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Abstract

In this paper, we focus on training a deep neural net-

work to in-paint and restore the historical painting of Dun-

huang Grottoes. Dunhuang Grottoes is more than 1000

years old and the wall-painting on the grottoes has suffered

from various deterioration. The ground truth does not exist

either. Furthermore, learning the style of the artists is not

straight forward because the wall-paintings are created by

thousands of artists over more 400-500 years. As the very

first attempt to solve this problem, we propose an end-to-

end image restoration model for Dunhuang wall-painting.

The end-to-end image restoration model employ U-net with

partially convoluational layers to construct, which is capa-

ble in restoring non-rigid deteriorated content given a loss

content mask and a wall-painting image. To learn the vari-

ous artists style from real data, the training set and valida-

tion set are collected by using a zooming-in-like and ran-

dom cropping approach on the digital RGB images pho-

tographed on the healthy Grotto-painting. We also synthe-

size the deteriorated paintings from real data. To ensure

the synthetic content in the masked region is consistent to

the ground truths in term of texture, colors, artistic style

and free of unnecessary noises, the loss function is in a hy-

brid form that comprises transition variation loss, content

loss and style loss. Our contributions are of three folds:

1) proposed using partial convolutional U-net in restoring

wall-paintings; 2) the method is tested in restoring highly

non-rigid and irregular deteriorated regions; 3) two types

of masks are designed for simulating deteriorations and ex-

perimental results are satisfactory.

1. Introduction

Image restoration is a fundamental technology in image

processing and computer vision. It is also very important

for modern archaeologist and historian that there is strong

motivation to utilize computer vision and image processing

technology to automatically in-paint and restore historical

documents and paintings.

Unlike traditional technology, in recent years, deep neu-

ral network enables the computer to learn from existing con-

tent and style. It has been proved to be more reliable than

traditional rule based technologies. Specifically, to restore

the loss regions, one needs to learn the well-defined style

and the similar texture of the target image; then synthesize

the labeled lost non-rigid regions with new texture in con-

sistent local context. One of the most common methods

for art-work restoration is to scan or photocopy the wall-

painting into digital image, then to employ digital image

processing techniques to restore the lost parts. Nonethe-

less, wall-painting restoration is an ill-post problem, owing

that most of the color and texture of region to be restore are

lost in the history and the true knowledge no longer exists.

This requires that the image restoration method is capable

in inpainting loss region with synthetic contents which in



Figure 1. Some restoration results. Each column represents the related data of a image sample. From row 1 to row 5: deteriorated input

image, input mask, output predicted image, merged final result, groundtruth image

consistency of peripheral regions in term of artistic style,

semantic perception and textural distribution. Unlike nat-

ural image inpainting, which is aiming to generate reason-

able content. Inpainting of artwork relying on generating

the content more similar to the artist’s style. It is, how-

ever, not that straight forward as natural image inpainting,

because the number of existing artworks of particular artist

is limited. Furthermore, for historical painting, there might

be not existing a groundtruth for training the deep neural

network.

In this paper, we focus on training a deep neural network

to in-paint and restore the historical paintings of Dunhuang

Grottoes. Dunhuang Grottoes is more than 1000 years old

and the wall-painting on the grottoes has suffered from var-

ious types of deterioration. The ground truth does not ex-

ist either. Furthermore, learning the style of the artist is

not straight forward because the wall-paintings are created

by thousands of artists over a time span of more than 400

years. To this end, we proposed using end-to-end partial

convolutional neural network to build up a novel digital im-

age restoration algorithm for Dunhuang Grottoes. Partic-

ularly, partial convolutional uses a mask, which indicates

irregular deteriorated regions, as input conditions. Since

deterioration on Grotto-painting occurs in various forms

with different shapes, the input with flexible representation

of deterioration and the output of a single RGB image fit

wall-painting restoration task properly. To learn the various

styles from multiple artists. The training set and valida-

tion set are collected by using a zooming-in-like and ran-

dom cropping approach on the digital RGB images pho-

tographed on the healthy Grotto-paintings. The Grotto-

painting photographs captured using DSLR cameras from

Grotto sites are too large for any practical neural networks.

