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Abstract

A cross-domain visual place recognition (VPR) task is

proposed in this work, i.e., matching images of the same

architectures depicted in different domains. VPR is com-

monly treated as an image retrieval task, where a query

image from an unknown location is matched with rele-

vant instances from geo-tagged gallery database. Different

from conventional VPR settings where the query images and

gallery images come from the same domain, we propose a

more common but challenging setup where the query im-

ages are collected under a new unseen condition. The two

domains involved in this work are contemporary street view

images of Amsterdam from the Mapillary dataset (source

domain) and historical images of the same city from Beeld-

bank dataset (target domain). We tailored an age-invariant

feature learning CNN that can focus on domain invariant

objects and learn to match images based on a weakly su-

pervised ranking loss. We propose an attention aggregation

module that is robust to domain discrepancy between the

train and the test data. Further, a multi-kernel maximum

mean discrepancy (MK-MMD) domain adaptation loss is

adopted to improve the cross-domain ranking performance.

Both attention and adaptation modules are unsupervised

while the ranking loss uses weak supervision. Visual in-

spection shows that the attention module focuses on built

forms while the dramatically changing environment are less

weighed. Our proposed CNN achieves state of the art re-

sults (99% accuracy) on the single-domain VPR task and

20% accuracy at its best on the cross-domain VPR task, re-

vealing the difficulty of age-invariant VPR.

1. Introduction

Recently, there has been interest among the computer vi-

sion researchers to solve the visual place recognition (VPR)

task in the form of image retrieval [3, 12, 20, 24, 27, 41, 48].

In [38], the discriminative visual cues learned for visual

place classification task are investigated. Interestingly,

CNN filters learn human-like discriminative visual cues to

recognize a place, including built forms, signs or vegeta-

tion. Among these discriminative attributes, buildings are

the most robust that remain, more or less, invariant during

the changes in day and night lighting, different seasons and

even years. However, CNNs are still influenced by irrele-

vant objects like roads and the sky. In this work, we in-

troduce a CNN model with attention aggregation module

to focus on domain invariant features, i.e. buildings, for

the cross-domain VPR task. We will demonstrate that our

work can be further combined with multi-kernel Maximum

Mean Discrepancy (MK-MMD) loss to obtain better do-

main adaptation results. The images from the two domains

with a large time lag are depicted in Fig.1, being historical

images (queries) and current street view images (gallery) of

Amsterdam.

The VPR task is commonly formulated as content based

image retrieval (CBIR), i.e., sorting the geo-tagged gallery

images by their distances to the unknown query image. The

query is then labeled based on its best matching image in

the gallery. Deep image representation learning is currently

state of the art for almost all CBIR settings. Among the

deep feature learning methods, distance learning CNNs are

the most popular ones [13, 19]. Nevertheless, supervised

deep distance learning requires similar and dissimilar im-

age pairs for training. In this work, image pair labels are

not available and we only have access to geo-tagged images

from the Mapillary street view imagery and thus a weakly

supervised deep feature learning is used, similar to the work

of NetVLAD[3].

Different from [3], our queries are historical images

which are not geo-tagged and exhibit a domain discrepancy

between training data and test data. Age-agnostic place

recognition that is addressed in this paper is a more chal-

lenging problem firstly due to the lack of image pair labels

for training, secondly due to the domain shift between the



Figure 1: Correctly retrieved images with our proposed

method. The top row illustrate the general place recognition

in the same domain: both the query (left) and gallery image

(right) are from the same dataset. The bottom row shows the

cross-domain place recognition task where the query (left)

is from the Beeldbank dataset and the galley image (right)

is from the Mapillary dataset.

gallery and query images caused by the change of scenery

over a large time gap and thirdly due to the outliers in target

domain. Different technologies of photography, equipment

and processes used in the production of photos in the past

also contribute to this domain shift. Fig1 shows the general

and the age-agnostic place recognition task.

