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Abstract

Cracks on a painting is not a defect but an inimitable

signature of an artwork which can be used for origin exam-

ination, aging monitoring, damage identification, and even

forgery detection. This work presents the development of a

new methodology and corresponding toolbox for the extrac-

tion and characterization of information from an image of a

craquelure pattern.

The proposed approach processes craquelure network as

a graph. The graph representation captures the network

structure via mutual organization of junctions and frac-

tures. Furthermore, it is invariant to any geometrical dis-

tortions. At the same time, our tool extracts the properties

of each node and edge individually, which allows to char-

acterize the pattern statistically.

We illustrate benefits from the graph representation

and statistical features individually using novel Graph

Neural Network and hand-crafted descriptors correspond-

ingly. However, we also show that the best performance is

achieved when both techniques are merged into one frame-

work. We perform experiments on the dataset for paintings

origin classification and demonstrate that our approach

outperforms existing techniques by a large margin.

1. Introduction

The recent tragedy of Notre Dame de Paris has shaken

the society and reminded how important cultural heritage

is. While also being a multi-billion market, fine art is a field

of intense research in history, chemistry, imaging, and con-

servation. In the last decades, it has benefited from digital

image processing which is a convenient tool for capture and

analysis of visual information.

The majority of the painted or varnished artworks con-

tain a fine network of fractures also known as craquelure. A

number of recent works in image processing [12][19][20]

address craquelure as an adverse effect of aging and aim to

detect and inpaint cracks in the digital copy. Our work, on

the contrary, consider crack pattern an additional source of

information which is so valuable in historical studies.

The early works in this area present attempts to extract

useful information from the craquelure image [1][6]. How-

ever, they only cover basic statistical features while our

model is the first model which describes the topography of

the nodes, shape of the edges, and organization of the net-

work via graph theory.

Graph representation also allows us to use the state-of-

the-art deep learning framework Graph Neural Network for

learning the patterns features directly from its structure,

which, to the best of our knowledge, has never been ap-

plied to craquelure. Experimental results of our approach

are shown to be very promising, and we believe it will initi-

ate a new discussion in the field.

Additionally, our work fills another big gap the absence

of openly available software for extraction of information

from binary or RGB image of craquelure. We publish all

source codes, and make it possible to easily extract graphs,

calculate statistics, visualize the results, analyze links orien-

tation and nodes topography as well as perform next steps

of using extracted features for classification. We believe

our code will be beneficial for many conservators and art

researchers in their work.

The rest of the paper is organized in the following way:

Chapter 2 covers existing approaches to craquelure descrip-

tion, Chapter 3 discusses the theory and design the proposed

approach, whereas Chapter 4 describes experimental details

and results.

2. Related Works

Cracks appear due to the drying of paint or varnish fol-

lowed by shrinkage of its volume while being stretched on

the base with the fixed area. This process leads to the in-

crease of surface stress and finally tearing the material. The

work of Bratasz and Sereshk [28] provides a comprehen-

sive description of the physical model of craquelure forma-



tion due to the increased stress and shear stress. Whereas

work of Krzemien et al. [17] describes the environmental

conditions responsible for craquelure formation.

At one point of the history it was claimed that ”purely

verbal or mathematical descriptions of crack patterns are

almost impossible” [3], luckily, modern technology allows

us to make the impossible possible. Bucklow [5] was the

first who proposed a systematic approach to formal descrip-

tion of craquelure and performed analysis of cracking in

relation to materials and methods employed by the artist.

In later work [6], Bucklow proposed a semi-automatic ap-

proach based on heuristic representation obtained from hu-

man experts as well as an algorithmic representation of a

digital image as a set of Bezier curves. The obtained repre-

sentations were used to classify patterns using Linear Dis-

criminant Analysis and Multi-Layer Perceptron.