Simply re-scaling the photographs will lead to loss of fine

details; and the network built on these re-scaled photos is

probably not able to restore regional deterioration. Thus, we

randomly generate small rectangular bounding boxes with

proper high-width ratios to crop regional patches and save

as training or validation samples. There are two advantages

of this approach; on one hand, local fine details and rich

textures are preserved in the cropped samples; on the other,

it generates numerous samples for feeding a larger neural

network. Our loss function is in a hybrid form that com-

prises transition variation (TV) loss, content loss and style

loss. The content loss and style loss, proposed by John-

son et al.[7], have been successfully applied on image style

transfer and super-resolution. The content loss measures

the textural difference between the predicted and the target;

while style loss measure difference of the colors and artis-

tic style. The TV loss is used in suppressing unnecessary

noise generated in texture synthesis. In the image restora-

tion, we use these loss functions to ensure the synthetic con-

tent in the masked region is consistent to the ground truths

in term of texture, colors, artistic style and free of unnec-

essary noises. The optimizer uses value of these loss com-

bination to tune network parameters and narrows distances



between predicted images and ground truths.

In summary:

1) We applied the end-to-end networks with partial con-

volutional layers onto a wall-painting dataset in different

styles and presented a state-of-the-art performance.

2) We create a reasonable data collection from the Dun-

huang Grottoes Paintings which enables image inpainting

through data driven approach.

3) We provide proper analysis and comparison on the

results using two types of masks, which are designed for

simulating deteriorations.

2. Related Works

Image restoration has been one of the focuses in com-

puter vision community for decades; many researchers have

proposed fruitful methods in the literature. Nonetheless,

due to challenges from the rich information in visual sig-

nal and the almost infinite possible ways of inpainting the

loss content, and partly because of efficiency requirement

and lack of groundtruth information, the automatic image

restoration technique for some specific problems still need

further investigation. Methods in this domain could be clas-

sified into two categories: conventional image processing

based techniques and convolutional networks based meth-

ods.

2.1. Conventional methods

Early proposed methods are based on the diffusion tech-

niques. These diffusion based approaches [1][3] [9] fill in

the to-be-repaired holes by propagating the semantic infor-

mation in its peripheral regions. The propagation of seman-

tic information can be isophote direction field [1][3] or re-

lies on statistical illumination or color features [9]. These

early proposed methods, though usually be applied in dust

removal task in film scanning, can only coarsely in-paint

small holes from such as tiny molds in paintings and photo

scratches. The more sophisticated patch-based methods,

which are capable in restoring larger deteriorated regions,

out-performance diffusion-based methods in image inpaint-

ing and set the new base-line performance onto a higher

level. The first patched-based method [4] proposed a tex-

ture synthesis framework to use a novel copy-paste scheme.

The copy-paste scheme searches possible patches from im-

ages in source dataset and paste the patch into loss region

in the target image. Some methods [2] [8] [16][13][5] fol-

lows the patch-based framework and further introduced op-

timization methods to smooth the inconsistency between

synthetic and original textures. Particularly, PatchMatch [2]

has greatly reduce computational cost and increase the pro-

cessing speed to the sub-real-time level. Rather than syn-

thetically generating learned textural content, patch-based

methods rely on matching local pixels or their texture fea-

tures; and thus unable to restore textures or objects which

are not exactly in source dataset. Another drawback is that,

when putting into practice, the source dataset must be used

along with patch-based methods.

2.2. CNN based methods

The state-of-the-art image restoration techniques are

driven by the convolutional neural networks, which has set

new base-lines in many signal processing areas in recent

years. Early methods [11][17] focus on inpainting a regular

rectangular blank patch in the center of a target image. The

Context Encoder [11] was the first proposed to use an asym-

metric end-to-end convolutional neural network (CNN), in

which input an 128×128 image with blank patch on one

end and output the estimated 64×64 patch on the other end.

