

df 0.176 0.125

m 0.188 0.134

Table 3. RMSE and standard deviation of the velocity error verr
(N = 99971) on the Frankfurt sequence of the Cityscapes dataset.

erroneous pose estimation from the baseline VSLAM b is

clearly visible.

In Figure 10 we compare the VSLAM trajectory of

the complete sequence by using the speed ground truth.

Because of timing and synchronization issues within the

dataset, we split the sequence into 3 sub-sequences, re-

moved error values with invalid time differences (time dif-

ference of consecutive frames less than the camera frame

rate) and computed the rolling average of 6 frames. In case

of a complete pose estimation failure (VSLAM lost track-

ing), we re-initialized the VSLAM. We display the compar-

ison as histogram similar to the method of [2]. The vertical

axis of the speed error histogram in Figure 10 is normal-

ized and uses a logarithmic scale to emphasize rare erro-

neous measurements. In Table 3, which shows statistical

properties of the speed errors, it can be seen that the base-

line VSLAM (b) has more cases of large errors than our

method (df ). Additionally we computed the speed error

with the semantic mask-out approach (m). As expected,

the error is larger than with our dynamics-factor approach.

This confirms our assumption, that parked cars are an im-

portant source for 3D-points. During execution, only our

method df was able to provide continuous pose estimation

without re-initialization. The main reasons which caused

re-initialization of baseline VSLAM b were scenes such as

shown in Figure 7. The mask-out approach m lost track on

texture-less scenes with parked cars as the main content of

the scene. This again highlights the importance and contri-

bution of our method.



Figure 9. GPS trajectory of Cityscapes Frankfurt. Sequence starts

on the green marker. Color represents continuity. Map: c© Open-

StreetMap contributors

Figure 10. Speed error histogram. Our method df has fewer errors

compared to the baseline b and mask-out only approach m.

4.3. Comparison with the State of the Art

We compare our method with DynaSLAM [3], which is

most relevant to our work, on the TUM-RGBD as well as

the KITTI dataset.

The comparison on TUM (Table 4) shows that Dy-

naSLAM and our approach perform similarly (with a small

advantage for DynaSLAM) in terms of the absolute trans-

lational error. Both methods significantly outperform the

baseline (ORB2). However, as can be seen on the bottom

of Table 4, our approach is significantly faster than Dy-

naSLAM, which makes it suitable for real-world applica-

tions. Unfortunately, the TUM-RGBD-dataset does not fea-

ture scenes to showcase our main contribution, the distinc-

tion between dynamic and potential-dynamic 3D-points.

The evaluations on KITTI (Table 5) show that our ap-

proach, as well as DynaSLAM, perform similar to the base-

line method. This is not surprising since the sequences do

not contain many dynamic scenes, which our algorithm has

been specifically designed to cope with. These experiments

demonstrate that our method does not overfit on a small

set of test cases and does not critically decrease the per-

formance in static environments.

5. Conclusion

In this paper we tackled the challenge of dominant dy-

namic environments for feature-based VSLAM. We pro-

posed to integrate semantic information as well as observa-

tion consistency to estimate the dynamics of a scene point

which enables explicit handling of dynamic areas without

the need of additional motion detection. In tests on syn-

thetic and real-world data, (i) our method is able to cope

TUM ORB2 Dyna Ours MR MS DE DS

[20] [3] [28] [32] [17] [33]

ATE rmse/m

w hlf 0.351 0.025 0.027 0.125 0.055 0.049 0.030

w xyz 0.459 0.015 0.016 0.093 0.040 0.060 0.025

w rpy 0.662 0.035 0.043 0.133 0.076 0.179 0.444

w sta 0.090 0.006 0.008 0.066 0.024 0.026 0.008

s hlf 0.020 0.017 0.016 0.047 - 0.043 -

s xyz 0.009 0.015 0.012 0.048 - 0.040 -

Tracking/ms

med 28 53 34 - - - -

mean 30 1446 35 - - - -

Table 4. ATE on dyn. sequences of the TUM RGBD dataset [26].

Mean (N=10) or from respective paper. Tracking time refers to

the tracking thread per frame (excl. semantic labeling).

KITTI trans.err./% rot.err./deg/100m

Seq. ORB2 Dyna Ours ORB2 Dyna Ours

0 0.70 0.74 0.71 0.25 0.26 0.25

1 1.39 1.57 1.54 0.21 0.22 0.23

2 0.76 0.80 0.78 0.23 0.24 0.24

3 0.71 0.69 0.75 0.18 0.18 0.20

4 0.48 0.45 0.49 0.13 0.09 0.17

5 0.40 0.40 0.40 0.16 0.16 0.16

6 0.51 0.50 0.50 0.15 0.17 0.15

7 0.50 0.52 0.55 0.28 0.29 0.30

8 1.05 1.05 1.05 0.32 0.32 0.32

9 0.87 0.93 0.86 0.27 0.29 0.25

10 0.60 0.67 0.62 0.27 0.32 0.29

Table 5. KITTI [12] relative errors of ORB2 [20], DynaSLAM [3]

and ours (mean, N=10). Dataset consists primarily of static env.,

hence minor differences between algorithms.

with challenging scenes where traditional VSLAM meth-

ods fail, and (ii) it maintains performance on static scenes.

A limitation of our method may arise when static assumed

objects are actually in motion such as a building painted on

a moving car. As a future work, this could be solved by

including further geometric plausibility checks.
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