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Abstract

The task of virtually reassembling an axially symmetric

pot from its fragments can be greatly simplified by utiliz-

ing the constraints induced by the pot’s axis of symmetry.

This requires accurate estimation of the axis for each sherd,

whose 3D data typically contain gross outliers arising from

surface artifacts, noisy surface normals and unfiltered data

along the break surface. In this work, we propose a simple

two-stage robust axis estimator, PotSAC, which is based on

a variant of the random sample consensus (RANSAC) al-

gorithm followed by robust nonlinear least squares refine-

ment. Unlike previous work which have either compensated

the axis estimation accuracy for robustness against outliers

or vice versa, our method can handle the aforementioned

outlier sources without compromising its accuracy. This is

achieved by carefully designing the method to combine and

extend the advantage of each key prior work. Experimen-

tal results on real scanned fragments demonstrate the effec-

tiveness of our method, paving the way towards high quality

reassembly of symmetric potteries.

1. Introduction

Axially symmetric pots are one of the most dominant

sources of cultural heritage excavated in East Asia. How-

ever, they are found as a large volume of scattered broken

pieces, which are gathered, cleansed and reassembled by

restoration professionals. The manual process often han-

dles tens of pieces with a considerable amount of time, and

sometimes incur undesired damages on the fragments. Fur-

thermore, the current practice of the manual method can-

not scale to hundreds or thousands of pieces, as the num-

ber of possible configurations significantly increases. This

has motivated researchers towards developing an automatic

virtual reassembly algorithm given 3D scanned pot frag-

ments [19, 15].

Given two pieces of fragments from the pottery, a

naive reassembly tries full rigid transformation between

them, which can be non-trivial without good pose initial-

ization [2]. Fortunately, due to the innate rotational sym-

Figure 1. Accurately estimated axes of symmetry can simplify

the virtual reassembly of symmetric pots. The image above left

shows a manually reassembled pottery, while the image above

right shows the top view of a possible configuration after aligning

individual axes of symmetry obtained using PotSAC. Our method

provides highly accurate initialization for virtual reassembly of

real symmetric-pot fragments.

metry of these potteries, degrees of freedom can be sig-

nificantly reduced at most to 2 (compared to 6) with a

sign ambiguity along the axis. Existing virtual re-assembly

works [19, 15] have attempted to take advantage of this

symmetry by proposing their own axis estimation methods

and simplifying the merging process.

In this paper, we propose PotSAC, a two-stage robust

axis estimation method that takes in a noisy point cloud and

surface normals of a pot fragment and outputs a feasible

axis of symmetry in most cases. Our algorithm is largely

inspired by the success of the random sample consensus

(RANSAC) framework [6, 16] and robust nonlinear least

squares optimization [17, 1] in computer vision. In devising

our algorithm, we have carefully reviewed prior work (see

Sec. 2) to selectively gather the advantage of each method’s

problem formulation. It will be shown in Sec. 5 that Pot-

SAC can retrieve precise and visually convincing axes for a

range of different sherds.

While our method is not the first work to incorporate

RANSAC for axis estimation, previous work [15] have only

applied it to a circle fitting-based approach, which discards

potentially useful surface normal data and achieves lower

accuracy. We believe this is the first work presenting a



Figure 2. An illustration of the underlying geometry of a symmet-

ric pot. v̂ and u represent the direction and offset of the symmetric

axis respectively, pi is the location of a surface point i and n̂i is

the surface normal at pi. u is the axis offset perpendicular to v̂

and ci is the point along the axial line toward pi. Each symbol

with a hat sign is normalized.

RANSAC-initiated algorithm that utilizes surface normal

data, which can provide strong geometric constraints as will

be reviewed in Sec. 2.

Our development of PotSAC has led to the following

specific contributions:

+ Extension of Cao and Mumford [3]’s geometric con-

straint (see Sec. 2.2) to consider both inner and outer sur-

faces while maintaining differentiability. This extended

residual is utilized for MLESAC [16] and nonlinear re-

finement.

+ Development of an efficient 6-point minimal axis estima-

tor based on Pottmann et al.’s coplanarity constraint (see

Sec. 2.1) for use with a RANSAC-based framework.

+ Trust region-based robust nonlinear axis refinement in-

corporating the manifold structure of the axial line.