We are inspired by [31], which introduces an attention

module into NetVLAD for the classification task to address

the unequal importance of local features in VLAD feature

aggregation layer. In our work, a new attention aggregation

technique is proposed to weigh both global VLAD descrip-

tors and local descriptors. A domain adaptation loss based

on MK-MMD is additionally introduced to achieve better

cross-domain performance. Note that both the attention and

the domain adaption modules are unsupervised and thus no

labels are required.

Our attention-aware architecture is depicted in Fig.2

which consists of three modules and a shared convolutional

neural network for feature extraction (AlexNet cropped be-

fore conv5). The attention module is a single convolutional

layer followed by softplus activation function, transforming

the feature map to a heatmap. This heatmap contains atten-

tion scores for the deep features. The VLAD module ag-

gregates deep features in the attention-aware scheme by as-

signing attention scores to both local and global descriptors.

The unsupervised domain adaptation module is additionally

used to learn domain-invariant features. Our oblation stud-

ies show that both modules are important to reach state of

the art results. Our speculation is that MK-MMD loss aligns

the photo styles while attention module focuses on domain

invariant contents.

Our contributions are summarized as:

• To the best of our knowledge, this is the first large scale

(40k) image database for age-invariant visual place

recognition task. We manually annotated 104 histor-

ical images and their corresponding matched current

street view images only for evaluation purpose.

• A new attention aggregation scheme is proposed to

combine both the local and global image descriptors

(Section 3.2).

• We combined the MK-MMD domain adaptation loss

with the ranking loss to learn domain-invariant features

for cross-domain VPR task. (Section 3.3).

We tested our proposed model on conventional VPR task

and our experiments show the state of the art results on

Mapillary dataset compared to other competitors. Detailed

results and ablation studies will be presented in Section 4.5.

The comparison of single-domain and cross-domain results

reveals the difficulty of age-agnostic place recognition task.

2. Related Work

The performance of VPR as an image retrieval prob-

lem depends on the ranking accuracy w.r.t. a similarity

metric. The query location is suggested based on the top

M similar images (annotated with geo-tags). To extract

good features for indexing, traditional works focus on hand-

crafted features such as SIFT[28]) and SURF[8]. Some

other efficient methods are based on the aggregation of lo-

cal gradient-based descriptors like Fisher Vectors [34] and

VLAD[21]. [24] is a SURF based model which improves

the performance by detecting and removing ‘confusing ob-

jects’. [41] uses SIFT to detect the repetitive patterns in the

image which is representative for buildings. [30] focuses on

matching images that have large view point changes by gen-

erating artificial views of a scene for the training process.

Recent works suggest that a CNN trained on a large scale

dataset as a feature extractor outperforms hand crafted fea-

tures on various tasks [11, 12, 32, 36]. In turn, [6] shows

that features in the early layers of a CNN trained for image

classification can be effectively used as visual descriptors

for image retrieval. LIFT [47] is a learning pipeline for

feature extraction which introduces an end-to-end unified

network for detection, orientation estimation, and feature

description. [40] proposes a global image representation

by the regional maximum activation of convolutional layers

(R-MAC) well-suited for place recognition. [12] proposes



Figure 2: Our proposed CNN model include three modules: an attention module, am attention-aware VLAD module and a

domain adaptation module. The attention-aware VLAD module uses the attention scores to weigh both the deep features and

the global descriptors with two streams, A1 and A2, which are explained in Section 3.2.

novel CNN-based features designed for place recognition

by detecting salient regions and extracting regional repre-

sentations as descriptors. NetVLAD [4] introduces a novel

triplet ranking loss together with a VLAD aggregation layer

that can learn powerful representations for the VPR task in

an end-to end manner. A known disadvantage of NetVLAD

lies in its global feature aggregation. [16] proposes a region

proposal network to learn which regions should be pooled to

form the final global descriptor. Similar to [4] , we use cur-

rent geo-location tags for weakly supervised feature learn-

ing using triplet distance learning network. However, we

do not have access to matched image pairs from the two do-

mains for supervised training, i.e., matched historical and

contemporary images. To address this domain mismatch

between the test and train data, we need to promote domain-

invariant feature learning.