Context Encoder encodes visual information of non-blank

region and maps it onto the groundtruth content in the center

by taking the advantages of the powerfully feature embed-

ding capability of the convolutional networks. Yang et al.

[17] extended Context Encoder by introducing multi-scale

neural patch synthesis approach based on joint optimization

of image content and texture constraints. The improvement

are reflected on the semantic fine details in the filled con-

tent. Song et al. [15] proposed to use an stacking Multi-

scale inference and Patch-Swap operation to refine the se-

mantic texture in restored regions. Iizuka et al. [6] and Yu et

al. [18] drop the assumption of centered rectangular blank

patch and more flexibly assume inpainting regions can be in

non-rigid shapes. The regions to be in-painted are given in

the form of mask. One of the side-product advantages is that

these methods reduces the risk of over-fitting the rectangu-

lar shape of blank patches. Iizuka et al. [6] use generative

adversarial framework with two discriminators for judging

the local synthetic texture and global generated image re-

spectively. Yu et al [18] extended [6] by integrating an at-

tention mechanism. Lately, Liu et al. [10] proposed Partial

Convolution, which merges the mask and image gradually

in partial convolutional down-sampling in encoder and de-

convolutes the encoded low-level features onto the global

predicted texture. The local in-painted texture are further

merged with original undeteriorated texture to form a final

restored image.

3. Methodology

To automatically in-paint the deteriorated regions with

synthesized content, it is desirable to build up an end-to-

end neural network, which output a map containing the syn-

thesized content in the corresponding regions without ad-

ditional post-processing. The end-to-end neural network

takes in the original image and the mask at one end; then

output a predicted image as the same size of the original

image at the other end. Using the powerful capability of re-

gression and prediction of CNN, the method avoids hand-

designed pre-processing optimization for the restored se-



Figure 2. The training procedure of the image restoration method.

Figure 3. The inference and restoration procedure of the image restoration method.

mantic content. Let Iinput, M , Iout and Ir be the original

input image, mask, output image from the networks and fi-

nal restored image. Supposed the width and height of the

network input is N, the input color image Iinput with re-

gions to be restored is in the size of N × 3. If the input

image is not square, it will be re-scaled to be square so that

the ratio is consistent with the network input. The mask

M , which is of size N , labels whether pixels belongs to

deteriorated regions or intact regions. The labeled deteri-

orated regions are generally in irregular non-rigid shapes.

The output image contains textural and stylistic informa-

tion of both labeled deteriorated region and the unlabeled

region. The end-to-end networks serves as a function that

maps from an input color image and a mask to an output

color image of same size: f : (Iinput,M)out . The final

restored image Ir , containing both original intact content

and synthesized content, is the pixel-wise combination of

Iinput and Iout. Given the mask M , restored image Ir is

computed as Ir = Iinput ◦ M + Iout ◦ (1 − M), where ◦
is the pixel-wise multiplication. The key of this process is

to find out and train an effective end-to-end neural networks

f(·), whose output content of masked regions has minimal

perceptual difference from the groundtruth. We will intro-

duce the network architecture, the loss functions and the

implementation details following subsections.

3.1. Network Architecture

To generate the synthesized content for deteriorated re-

gions of the Dunhuang Grottoes, we take the advantages of

the U-like end-to-end network with skip connections and

partial convolutions(PConv)[10]. The network architecture,

a variant of encoder-decoder configurations, is shown in fig-

ure 2.

The encoder and decoder are not mirrored in symmet-



Figure 4. The architecture of the proposed networks.

ric structure like the conventional U-nets [12]. The encoder

contains 8 partial convolutional layers and the size of kernel

7, 5, 5, 3, 3, 3, 3 and 3. The channel sizes in the layers are

64, 128, 256, 512, 512, 512, 512, and 512. ReLU activa-

tion function is used in each layer in the encoder except for

the first layer. Between layers, the batch normalizations are

used on the feature maps. The decoder has similar structure

to the encoder but are in reverse order. The channel sizes in

the decoding partial convolutional layer are 512, 512, 512,

512, 256, 128, 64, and 3 with kernel sizes 7, 5, 5, 3, 3, 3, 3

and 3 respectively. Different from using ReLU in the encod-

ing, the LekyRuLU activation function is used in decoding

with parameter alpha = 0.2.