+ Experimental comparisons against other axis estimation

algorithms on synthetic and real datasets.

Conversely, there are limitations to this work. We do not uti-

lize information associated with the axis profile curve (de-

fined as the curve along the revolutional rz-plane), which

can provide additional useful geometric constraints but re-

quires further assumptions on the curve shape. We leave this

task of integrating constraints from the axis profile curve

into the RANSAC framework for future work.

The structure of this paper is as follows: we review rel-

evant literature in Sec. 2, and propose a modification to a

previously used cost function in Sec. 3, which allows con-

sideration of both inner and outer fragment surfaces. We

illustrate our proposed method in Sec. 4. Experimental re-

sults and discussions are provided in Sec. 5 followed by

conclusions in Sec. 6.

2. Review of known approaches

We start by reviewing known methods for axis estima-

tion which form the basis of this work (refer to Fig. 2 for

symbols).

2.1. Pottmann et al.’s method

Two decades ago, Pottmann et al. [14, 13] presented a

pioneering work on axis estimation of symmetric-pot frag-

ments. They proposed an algebraic constraint (termed mo-

ment) for a more general type of surfaces defined as the

linear complex, which includes surfaces generated through

rotational, helical and translational motions. For the rota-

tional (symmetric-pot) case, Cao and Mumford [3] showed

this can be viewed as a coplanarity constraint of three vec-

tors, namely the position vector of a surface point with re-

spect to a predefined point along the axis (e.g. pi − u), its

corresponding surface normal n̂i and the axis direction v̂.

i.e.

(v̂ × n̂i) · (pi − u) = 0 ∀ i ∈ Ω. (1)

Using (a× b) · c = (b× c) · a = (c× a) · b yields

(n̂i × pi) · v̂ − (u× v̂) · n̂i = 0 ∀ i ∈ Ω. (2)

(2) is nonlinear due to the inherent bilinearity between v̂

and û and the underlying spherical manifold of v̂.

Pottmann et al. [14] presented some tricks for refor-

mulating (2) as simpler quadratic constraints. First, since

u ⊥ v̂ from Fig. 2, one can introduce a new variable

w := v̂ × u to make (2) linear in w. (note u = v̂ × w).

Second, v̂ can be replaced with its unnormalized counter-

part v by adding a unit norm constraint on v. Combining

these transforms (2) to

(n̂i × pi)
⊤v + n̂⊤

i w = 0 ∀ i ∈ Ω s.t. ‖v‖
2

2
= 1.

(3)

Last, by defining z := [v ; w], (3) can be rewritten as

z⊤ J
⊤
J z =: z⊤ M z = 0 s.t. z⊤Dz = 1, (4)

where J ∈ R
|Ω|×6 is defined as a row stack of Ji :=

[(n̂i × pi)
⊤ n̂⊤

i ] ∀ i ∈ Ω, M := J⊤J, and D ∈ R
3×3

is a diagonal matrix comprising entries [1, 1, 1, 0, 0, 0].
In practice, measurement noise invalidates the equality

in (4), and we therefore minimize z⊤ M z over z subject to

z⊤Dz = 1, which is essentially a generalized eigenvalue

problem det(M − λD) = 0 that can be solved in closed

form [14].

The main advantage of this algorithm is its insensitive-

ness to initialization. However, it can output a biased model

due to the algebraic nature of the minimized objective,

which lacks geometric consideration of the measurement

noise.

2.2. Cao and Mumford’s method

A few years later, Cao and Mumford [3] argued (1) on

its own is not strong enough to prevent degenerate solu-

tions, and one should incorporate the length constraint on



the radius of curvature for each surface point. From Fig. 2,

we can see that the radius of the horizontal circle crossing

point i at its boundary, ri is ‖(pi − u)× v̂‖
2
. This means

the length of the line joining pi and its center of (spherical)

curvature is ri/ ‖v̂ × n̂i‖2, and therefore the center of the

curvature, ci, should lie at

ci(u, v̂) := pi −
‖(pi − u)× v̂‖

2

‖v̂ × n̂i‖2
n̂i ∀ i ∈ Ω. (5)