We tailor an attention aggregation model that can boost

the cross-domain performance for our specific task, age-

agnostic urban scene matching. Attention model is broadly

used in natural language processing [14, 43] and computer

vision tasks [18, 26, 32, 37, 39, 48, 45]. [23] shows that

attention model can also be adopted to benefit metric learn-

ing. [32] proposes an attention mechanism to select key

points for matching. Attention model is considered to be

effective for domain adaptation as well [22, 44]. Our atten-

tion model is implemented in an unsupervised way which

means no ground truth score maps are available for train-

ing. The learning process of the attention module is guided

by the image retrieval ranking loss.

Given two different domains, unsupervised deep domain

adaptation schemes [25, 42] are mostly used to enhance the

performance of CNNs on target domain by using labels only

from the source domain. Among the vast amount of litera-

ture on deep domain adaption for classification tasks, the

Maximum Mean Discrepancy (MMD) loss is introduced

by [10] to minimize the domain discrepancy by project-

ing data into a kernel space. Later [17] proposed multi-

kernel MMD (MK-MMD) which uses linear combination

of multiple kernels. We adopt MK-MMD loss as an addi-

tional domain adaptation module for our attention aggrega-

tion model. Similarly, we feed untagged historical images

of Amsterdam to the adaptation layer in an unsupervised

manner.

3. Method

Our proposed model consists of three modules for fea-

ture extraction, namely a weakly supervised image retrieval

module with a triplet ranking loss (Section 3.1), an atten-

tion aggregation module(Section 3.2) and an unsupervised

domain adaptation module with MK-MMD loss (Section

3.3). MK-MMD loss constrains the feature maps after the

last convolution layer (conv 5). The final loss function for

training, Lu, can be expressed as:

Lu = Lr + αM(Ds,Dt) (1)

where M(Ds,Dt) is the MK-MMD loss term, Ds and

Dt denote the source domain and target domain, Lr is the



triplet ranking loss used in NetVLAD [3], α is the weight

that trades off the image retrieval loss and the domain adap-

tation loss.

3.1. Image retrieval with weak supervision

We use NetVLAD [3] as our baseline model which tack-

les the weakly supervised image retrieval task with a triplet

ranking loss. NetVLAD considers the generated H×W×D

feature maps as a set of N(H ×W ) ×D local descriptors

where N is the number of local descriptors and D is the di-

mension. Latter, a soft clustering is used to store the resid-

ual information contained in the descriptors to form K ×D

final descriptors denoted as V where K is the number of

cluster centers. V (j, k) can be expressed as:

V (j, k) =

N∑

i=1

ak(xi)(xi(j)− ck(j)), (2)

where j ∈ {1, . . . , D} is the j-th dimension of a descriptor

{xi}, k ∈ {1, . . . ,K} is the k-th cluster center, and ak(xi)
is the soft assignment of the descriptor xi to k-th cluster

center ck. In Eq.1, A weakly supervised triplet ranking

loss Lr is used to govern the learning process of descriptors

that ensures the Euclidean distance between the query im-

age and the best potential positive images are smaller than

the Euclidean distance between the query image and all the

negative pairs (based on geo-tags).

Lr =
∑

j

l (min
i

d2θ(q, p
q
i ) +m− d2θ(q, n

q
j)), (3)

where, q denotes the query image and p
q
i are potential pos-

itive images. mini d
2
θ(q, p

q
i ) denotes the best matching pair

with shortest distance dθ. In turn, n
q
j are all negative image

pairs and m is the distance margin to be maintained. The

function l is the hinge loss which penalizes the pairs that

violate the margin.