The next step in the development was made by Abas

[2][1] who used image morphology followed by directional

filtering to process the image while preserving spatial infor-

mation. A set of hand-crafted filters in grid representation

was used by him to gather statistics of the fracture orien-

tation cell-wise, and use it to identify distinguishable types

of networks and cluster them using K-means clustering. In

a modern perspective, the usage of hand-crafted filters and

splitting the image into the grid cells is a strong limitation of

the method, whereas cracks orientation is just a small part

of the information contained in a pattern.

Similarly, Freeman et al. [10] studied directionality his-

togram extracted from skeletonized image but also mea-

sured properties of the ”islands” – regions surrounded by

cracks. Junctions were studied by Taylor et al. [25] who

extracted junction points using crossing number and used

them as features for matching similar craquelure patterns to

detect forgery. However, this approach does not take into

account links between junctions, neither can it be used as

a generic descriptor of a pattern. A more comprehensive

model was developed by El-Youssef et al. [9]. It extracts

arrays of nodes and edges, and describes each element by

its chain code and location. We find such representation

inconvenient for algorithmic processing, moreover, authors

themselves use only 11 statistical measures when demon-

strating the method’s application. Use of chain codes and

the extraction of the histogram of only four directions limit

processing as well.

Our model covers all mentioned approaches and pro-

duces the most comprehensive description of a network as

individual properties of nodes and edges as well as their mu-

tual organization. Moreover, unlike the above-mentioned

works, we make source code openly accessible1, so the

community of conservators and art specialists can benefit

from it.

1Source code: https://github.com/acecreamu/

craquelure-graphs

Figure 1. Illustration of the nodes of O, Y, and X types.

There is also a set of works designed exclusively for

cracks detection, i.e. extraction of the binary mask of crack-

ing from an RGB image. For this purpose, authors utilize

morphology [21], clustering [11], Bayesian classification

[7], deep learning [24], and other modalities like X-ray [19]

and hyperspectral imaging [8][13]. These approaches may

be used as a prerequisite for the proposed algorithm.

3. Methodology

Due to the wide variety of effective crack detection al-

gorithms and even wider variety of available imaging tech-

nologies, our algorithm takes as an input skeletonized bi-

nary image I ∈ R2 of a crack network C = (C,N)
which consists of cracks {c1, . . . , cN} ∈ C and nodes

{n1, . . . , nN} ∈ N. Additionally, we propose an inter-

face which was used in our experiments to perform basic,

yet effective craquelure segmentation using black top-hat

(bottom-hat) transform (Eq. 1) followed by adaptive thresh-

olding [4] and area cleaning.

I = ADAPT.THRESH.(I−) : I− = I • s(r)− I (1)

where I is a grayscale image, I− – the result of transforma-

tion with enhanced fractures, sign • denotes morphological

closing with structural element s of radius r.

The obtained skeletonized image was transformed into a

non-directed unweighted graph G = (V,E) where V = N

and E = E(C), using the algorithm of Kollmannsberger

[16] improved by removing false nodes near image border2

and merging falsely separated nodes3.

3.1. Properties of nodes

Naturally, the intersection points of multiple fractures

are equivalent (unlike the atoms in vertices of a molecule,

for example) and at most characterized by their amount and

location. Here, we propose a novel approach of labeling

nodes by their topology, i.e., the number of fractures inter-

secting at one point, and illustrate its descriptive power. The

2The first issue occurs due to the intersection of a fracture with an im-

age border. The algorithm marks an intersection point as the end of a frac-

ture, even though the fracture continues beyond the image area. To correct

it, we simply disregard the detected nodes at an image border.
3Skeletonization procedure may split one node with a large number of

edges onto a few closely located nodes. Thus, we join the nodes located at

the distance comparable to the fracture width via Euclidean distance.



Figure 2. Triangular topography chart. Each point is defined by three coordinates (NO,NY ,NX). Darkened areas illustrate distribution of

natural craquelure network on the chart (darker color - higher density). Real samples shown: (1) - XVI century Flemish panel; (2) - Jan

van de Cappelle, ”River scene with a large ferry”, canvas painting, 1665; (3) - Duccio, ”The Annunciation”, panel, 1307/8.

similar approach is used in the field of geology and tecton-

ics [22][23].