The skip connections directly pass feature maps from ith

layer of encoder to (8-i)th layer of decoder. Feature maps

from encoder are concatenated to the feature maps from de-

coder in the axis of channels. In the conventional encoder-

decoder networks, when the input went through eight down-

sampling layers, the information pass through the bottle-

neck layer is limited. In the reverse process, which is up-

sampling, the decoder may not have enough features to ef-

fectively recover most details for an end-to-end image gen-

eration task. To this end, using skip connections across net-

works could overcome this limitation. A skip connection

builds up a pipeline for sharing the low-level features from

layers in the encoder to the corresponding layers in decoder.

Thus, it helps the decoder recover more details in the output.

The segment-aware based partial convolution [10] is es-

sentially an multiplication-based conditioning method. The

mask, which labels pixels in deteriorated foreground re-

gions as 0 and those in intact background as 1, serves as

a conditional inverse attention for the networks. In other

words, the intact background regions are to be learned in

the convolutional layer while the deteriorated foreground

regions are to be ignored. The mathematical formula of par-

tial convolution operation is given as follows:

x′′ =

{

WT (X ′ ◦M ′) 1
sum(M ′) + b if sum(M ′) > 0,

0 otherwise.

(1)

where X ′ and M ′ are input feature maps and mask in the

receptive field; ◦ is the element-wise multiplication; WT

and b is the weight and bias of a filter; x′′ is the output

value of partial convolution. When being passed down in

the encoder, the mask gradually decayed by merging with

the neighboring regions in each layer. The mask is updated

with a decaying process as:

m′′ =

{

1 if sum(M ′) > 0,

0 otherwise.
(2)

Each partial convolutional block downsamples the fea-

ture maps and the mask. When mask reach to the bottleneck

of the U-like networks, the value in the mask will be all 1s,

which means all the masking information are fused into the

embedding low-level features. During the down-sampling

and decaying process, decayed mask and partial convolu-

tion not only smooth feature maps but also fill the vacant

regions in the subsequent feature maps, in which is of all

zeros in the first layer.



3.2. Loss

The overall loss for training the proposed end-to-end par-

tial convolutional neural networks is linear combination of

multiple loss terms that take account of different consider-

ations, including content differences, style differences and

smoothing constraint. The overall loss is given as follows:

L = λcontentLcontent + λstyleLstyle + λTV LTV (3)

where Lcontent, Lstyle and LTV are the content loss,

style loss [7] and total variation (TV) loss; and λcontent,

λstyle and λTV are the balancing coefficients for the cor-

responding loss respectively. For the content loss and style

loss, we employ VGG-16 ImageNet pre-trained networks

[14] as the loss network φ to extract the deep feature maps.

The pre-trained loss network φ has already learned to en-

code semantic and perceptual information using ImageNet

dataset. Thus, the network is no longer trained or updated in

the training stage. We use the one pass of feed forward net-

work φ to obtain activation maps of a given image I from

first four convolutional blocks; then the activation maps are

reshaped into deep features in the form of 1-D vectors, de-

noted as {φ(I)i}; i = 1, 2, 3, 4.

Content Loss. Taking advantages of the deep features,

the content distance of ith layer-wise features is the Eu-

clidean distance of the corresponding two vectors. The con-

tent loss in our task, taking accounts of distances from each

pair of images (Igt, Iout) and (Igt, Ir), is defined as summa-

tion of content distances of all levels, mathematically shown

as follows:

Lcontent =

1,2,3,4
∑

i

1

CiNiNi

[|φ(Igt)i − φ(Iout)i|2+

|φ(Igt)i − φ(Ir)i|2]

(4)

where Ci and Ni are the number of channels and the

length of a square feature map output from ith layer. The

content loss allows us to measure the differences of compo-

nential content and overall spatial structure between a pair

of images while style loss measures the differences of stylis-

tic characteristics, like colors, textures, common patterns.