3.2. Attention module

The triplet network for image retrieval task produces fea-

ture maps with the dimension of H × W × D. The in-

serted attention module consists of a 1 × 1 convolutional

layer with coefficients wa ∈ R
D×1 and a softplus activation

function. This convolutional layer will produce an attention

score map Ha with spatial size H ×W , which could be in-

terpreted as the weight {wi} for each descriptor {xi}. [31]

proposed an attention aware aggregation scheme A1 as:

V (j, k)A1
=

N∑

i=1

wiak(xi)(xi(j)− ck(j)), (4)

where wi ∈ wa. Note that the VLAD module first assigns

the local descriptors {xi} to K cluster centers {ck}, then

computes the residuals of each descriptor xi−ck to its clus-

ter center and assigns the weight ak of descriptor xi to clus-

ter ck proportional to their proximity.

In Eq.4, the global descriptors (residuals) are weighed

after clustering. However, the VLAD descriptor is very sen-

sitive to cluster centers [5] since it defines the origin of co-

ordinates system to a cluster. Under this circumstance, we

propose to weigh the local descriptors according to attention

scores before performing clustering. The soft-assignment

term ak is re-calculated based on the newly weighed de-

scriptors. Our proposed aggregation scheme A2 can be for-

mulated as

V (j, k)A2
=

N∑

i=1

wiak(xiwi)(xi(j)wi − ck(j)). (5)

The difference between A1 and A2 is that A1 assigns the

attention scores after clustering the descriptors to multiple

centers so the attention scores are only used to weigh the

residuals but A2 first uses the attention scores to filter out

uninteresting regions in the individual local descriptors and

then performs the same step as A1. Considering that the

reweighing of individual descriptors may remove informa-

tion that are useful for global descriptor generation, we ag-

gregate the two attention schemes linearly:

V (j, k)our = V (j, k)A1
+ V (j, k)A2

. (6)

3.3. Domain adaptation module

We use MK-MMD loss [17] with five Gaussian kernels

of different bandwidths for unsupervised domain adapta-

tion. The loss minimizes the distance between the expec-

tation of the kernel mappings φ(.) of the descriptors in the

source domain xs
i and the target domain xt

i.

M(Ds,Dt) =
N∑

i

||E(φ(xs
i ))− E(φ(x

t
i))||2. (7)

The MK-MMD loss guides the CNN to learn a latent

space where the two domains are not distinctive, i.e., the

gap between the statistical means of these two domains are

closed in the reproducing kernel Hilbert space (RKHS).

4. Experiment

4.1. Dataset

We construct a cross-domain dataset with two sources

of data to evaluate our proposed method, namely the street

view panorama images of Amsterdam city from the Mapil-

lary dataset[2] and the Beeldbank dataset[1] containing his-

torical images from Amsterdam city archives.



Dataset Gallery Query

Source
Mapillary40k-train 20,884 2,320

single-domain-test 18,980 (M) 2,108 (M)

Target
Beeldbank-train 29,726 -

cross-domain-test 2,469 (M) 104 (B)

Table 1: Mapillary40k−→Beeldbank dataset, the source do-

main is Mapillary40k and the target domain is Beeldbank

denoted by M and B, respectively. Beeldbank-train is only

used for unsupervised domain adaptation. cross-domain

VPR requires matching query images from Beeldbank to

gallery images from Mapillary40k.

Mapillary40k is a subset of Mapillary250k dataset col-

lected from the source domain. The source domain con-

tains panoramic images with high resolution collected from

the Mapillary, Amsterdam area. Each image is annotated

with a geotag. The cylindrical panorama is converted to 6

cubmaps (all share the same geotag): ‘top’, ‘down’, ‘left’,

‘right’, ‘front’ and ‘back’ textures with 512 × 512 resolu-

tion. The ‘top’ and ‘down’ textures are discarded since they

usually contain sky and the vehicle that carries the camera.

40k gallery images and 4k query images are collected in

total which are then divided into two roughly equal parts

for training and testing when tested for single-domain VPR

task, each containing around 20k gallery images and 2k

queries. The two sub-datasets are geographically disjoint.