Ideally, ci−u should be parallel to the symmetric axis, i.e.,

(ci−u)× v̂ = 0, ∀ i ∈ Ω. We define Cao and Mumford’s

geometric residual, εi ∈ R
3, as

εi(u, v̂) := (ci(u, v̂)− u)× v̂, (6)

which can be viewed as the deviation of the center of cur-

vature from the symmetric axis on the (horizontal) xy-plane

(i.e., the left nullspace of v̂). In practice, one may minimize

∑

i∈Ω

ρ
(

‖εi(u, v̂)‖
2

2

)

, (7)

where ρ : R → R denotes a kernel for discarding out-

liers. Cao and Mumford assigned a binary weight on each

residual to discard these outliers [3]. Their method can be

viewed as a primitive variant of iteratively reweighted least

squares (IRLS, see [20] for details) using a non-continuous

kernel (ρ(s) = s if within the inlier threshold, otherwise 0),

adaptive kernel width and inner iterations [1] on the model

variables.

Since (7) is nonlinear, it requires good initialization. Cao

and Mumford obtained this through Pottmann et al.’s algo-

rithm, but we will show empirically in Sec. 5 that this ini-

tialization can fail frequently on real dataset.

2.3. Other methods

Aside from the above methods which lay foundation to

PotSAC, there are two other types of known approaches for

estimating the symmetric axis which we will briefly review

here.

Method based on the axis profile curve: Willis et al. [18]

noted that the surface of an ideal symmetric pottery can be

described by an axis profile curve (APC) on the rz-plane

revolved around the axis of symmetry by 2π. They defined

an objective function, which combines the point-to-surface

distance the normal-to-normal distance on the rz-plane for

each point, and minimized this over the axis parameters

and the APC coefficients in an alternating fashion. Sim-

ilar to Cao and Mumford’s error, this approach relies on

an accurate-enough initialization (e.g., Pottmann’s method

from Sec. 2.1) for it to converge to a good local minimum.

However, its objective does not consider tangential devia-

tions of surface normals.

Methods based on circle fitting: Mara and Sablatnig [9]

proposed a method whereby, for a given direction of the

symmetric axis, a circle template is fit onto each disc, and

the axis is estimated by regressing through the estimated

circle centers. This procedure is repeated for each axis di-

rection drawn uniformly from a unit hemisphere. Son et

al. [15] robustified this scheme by incorporating RANSAC

for both the circle fitting and the final axis regression steps.

The main drawback of these methods is that it discards po-

tentially useful surface normal data. We will show in Sec. 5

that this leads to inferior precision in axis estimation. Addi-

tionally, regressing through the circle centers will generate

an axis different from the sampled (tested) axis, requiring

an iterative approach alternating between circle fitting and

regression of circle centers.

3. Extension of Cao and Mumford’s error

We now propose a modification to the Cao and Mum-

ford’s geometric error that allows utilization of both the in-

ner and outer surfaces of symmetric-pot fragments.

The original error in (6) is sensitive to the sign of the

surface normal direction; as shown in Fig. 2, it only holds

for the outer surface in its current form. Since we have data

containing both the outer and inner surfaces, we need an

objective that can consider both modes of the normal.

One way of achieving the above is by computing (6)

twice for each surface point, first with the original normal

direction and second with its reverse, followed by taking the

minimum of the two. If we call the original (forward) resid-

ual ε+i and define the residual with the reversed normal ε−i ,

then we obtain

min
(

∥

∥

ε
+
i

∥

∥

2

2
,
∥

∥

ε
−
i

∥

∥

2

2

)

. (8)

Since (8) is indifferentiable, we apply the well-known log-

sumexp trick [4, 11] to yield a smooth approximation of (8)

fi := −
1

t
ln

(

∑

s

exp
(

−t ‖εsi‖
2

2

)

)

, (9)

where t ∈ R
+ is a smoothness parameter and s ∈ {+,−}

is a binary sign indicator for the normal direction. One can

immediately see that t → ∞ yields (8). Through empir-

ical studies, we find t = 100 is a suitable choice for our

application, resembling (8) while being numerically stable

with differentiation when measurements are in the order of

millimeters (mm).

4. Proposed method

PotSAC essentially minimizes a robustified version of

our extended Cao and Mumford cost from Sec. 3. i.e., we

solve

argmin
u,v̂

∑

i∈Ω

ρ
(

f2
i (u, v̂)

)

, (10)



Algorithm 1 MLESAC-based axis estimation

1: input: a 3D point cloud with surface normals

2: for k = 1 · · · max iter do

3: Sample and run 6-point algorithm to obtain the axis.