Style Loss. The style loss is computed using style

features, which is obtained by further computing auto-

correlation (Gram matrix) [7] of the deep feature from the

pre-trained network. Let G
φ
i (I) be the Gram matrix of

ith layer-wise deep features of a given image {φ(I)i}; i =
1, 2, 3, 4; the elements of Ci × Ci Gram matrix of φi(I) is

computed as follows:

G
φ
i (I)c,c′ =

1

CiNiNi

N
∑

h=1

N
∑

w=1

φi(I)w,h,cφi(I)w,h,c′ (5)

Similar to content loss, the style loss takes account of the

differences both in (Igt, Iout) and (Igt, Ir):

Lstyle =

1,2,3,4
∑

i

[|Gφ
i gt(I)−G

φ
i out(I)|

F
2 +

|Gφ
i gt(I)−G

φ
i (Ir)|

F
2 ]

(6)

where | · |F2 is the the squared Frobenius norm. Using

distances content and style feature from pre-trained network

rather than pixel-wise distance between two images, the net-

work would avoid learning hard matching of pixels and fo-

cus on generalizing the perceptual visual information. Thus,

by reducing the content and style loss of the output/restored

image and the groundtruth image, the end-to-end network

outputs are gradually optimized to narrow the perceptual

gaps between ground true and the restored images.

Total Variation Loss. To encourage the spatial smooth-

ness in the restored region P , the total variation (TV) regu-

larizer is adopted as a loss term. The TV loss of region P

given the restored image Ir is as follows:

LTV (Ir|P ) =
∑

(i,j)∈P

[|I(ri, j)− I(ri+ 1, j)|1+

|I(ri, j + 1)− I(ri, j)|1]

(7)

3.3. Training and Implementation

We employed two stages to train the partial convolu-

tional end-to-end network: 1) the first stage is to pre-

train a partial convolutional network with diverse low-level

feature-extracting capability; 2) the second stage will fine-

tune the pre-trained model to fit in our grottoes restoration

task.

In the first stage, the partial convolutional network is

trained on the Place2 dataset [19] to obtain a pre-trained

model. The pre-training allows the network to generalize

its low-level filters on a diverse dataset so that it could ex-

tracted various deep features for the latter stage. The Place2

dataset contains A 10 million image, in which cover nu-

merous different kinds of texture. As the Place2 dataset is

large enough to contains diverse visual information, data

augmentation is not used in the first training stage; and all

training images are randomly sampled from the huge Place2

dataset. During pre-training, we use Adam as optimizer and

set the learn rate to 2e-4. The size of mini batch is 16. The

weighting coefficients λcontent, λstyle and λTV for corre-

sponding loss functions are set to be 0.05, 1000, and 0.1

respectively. The loss value is back-propagated through all

parameters in the network.

In the second training stage, the network is fine-tuned by

fixing some weights in low level filters. More specifically,

the parameters of batch normalization layer in the encoder



of the network are frozen and no longer to be updated. Data

augmentation techniques are used in pre-processing the in-

put images in order to avoid over-fitting the style and dy-

namically generate more training samples. The augmenta-

tions include random vertical flip, random horizontal flip,

random 90-degree rotation, random change of saturation,

random adjustment of Gamma value and random adding

Gaussian Noise. The parameter settings of fine-tuning are

similar to the pre-train stage except that the learn rate de-

creases to 5e-05.

The proposed method is implemented in PyTorch 0.4.