Beeldbank, the target domain, contains historical images

of Amsterdam with low resolution and random size (height

and weight are around 100 pixels). This dataset not only

depicts Amsterdam street view in the past but also contains

outliers including people, sketches and indoor scenes.

Mapillary40k - Beeldbank dataset is introduced in this

work for the cross-domain VPR task (Table 1). The cross-

domain test set contains 104 labeled queries from the target

domain and 2,469 gallery images from the source domain.

In the cross-domain test set, each target query has around 10

corresponding matched images in source domain. 30k unla-

beled Beeldbank images are used during training for domain

adaptation.

4.2. Single-domain and Cross-domain VPR tasks

Single-domain VPR task (S −→ S) In the single-domain

VPR setup, we train the network with only weakly labeled

source domain images. The network is tested on the test set

of the same domain. Mapillary40k is used for this single-

domain VPR experiment as shown in Tab.1. This is the

common setting for VPR task as there is no domain mis-

match between train and test data. We use single-domain

VPR as a pilot experiment to evaluate the performance of

the proposed model on conventional VPR task.

Cross-domain VPR task (S −→ T ) The domain discrep-

ancy between train and test data makes the cross-domain

VPR task more challenging. This is the core of our ex-

periments in this work which aims at labeling the images

from beeldbank dataset with correct geo-location. We train

the MK-MMD layer with weakly labeled source data and

unlabeled target data for the cross-domain VPR task. La-

beled data with matching pairs from beeldbank and Mapi-

lary dataset is only used for evaluation of the model. We use

queries from the target domain to retrieve relevant gallery

image(s) collected from the source domain.

We made the hypothesis that our attention module it-

self can improve the cross-domain VPR task to some extent

without the MK-MMD loss compared to vanilla NetVLAD.

An experiment was carried out to examine the function of

the attention module later in Section 3.2. Further ablation

study of the attention module and the MK-MMD loss will

be presented in section 4.5.1 and 4.5.2.

Baseline work We compare our attention-aware frame-

work with ‘off-the-shelf’ CNNs for both single-domain

VPR and cross-domain VPR tasks. The baseline work used

AlexNet pretrained on ImageNet cropped before conv5 as

feature extractor. Features are then sub-sampled by ei-

ther max pooling (fmax), average pooling (favg), vanilla

VLAD pooling without attention(fV LAD) and VLAD with

attention-aware A1 method (fA1−V LAD) [31].

4.3. Evaluation metrics

We follow the standard place recognition evaluation met-

ric in [3] where the query image is considered as correctly

matched if at least one of the retrieved top N images is lo-

cated within 25 meters away from the ground truth query lo-

cation. The Recall@N evaluates the percentage of correctly

localized queries at different N matching levels. For cross-

domain place recognition, since the Beeldbank dataset con-

tains labeled positive pairs, the Recall@N will be directly

calculated using these labels.

4.4. Implementation Details

The attention module starts with a ReLU activation, fol-

lowed by a 1×1 convolutional layer and softplus activation

to produce attention scores. In the VLAD layer, the num-

ber of cluster centers used is K = 64. Mapillary images

were cropped with a random proportion to the original size

between (0.3 1.0) for data augmentation before training.

We froze the layers before conv4 and fine-tuned the

weights of all the other layers afterwards with the optimizer

ADAM. We used the following hyperparameters: learning

rate lr = 1e-5, batch size = 2 tuples (each tuple contains

24 images, including query, positive and negative pairs),

epochs = 25. The hard negatives mining uses the same

technique as NetVLAD[3]: it first caches all the training

queries and gallery images for a time and then randomly se-

lects 1000 negatives (image away from 25 meters). It keeps
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Figure 3: Correctly retrieved top1 image from our framework trained with unsupervised domain adaptation, (top) queries are

from the Beeldbank dataset, (bottom) retrieved images are from the Mapillary dataset. Our model can retrieve images not

only depicting a similarly scene (a.), but also images from a different perspective (c.) and images captured further away from

the query (b., d.). (b.) is correctly retrieved by matching the features of the building like the window and the unique shape of

the door on the right side.
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Figure 4: Visualization of attention score maps for source and target images. The top row shows the input images. The

middle row is the heatmaps obtained by using [31], defined in Eq.4. The bottom row presents the results from our proposed

method defined in Eq.6. It shows that our proposed attention module can generate accurate attention score maps with higher

density on domain invariant objects for both source images and target images.



the top 10 hardest negatives from the cached gallery image

features. The cache is updated every 1000 training queries.