We denote endpoints of branch fractures which have only

one connection as type ”O” (marked by a circle), crossing

of three cracks as type ”Y” (marked by a triangle), whereas

junctions of four cracks are labeled as ”X” (marked by a

square) (Fig. 1). Junctions of higher order are rare in cul-

tural heritage and are included in ”X”-type.

A particular network (graph) can be characterized

by the ratio of O, X, and Y nodes (NO,NY ,NX) :
∑

i=O,Y,X Ni = 1. The triangular chart suits such visu-

alization well. Figure 2 illustrates how the topology of a

network relates to the position on the chart. Darkened areas

correspond to the density (2D histogram) of the points ex-

tracted from a set of real craquelure patterns on paintings of

various origin4. It may be seen that the majority of patterns

are localized between O and Y axes, whereas X-nodes are

uncommon. Table 1 presents quantitative description of the

distribution and proves rarity of X-nodes in paintings.

4For the data description see Section 4.1.

mean std 5th percentile 95th percentile

O 0.343 0.135 0.138 0.605

Y 0.592 0.127 0.371 0.829

X 0.065 0.035 0.000 0.126

Table 1. Distribution of the node-types in the real networks.

For a better understanding of the chart and topology met-

ric, Fig. 2 also contains several examples of real cracks (red

points) as well as theoretical simulation of patterns which

we did not observe in the experiments (black dots).

3.2. Properties of edges

Conventional approaches of craquelure characterization

omit most of the information of fractures shape and extract

only their length and/or histogram of orientation, which is

a serious shortcoming for applications like documentation

and reconstruction. Very few algorithms [2][9] go deeper

and use chain codes as shape descriptors. However, in the

case of thin lines, storing chain codes is almost identical to

storing each pixel index or using the image as is. For objects

with unit area, chain codes present no benefit in compres-

sion while also being sensitive to scaling and re-sampling.

Further, we present a unified model which corrects these

shortcomings and provides additional information to the ba-

sic linear approximation. The core of our model is a poly-

nomial fitting of each crack. In this way, coordinates of

each pixel within a crack are considered as a pair of values

(xi, yi) (Eq. 2) which can be exactly described by mathe-

matical function f∗(xi) = yi. Function f∗ may be of any

complexity, so we propose to simplify it using polynomial

fitting with a strict constraint on the first and the last points

(Eq. 3–4).

{Iij ∈ (C ∪N)} → {(xi, yi) ∈ R} (2)



Figure 3. Fracture shape reconstruction. Top row – n = 1, middle

row – n = 2, bottom row - n = 4. An input gray-scale image

is on the background. Illustrated on XVIII century French canvas

paintings (left – author NA, right – Francois Boucher, ”Venus asks

Vulcan for the arms of Aeneas”, 1757).

∀(xi, yi) ∈ C : f(xi, n) ≃ yi |
∀(xi, yi) ∈ N, ∀n ∈ R : f(xi, n) = yi

(3)

f(x, n) =

n
∑

k=0

αkx
k (4)

The order of a polynomial n plays role of a parameter

which defines the precision of reconstruction and number

of stored values αk (equals n+ 1). Figure 3 illustrates how

even the ”cheapest” fitting by a polynomial of the second

order improves the reconstruction of cracks while storing

only three values per edge. Experimentally, we observed

that n ≤ 4 is sufficient to capture the shapes of the majority

of the cracks. This allows to reduce storage space by 90-

99% in comparison to storing pixel locations or chain codes.

Polynomial model is also efficient in a number of other

applications. For example, edge orientation can be ex-

tracted as a tangent to a curve c, that is a first deriva-

tive of f(x, n) which can easily be found analytically as

f ′(x, n) =
∑n

k=1 kαkx
k−1, or just be equal to α1 in lin-

ear approximation. Similarly, the curvature of a crack can

be described by the absolute value of second derivative

f ′′(x, n) =
∑n

k=2 k(k − 1)αkx
k−2 , or just |2α2| in the

parabolic model.