4: Compute total MLESAC(truncated quadratic) cost

5: using our extended Cao and Mumford error metric.

6: end for

7: Select the axis with the lowest cost.

8: output: a 3D line representing the axis of symmetry

where fi is the extended Cao and Mumford cost, u and v̂

represent the axis translation and direction respectively and

ρ : R → R is a robust kernel for removing the effect of

gross outliers. Since (10) is highly nonlinear, it requires

good initialization to converge to a high quality local opti-

mum. PotSAC runs as a two-stage algorithm:

1. Run parallel MLESAC with our 6-point solver to ob-

tain an axis based on our extension extended Cao and

Mumford cost criterion.

2. Refine the axis using a trust-region based nonlinear

least squares optimizer incorporating robustness.

4.1. MLESAC with parallel sampling

Standard RANSAC [6] works by repeatedly performing

fitting a model to a set of random data samples and testing

the model to other unseen data until a model with good con-

sensus is found. A threshold parameter τ ∈ R determines

which data points are inliers, and a model with the largest

number of inliers is selected. Since our objective is the mod-

ified Cao and Mumford’s geometric error from Sec. 3, we

set τ to 1.0 mm2.

To implement RANSAC efficiently, one requires an ef-

ficient minimal solver that can estimate a model over thou-

sands of iterations. Also, using fewer data points in each

trial improves the probability of sampling only inlier data,

reducing the number of trials required. For this purpose, we

have devised an algorithm (see below) that can estimate an

axis from 6 surface point-normal pairs.

We employ MLESAC [16], which is a variant of

RANSAC that also considers the quality of inlier data points

based on their deviations from the model. While RANSAC

assigns zero costs to all inliers, MLESAC computes the L2-

norm cost for each inlier, saturating to 1 as the error dis-

tance reaches τ . Since both models assign unit cost to each

outlier, MLESAC can be viewed as incorporating a trun-

cated quadratic kernel in solving (10) instead of RANSAC’s

well-shaped kernel. Our pseudocode can be found in Al-

gorithm 1. We perform RANSAC iterations in parallel to

reduce runtime on multicore machines.

6-point algorithm: Our 6-point algorithm is essen-

tially a minimal numerically-stable implementation of the

Algorithm 2 Nonlinear axis refinement

1: inputs: 3D point cloud with normals and symmetric

axis

2: for k = 1 · · · max iter do

3: Project the Jacobian to the tangent space of the axis.

4: Augment the subproblem to penalize movement

along the axis.

5: Compute an update given current trust region radius

6: Compute the quality of the second order model

7: Accept the step if

8: Raise/lower the trust region radius given the model

quality

9: end for

10: Select the axis with the lowest cost.

11: output: a 3D line representing the axis of symmetry

Pottmann et al.’s method [14]. Continuing from Sec. 2.1,

we first decompose the Jacobian into J =: [Jv Jw], where

Jv ∈ R
|Ω|×3 and Jw ∈ R

|Ω|×3 represent the Jacobians

with respect to v and w respectively. Since M = J⊤J, we

can write M− λD as
[

J⊤
v
Jv − λI J⊤

v
Jw

J⊤
w
Jv J⊤

w
Jw

]

. (11)

Hence, by applying the Schur complement trick [17], we

note det(M− λD) = 0 leads to det(J⊤
w
Jw) = 0 and/or

det(J⊤
v
Jv − J

⊤
v
JwJ

†
w
Jv − λI) = 0, (12)

where J†
w
:= (J⊤

w
Jw)−1J⊤

w
is the left pseudoinverse of Jw.

Since the first equality only holds for a degenerate case, the

smallest eigenvector of J⊤
v
Jv − J⊤

v
JwJ

†
w
Jv satisfying (12)

is the solution for minimizing the Pottmann’s coplanarity

error.

In terms of implementation, JwJ
†
w

can be efficiently

computed by (economic) QR-decomposing Jw into QwRw,

and then computing QwQ
⊤
w

. Since the reduced system ma-

trix is symmetric and positive semidefinite, we can apply

the numerically-stable singular value decomposition (SVD)

and compute the basis with the smallest singular value.