We center cropped and reshaped all target Beeldbank im-

ages to 512 × 512 pixels in the cross-domain VPR experi-

ment. The MK-MMD loss is calculated after conv5. The

weight α in Eq.1 is 0.99. The margin m in Eq.3 is set as

0.1.

4.5. Results

This section presents the results of the experiments with

a detailed ablation study for the attention module (Section

4.5.1) and the domain adaptation module (Section 4.5.2)

separately on both single-domain and cross-domain VPR

tasks. Visual inspection of retrieval results and attention

heatmaps are shown in Fig.3 and Fig.4.

4.5.1 Attention module

To evaluate the performance of our attention aggregation

module on both single and cross-domain VPR tasks, we first

trained the model on the source domain (Mapillary40k) and

directly tested it on the source test set and the target test

set without MK-MMD loss. Tab.2 shows the retrieval re-

sults where our attention aggregation method consistently

outperforms the model without attention on both S −→ T

and S −→ S tasks. A possible explanation could be that the

VLAD descriptors are easily affected by the irrelevant ob-

jects. By not focusing on representative details that describe

unique features of each building, it may retrieve an image

that has a similar road or sky etc.

To inspect whether our attention module can produce

reasonable attention scores for each descriptor, we visual-

ize the attention maps of different attention-aware schemes

in Fig.4. Our attention aggregation method generates

heatmaps with higher densities on representative features

and better robustness against irrelevant objects. Most atten-

tion is assigned to the architectures and less attention is as-

signed to non representative regions such as road and sky as

expected. Note that in Tab.2, the performance of fA1-V LAD

is worse than fV LAD and four-V LAD achieves the best re-

sults. We conclude that an insufficient attention map will

deteriorate the performance.

4.5.2 Domain adaptation module

The additional domain adaptation loss (MK-MMD) is

added to our model and all baseline works in this sec-

tion. The MK-MMD loss is adopted to further minimize

the domain discrepancy in this experiment. We applied

it on the vanilla NetVLAD (fV LAD-DA), A1 attention

model (fA1-V LAD-DA) and our attention aggregation model

(four−V LAD-DA). The performance of different models

with and without MK-MMD loss are examined on both

source and target test test. The results are visualized at dif-

ferent recall rates in Fig.5.

When trained with the MK-MMD loss for the

S −→ T cross-domain VPR task, both fV LAD-DA and

four-V LAD-DA benefit from domain adaptation, while no

significant improvement of fA1-V LAD-DA is observed. De-

tailed results are presented in Tab.3.

In addition, we also examined the performance of the

model trained for the cross-domain VPR task on the source

domain due to the reason that extra data from the target

doamin may also help with retrieval in source domain if

the model is robust to the outliers in the Beeldbank dataset.

fV LAD-DA does not show much power in the original

source domain compared to fV LAD. The retrieval accuracy

of fA1-V LAD-DA in the source domain decreases after do-

main adaptation. Our proposed model gets better retrieval

result even on the source domain as shown in Fig.5. This

experiment proves that the domain specific features and

outliers are reduced while more domain invariant features

are captured by our proposed attention aggregation model

which further facilitates the domain adaptation procedure.

Figure 5: Comparison of the models trained with or without

the MK-MMD loss on both single-domain (S −→ S) and

cross-domain (S −→ T ) tasks. DA denotes that the MK-

MMD loss is added during training

Overall, we show that our attention aggregation model

can achieve more accurate retrieval results on both single-

domain S −→ S and cross-domain S −→ T VPR tasks even

without domain adaptation and it can further facilitate un-

supervised domain adaptation to achieve better performance

on both source and target test sets.