The input and output sizes of the end-to-end networks is

256x256. Images of different sizes and scale ratios are re-

scaled to fit the input size of the network. The implemented

method is trained and tested on X86 PC powered by Intel

i5 CPU@3.7GHz, 16GB RAM, Ubuntu 16.04 OS, nvidia

GTX Titan Xp with 11GB memory. During pre-training and

fine-tuning, it takes around 0.9s to process each iteration,

which includes forward inference and back-propagation of

network updating. It takes 20000 iterations and around

10 hours to pre-train a model; and more than 9000 itera-

tions and 5 hours to fine-tune an effective image restoration

model for our wall-paintings dataset.

4. Experimental Results

In the experiments, the implemented method is tested

on image samples cropped from raw FeiTian/FlyingSky

data which is delicately photographed at the sites and

provided by Dunhuang academy. After generating

FeiTian/FlyingSky dataset, we conducted two experiments,

which consist of: 1) we compare the results of the method

perform on two different types of deterioration masks; 2)

Comparison on two different types of deterioration masks.

4.1. Experimental Settings and Dataset

To generate large scale cropped image sample from

FeiTian/FlyingSky imageset, randomized cropping, rota-

tion and re-scaling are used on the raw images. The cropped

10000 images are splitted into train set and validation set

with rough proportion of 4:1. Although some image sam-

ples may contain deteriorated texture caused by natural ag-

ing, the general image quality are good enough to carry suf-

ficient visual knowledge of artistical content. During train-

ing, the image, masked image and the mask form a triplet

input sample; while in testing only masked image and the

mask are needed.

4.2. Comparison on two different types of deterio-
ration masks

Two types of masks, which are called dusk-like mask and

jelly-like mask, are generated to fully test the performance

of texture synthesis. In the domain of grottoes restoration

(a) (b)

(c) (d)

Figure 5. Two types of masks: a) and b) are dusk-like masks; c)

and d) are jelly-like masks.

in e-Heritage protection, the dusk-like masks simulate de-

terioration by molds or salting erosion, while the jelly-like

masks simulate physical damages or sabotages. The gen-

eration process of the dusk-like masks follows these steps:

Step 1) Initialize a square blank image with all value set as

1. This blank image serves as a canvas for drawing mask.

The size of initial mask is 256x256. Step 2) Randomly pick

a start point P0 on the blank image, and set the pixel value

to 0. Step 3) Iteratively perform random walk from Pi to

Pi+1. Once a pixel is traversed, its value will be set to 0.

Note that a pixel is allowed to be walked on more than 1

time. The default number of walk steps is 10,000. The lat-

ter type of jelly-like mask, based on the dusk-like masks,

is further processed by removing small noises and reserve

the irregular block-like regions using open-close functions

and image erosion. Fig. 4 and 4 provide the results using

dusk-like mask and jelly-like mask respectively. In these

results, the style and color are mostly the same as those

in the groundtruth. Even if the textural content may not

be exactly the same as the original content, those inpainted

texture is fine enough to fool human perceptions and the

regional context are mostly consistent. For those masked

by the dusk-like masks, the synthetic texture in the single-

pixel-width random line are so well-blended with region

context that sometimes even unnoticeable. We also noticed

that, for large block of masked region, the details may not

be to fully recovered, which reflected on the relative failure

in inpainting some fine details.

5. Conclusions

In conclusion, we focused on training a deep end-to-end

neural network model to in-paint deteriorated regions and

restore the historical painting of Dunhuang Grottoes. The



Figure 6. More testing results using dusk-like masks. Each column represents the related data of a image sample. From row 1 to row 5:

deteriorated input image, input mask, output predicted image, merged final result, groundtruth image

Figure 7. More testing results using jelly-like masks. Each column represents the related data of a image sample. From row 1 to row 5:

deteriorated input image, input mask, output predicted image, merged final result, groundtruth image

end-to-end image restoration model employs U-net with

partially convoluational layers to reconstruct lost content,

which is capable in restoring non-rigid deteriorated content

given a lost content mask and a wall-painting image. In or-

der to reduce the difference between the synthetic content in

the masked region and the groundtruths in term of texture,

colors, artistic style and free of unnecessary noises, a hybrid

loss function is used in optimization. Implemented model

is fully tested in restoring highly non-rigid and irregular de-

teriorated regions, using two types of masks designed for

simulating deterioration. The experimental results are satis-

factory and have shown the method is capable in restoring

the loss content properly.