3.3. Properties of a network as a whole

The features of edges and nodes described in the previ-

ous paragraphs allow to compute statistic on a whole net-

work which then can be used as a feature vector to differen-

tiate a given graph from a set of graphs {G1, . . . , GN} ∈ G.

Such a vector may contain various hand-crafted features.

Table 2 lists the ones used in our experiments. Although

this list is not exhaustive and may be easily extended with

custom features or ones from previous works using the in-

formation extracted by the proposed tool. It is worth noting

that we do not count closed ”islands” because it is redundant

when density of the nodes is accompanied by their topogra-

phy.

The described approach gives a statistical description of

each element (node or crack) independently of its neigh-

borhood or connections (similarly to previous works) and

does not use the structure of the graph itself. Nevertheless,

we hypothesize that geometrical structure of the extracted

graph (regardless of the nodes’ location and links’ length

and shape) contains useful information which is sufficient

to characterize the pattern. In order to prove this, we feed

unweighted non-directional graph (just indices of nodes and

links between them) to a Graph Neural Network and use it

as a feature extractor. Such operation is fully independent

of statistical processing and when combined, they allow to

obtain the most complete and comprehensive characteriza-

tion of a craquelure (Fig. 4).

Notation Feature description

θσ orientation uniformity (standard deviation of

the orientation histogram)

Lµ mean cracks length

Lσ standard deviation of cracks length

N/S nodes density

NO fraction of O-type nodes

NY fraction of Y-type nodes

NX fraction of X-type nodes

C/N edges to junctions ratio

d2µ curvature as a mean of the absolute value of

the second derivative

Table 2. The selected statistical features.



Figure 4. Schematic representation of the proposed framework. The sample used for the illustration: Jean-Siméon Chardin, ”The House of

Cards”, 1737, oil on canvas.

3.3.1 Graph Neural Networks

Graph Neural Networks (GNNs) became the state of the art

in the task of graph and node classification due to their revo-

lutionary representational ability. GNNs follow a neighbor-

hood aggregation scheme, where the representation vector

of a node is computed by recursively aggregating and trans-

forming representation vectors of its neighboring nodes

[27]. k iterations of such process results in capturing struc-

tural information from all the nodes within k-hop neighbor-

hood. The obtained node-wise feature representation can be

used for classification of nodes or can be pooled in a global

representation of a graph.

There are a number of powerful GNN architectures,

for example, Graph Convolutional NN [15], GraphSAGE

[14], Graph Attention Model [18], and others, but all of

them share the same aggregate-combine framework (Eq.

5) and differ in the choice of AGGREGATE(k) and

COMBINE(k) functions:

h
(k)
v = COMBINE(k)(h

(k−1)
v , a

(k)
v ) ,

a
(k)
v = AGGREGATE(k)

({

h
(k−1)
v∗ , v∗ ∈ V ∗(v)

})

(5)

where h
(k)
v is a hidden vector-representation of a node v ∈

V at the k-th layer, and a
(k)
v is a result of the aggregation of

feature-vectors from a neighborhood V ∗(v).

Xu et al. [27] (Lemma 2) define upper-bound of distin-

guishing ability of GNNs (mapping different graphs to dif-

ferent embeddings) to be as powerful as Weisfeiler-Lehman

graph isomorphism test [26]. In our experiments, we uti-

lize maximally powerful architecture (proof: Xu et al. [27],

Corollary 6) called Graph Isomorphism Network which

reaches this upper-bound. Therefore, a node representation

is updated as:

h(k)
v = MLP (k)

(

(1− ε(k)) · h(k−1)
v +

∑

v∗∈V ∗(v)

h
(k−1)
v∗

)

(6)

Thus, we use a 5-layer GIN, with a 2-layer Multi-Layer Per-

ceptron (MLP ) in each layer, to extract feature vector of a

graph. The model has to be trained using labeled data in

order to extract useful features. The last layer generates a

feature vector h(5) of length 64 which theoretically covers

outputs of all the previous layers. However, we find ben-

eficial to extract hidden representation from all the layers

{h(1), . . . , h(5)} and concatenate them in one longer vector.