5. Discussion

Usually we assume that the training data and test data are

sampled from an identical distribution which is violated in

our cross-domain setting. We designed an attention-aware



S −→ T S −→ S

R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20

fmax
+ 0.0096 0.0577 0.0769 0.1058 0.6347 0.8226 0.8800 0.9203

favg
+ 0.0000 0.0096 0.0481 0.0769 0.7884 0.9284 0.9535 0.9730

fmax 0.0000 0.0000 0.0577 0.1250 0.7410 0.9108 0.9431 0.9639

favg 0.0096 0.0192 0.0481 0.0577 0.7984 0.9269 0.9564 0.9725

fV LAD 0.0096 0.0192 0.0192 0.0577 0.8843 0.9687 0.9782 0.9853

fA1-V LAD 0.0096 0.0481 0.1058 0.1538 0.8819 0.9649 0.9801 0.9877

four-V LAD 0.0192 0.0577 0.1154 0.2019 0.9132 0.9753 0.9815 0.9900

Table 2: The + denotes that the ‘off-the shelf’ model is pretrained on ImageNet[15] for classification task. The others are

trained on Mapillary40k for place recognition from scratch, and directly tested on the cross-domain dataset.

with DA without DA

R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20

fV LAD 0.0096 0.0481 0.0769 0.1635 0.0096 0.0192 0.0192 0.0577

fA1-V LAD 0.0096 0.0769 0.1058 0.1442 0.0096 0.0481 0.1058 0.1538

four-V LAD 0.0577 0.1346 0.1731 0.2788 0.0192 0.0577 0.1154 0.2019

Table 3: Comparison of different models’ performance on the cross-domain S −→ T VPR task under two conditions: with or

without domain adaptation using the MK-MMD loss. DA stands for domain adaptation using MK-MMD loss.

adaptive network to tackle the existing distribution shift.

The results indicate that both the attention and adaptation

modules contribute to the accurate retrieval of visual in-

formation. We speculate that the attention module mainly

helps with focusing on domain invariant objects and the do-

main adaptation module aligns the depiction styles between

the two different domains. Our dual experiments on both

conventional and cross-domain VPR tasks admit the dif-

ficulty of learning age-invariant features when there is no

cross-domain pairing labels available for directly training

CNNs.

Besides the large domain shift, our Beeldbank target

dataset contains various classes of images like people, in-

door scenes, sketches and ground plans of buildings. These

outliers are not contained in source dataset Mapillary40k

rendering the task more difficult. Domain adaptation with

more classes or outliers in the target domain compared to

the source domain can be considered as open-set domain

adaptation problem [7, 9, 33, 35]. Some other works refer to

this as outlier detection problem [46, 29]. We speculate that

the attention module can filter out the outliers by weighing

them less with the heatmaps.

6. Conclusion

We proposed a specially-designed CNN for automatic

annotation of historical images with their location. This

is helpful specifically for museum curators and historians

to retrieve the location information of a historical urban

scene or architecture. This task is more challenging than

single-domain (conventional) location retrieval due to the

domain discrepancy caused by the large time lag between

depicted scenes. A cross-domain dataset is collected ac-

cordingly with Mapillary40k used as source domain and

Beedldbank, as target domain. To tackle this challenge,

an attention aggregation module with a domain adaptation

layer is designed, the performance of which is demonstrated

by detailed experiments and ablation studies. Our attention

aggregation model achieves state of the art results on both

single and cross-domain VPR tasks by focusing more on

domain invariant objects. It can be further combined with

an extra domain adaptation module using the MK-MMD

loss to achieve higher retrieval accuracy not only on the tar-

get domain but also on the source domain. Moreover, we

believe our methods can achieve promising results on open-

set domain adaptation tasks where unseen classes or outliers

are not involved during training.
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