References

[1] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and

J. Verdera. Filling-in by joint interpolation of vector fields

and gray levels. IEEE Transactions on Image Processing,

10(8):1200–1211, Aug 2001.

[2] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Gold-

man. Patchmatch: A randomized correspondence algo-

rithm for structural image editing. ACM Trans. Graph.,

28(3):24:1–24:11, July 2009.

[3] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image

inpainting. In Proceedings of the 27th Annual Conference

on Computer Graphics and Interactive Techniques, SIG-

GRAPH ’00, pages 417–424, New York, NY, USA, 2000.

ACM Press/Addison-Wesley Publishing Co.

[4] A. A. Efros and T. K. Leung. Texture synthesis by non-

parametric sampling. In Proceedings of the Seventh IEEE In-

ternational Conference on Computer Vision, volume 2, pages

1033–1038 vol.2, Sep. 1999.

[5] J.-B. Huang, S. B. Kang, N. Ahuja, and J. Kopf. Image com-

pletion using planar structure guidance. ACM Trans. Graph.,

33(4):129:1–129:10, July 2014.

[6] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Globally and

locally consistent image completion. ACM Trans. Graph.,

36(4):107:1–107:14, July 2017.

[7] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In B. Leibe,

J. Matas, N. Sebe, and M. Welling, editors, Computer Vision

– ECCV 2016, pages 694–711, Cham, 2016. Springer Inter-

national Publishing.

[8] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra. Texture opti-

mization for example-based synthesis. ACM Trans. Graph.,

24(3):795–802, July 2005.

[9] Levin, Zomet, and Weiss. Learning how to inpaint from

global image statistics. In Proceedings Ninth IEEE Interna-

tional Conference on Computer Vision, pages 305–312 vol.1,

Oct 2003.

[10] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and

B. Catanzaro. Image inpainting for irregular holes using par-

tial convolutions. In V. Ferrari, M. Hebert, C. Sminchisescu,

and Y. Weiss, editors, Computer Vision – ECCV 2018, pages

89–105, Cham, 2018. Springer International Publishing.

[11] D. Pathak, P. Krhenbhl, J. Donahue, T. Darrell, and A. A.

Efros. Context encoders: Feature learning by inpainting.

In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 2536–2544, June 2016.

[12] O. Ronneberger, P.Fischer, and T. Brox. U-net: Convolu-

tional networks for biomedical image segmentation. In Med-

ical Image Computing and Computer-Assisted Intervention

(MICCAI), volume 9351 of LNCS, pages 234–241. Springer,

2015. (available on arXiv:1505.04597 [cs.CV]).

[13] D. Simakov, Y. Caspi, E. Shechtman, and M. Irani. Sum-

marizing visual data using bidirectional similarity. In 2008

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1–8, June 2008.

[14] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. Computer Sci-

ence, 2014.

[15] Y. Song, C. Yang, Z. Lin, X. Liu, Q. Huang, H. Li, and C.-

C. J. Kuo. Contextual-based image inpainting: Infer, match,

and translate. In V. Ferrari, M. Hebert, C. Sminchisescu, and

Y. Weiss, editors, Computer Vision – ECCV 2018, pages 3–

18, Cham, 2018. Springer International Publishing.

[16] Y. Wexler, E. Shechtman, and M. Irani. Space-time comple-

tion of video. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 29(3):463–476, March 2007.

[17] C. Yang, X. Lu, Z. Lin, E. Shechtman, O. Wang, and H. Li.

High-resolution image inpainting using multi-scale neural

patch synthesis. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 4076–4084,

July 2017.

[18] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang.

Generative image inpainting with contextual attention. In

2018 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 5505–5514, June 2018.

[19] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba.

Places: A 10 million image database for scene recognition.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 40(6):1452–1464, June 2018.