Since a 3D line can be represented by 4 parameters [14,

3], this algorithm is not the most compact minimal solver

for symmetric axis estimation. We leave the development

of an efficient 4-point algorithm for future work.

4.2. Robust nonlinear refinement

Once MLESAC yields a solution, it is refined to consider

all data to alleviate the model bias towards the original 6

points.

Solving (10) requires a robust nonlinear least squares

algorithm that can consider the manifold of the variables.

First, we employ the Levenberg-Marquardt (LM) [8, 10] al-

gorithm as the base method, which can be viewed as a 2nd



(a) Ground truth (#1) (b) Pottmann et al. (c) Cao and Mumford (d) Son et al. (e) PotSAC (ours) (f) PotSAC with outliers

(g) Ground truth (#2) (h) Pottmann et al. (i) Cao and Mumford (j) Son et al. (k) PotSAC (ours) (l) PotSAC with outliers

(m) Ground truth (#3) (n) Pottmann et al. (o) Cao and Mumford (p) Son et al. (q) PotSAC (ours) (r) PotSAC with outliers

(s) Ground truth (#4) (t) Pottmann et al. (u) Cao and Mumford (v) Son et al. (w) PotSAC (ours) (x) PotSAC with outliers

Figure 3. Visualization of the axis returned by each algorithm when using all data points. For the random sampling-based methods (Son et

al. [15] and PotSAC), we output the mode axis across multiple runs of 100.

order trust-region algorithm. LM can be viewed as a 2nd-

order trust-region approach, which in each iteration makes

a local quadratic approximation of the objective and com-

putes an update based on this and the size of the trust region

(See [1]).

Second, we apply the Trigg’s correction [17, 1] to LM,

which integrates robustness by dynamically weighting the

residual and Jacobian depending on the choice of the ro-

bust kernel and the error distance. We use the Cauchy ker-

nel [1]. Implementing a more advanced robust optimization

technique such as lifting [20] is for future work.

Last, we employ a manifold optimization frame-

work [12, 7] considering the 3D line structure. We project

the Jacobian to the tangent space of the current axis direc-

tion such that no update is performed along the axis. Since

this results in a rank-deficient quasi-Hessian matrix, we add

penalty terms to the local quadratic model to discourage the

axis translation and direction from moving along the cur-

rent axis direction (since both update directions leave the

cost unchanged).

5. Experimental results

We carried out experiments on an 8-core AMD Ryzen

2700X machine with 32GB DDR4 RAM using MATLAB

R2018b with Parallel Computing Toolbox. We have at-

tached a short supplementary video showing a demo run of

our code.

PotSAC was compared against our re-implementations

of several reference and state-of-the-art methods, including

the work of Pottmann et al. [14], Cao and Mumford [3] and

Son et al. [15]. Son et al. estimates the axis by slicing the

point cloud data into many thin layers and fitting a circle

template onto each slice. We modified Son et al.’s algorithm

to efficiently draw normal directions [5] and fit a hollow

disc rather than a circle since we deal with both inner and



Method Frag. #1 Frag. #2 Frag. #3 Frag. #4 Frag. #5 Frag. #6 Frag. #7 Frag. #8 t̄ (s)

Pottmann et al. 0.5◦(3.9) 4.4◦ (49) 3.0◦(11) 3.0◦(29) 3.6◦(41) 14.0◦(78) 17.8◦(69) 1.7◦(13) 0.01

Cao & Mumford 0.4◦(2.6) 5.8◦(52) 4.3◦(12) 4.9◦(34) 4.9◦(52) 15.9◦(50) 30.2◦(95) 2.1◦(13) 1.18

Son et al. 2.2◦(12) 12.1◦(71) 8.6◦(24) 7.2◦(62) 5.1◦(61) 6.0◦(54) 9.1◦(63) 9.6◦(65) 4.46

MLESAC (ours) 0.4◦(3.6) 4.4◦(16) 3.2◦(14) 2.5◦(6.9) 2.6◦(6.3) 4.9◦(9.4) 34.3◦(22) 30.6◦(19) 3.63

PotSAC (ours) 0.2◦(2.4) 2.2◦(11) 1.5◦(8.9) 1.2◦(5.3) 1.3◦(10) 2.2◦(10) 21.7◦(54) 21.1◦(21) 4.36

Table 1. 2σ-precisions of symmetric axes’ directions (◦) and positions (mm, in parenthesis) obtained by different algorithms on real

pottery fragments. t̄ denotes mean runtime on original datasets of 10,000 points. Note higher precision does not necessarily yield higher

accuracy— on #7 and #8, the pieces are relatively small and have shape ambiguities, making all algorithms fail (See Fig. 4).