This allows to cover different sizes of a ”receptive field”

around a node. Consequently, we obtain a numerical de-

scription of the input graph without using any hand-crafted

features. Output vector can also be combined with a statis-

tical description generated at the previous step via simple

concatenation (Fig. 4).

4. Experimental

4.1. Dataset

The dataset used consists of 36 high-resolution gray-

scale photographs of Italian, French, Flemish, German, and

Dutch panels and canvas paintings of XIV–XVIII centuries

[6] and was received directly from Dr. Spike Bucklow

(Hamilton Kerr Institute, University of Cambridge) who

originally collected the dataset. Each image has a resolution

of 1181×1772 pixels and captures spatial region of 3×5 cm

to 12×20 cm. A high density of the captured craquelure al-

lowed to augment the dataset by random cropping each im-

age into 10 smaller patches followed by random horizontal

and vertical reflections. In result, we obtained 360 images

of crack networks labeled by their geographical origin.

4.2. Setup

The descriptive power of the proposed approach was

evaluated on the task of classification of craquelure patterns

in 5 classes. The existing approaches by Bucklow [6], Abas

[2], and El-Youssef et al. [9] are used for comparison of the

results. The algorithms, source code of which is not avail-

able, were reconstructed according to their description. 10-

fold cross-validation was used to minimize the influence of

random train-test partition.

Since the raw output of our algorithm is a feature vector,

we used basic SVM-model with linear kernel as a classi-

fier (may be interchanged with LDA, MLP, random forest,

Author(s)

of the method
Features Classifier Accuracy

Bucklow Bezier curves
MLP 75.30 %

LDA 83.89 %

Abas Stat. features k-NN 66.48 %

El-Youssef et al. Stat. features LDA 70.15 %

ours

Stat. features

SVM

77.78 %

GNN features 97.50 %

GNN features+
98.06 %

Stat. features

Table 3. The results of craquelure classification.

etc.). In order to demonstrate benefit from each modality

(or absence thereof), we analyzed the performance of the

classifiers trained on statistical features and graph structural

features separately as well as their combination.

4.3. Results

Results of classification are presented in Table 3. Fig-

ure 5 presents confusion matrices for more detailed analysis

of obtained values.

It may be seen that the classifier trained on statistical fea-

tures is on a par with previous works, whereas the use of

features extracted from GNN allows to outperform all the

existing methods by a large margin and to achieve almost

perfect accuracy. Adding the 9 statistical features helps ad-

ditionally increase the score by 0.56% and illustrates the

mutual benefit of different properties of a crack pattern for

its description.

It is interesting that while separately trained models mis-

classify Italian craquelure as Dutch, the model trained on

both features does not make such an error. Also, it is

worth reminding that GNN does not ”know” any properties

of nodes or edges between them, thus, it is very remark-

Figure 5. Confusion matrices of the proposed classifiers. Left to right: statistical features, graph features, both features types.



able that such high performance is achieved based only on

the geometrical structure of a network. Moreover, graph-

representation is absolutely robust to any kind of geometri-

cal distortions. This was not discussed before and we be-

lieve it will be a promising topic for future research.

5. Conclusions

In this work, we demonstrate a novel approach to the de-

scription of craquelure patterns. Firstly, we process a bina-

rized image of a craquelure to extract a graph-like structure.

Then, we train Graph Neural Network and use it as feature-

extractor from a graph. Hidden representations from layers

of different depth are used altogether in order to cover dif-

ferent sizes of a “receptive field” around a node. At the

same time, we extract the classical characteristics of the

cracks and complement them by the proposed description

of node topology. In the result, we obtain a powerful model

for craquelure description which demonstrates state-of-the-

art accuracy on a task of craquelure classification.
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