(a) Ground truth (#5) (b) pottmann et al. (c) Cao and Mumford (d) Son et al. (e) PotSAC (ours) (f) PotSAC with outliers

(g) Ground truth (#6) (h) pottmann et al. (i) Cao and Mumford (j) Son et al. (k) PotSAC (ours) (l) PotSAC with outliers

(m) Ground truth (#7) (n) pottmann et al. (o) Cao and Mumford (p) Son et al. (q) PotSAC (ours) (r) PotSAC with outliers

(s) Ground truth (#8) (t) pottmann et al. (u) Cao and Mumford (v) Son et al. (w) PotSAC (ours) (x) PotSAC with outliers

Figure 4. Visualizations of the axes returned by each algorithm when using all data points for each of the sherds #5 to #8. For the random

sampling-based methods (Son et al. [15] and PotSAC), we show the median axis across multiple runs of 100.

outer surfaces.

All methods were tested on real pot fragments from the

15th century. These contain inner, outer and break surfaces,

which can have different surface characteristics such as nor-

mal directions. We resampled each piece to contain 10,000

points in 1–2s. To generate data with gross outliers (e.g.

Fig. 3b), we replaced 30% of samples by randomly sam-

pled points and normals around the surfaces.

Fig. 3 and Fig. 4 show visualizations of results achieved

by each algorithm from top view when run on each full frag-

ment dataset (i.e. using 10,000 points on fragments #1–#8).

Green dots at the origin denote axes of symmetry (in cases

green dots are missing, the axis center is at (0, 0)). Note

for each fragment, (a) and (b) tend to find the axis center



at the center of piece, while (c) tends to lift the fragment to

form a more cylindrical shape. PotSAC is robust to these

issues. All algorithms fail on #7 and #8, motivating fu-

ture research towards incorporating more constraints jointly

within the RANSAC framework.

Since we do not have ground truth axes, we measured

each algorithm’s precision on each dataset by applying

bootstrapping as in prior work [3, 18]. More specifically,

each algorithm is run 100 times on each dataset, with

each run using randomly drawn 1,000 samples from 10,000

points. The corresponding results are shown in Table 1 with

visualizations of mode solutions shown in Fig. 3 and Fig. 4.

Pottmann et al.’s method runs very fast (< 0.01 s) but

usually yields visually less feasible solutions potentially

due to its algebraic nature and lack of robustness. This

provides bad initialization for Cao and Mumford’s method,

which consequently fails after running for 1–2s despite their

algorithm incorporating robustness. This reconfirms good

initialization is key to improving the accuracy of axis es-

timation. Son et al.’s algorithm runs in about 5s for 5000

normal direction samples. It does sometimes provide visu-

ally better estimates than the above two methods, but with-

out utilizing normal information, it often biases towards

cylinder-shaped models. On the other hand, PotSAC mostly

yields close-to-ground-truth axis in 5s, even when 30% of

data points are gross outliers. All algorithms either fail to

produce visually convincing results or yield low precision

on small fragments #7 and #8 with shape ambiguities, mo-

tivating future work to explore on RANSAC-compatiable

constraints on the axis profile curve.

6. Conclusions

In this work, we have proposed PotSAC, a robust method

for estimating the axis of symmetry for symmetric pot frag-

ments. The method appropriately utilizes algebraic and ge-

ometric constraints and extends them to efficiently adopt the

random sample consensus (RANSAC) framework. PotSAC

also employs a robust nonlinear refinement step to mini-

mize a geometrically meaningful error. Experimental re-

sults demonstrate improved accuracy of the estimated axes

over other methods for different pot fragments.

Future work should focus on jointly incorporating a con-

straint on the axis profile curve for removing practically less

feasible models. A more ambitious goal is to build a large

pottery database and develop an end-to-end learning-based

framework for fast axis estimation of fragments.
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