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Abstract

Our interaction with the world is an inherently multi-

modal experience. However, the understanding of human-

to-object interactions has historically been addressed fo-

cusing on a single modality. In particular, a limited num-

ber of works have considered to integrate the visual and

audio modalities for this purpose. In this work, we pro-

pose a multimodal approach for egocentric action recog-

nition in a kitchen environment that relies on audio and

visual information. Our model combines a sparse tempo-

ral sampling strategy with a late fusion of audio, spatial,

and temporal streams. Experimental results on the EPIC-

Kitchens dataset show that multimodal integration leads to

better performance than unimodal approaches. In particu-

lar, we achieved a 5.18% improvement over the state of the

art on verb classification.

1. Introduction

The ability to integrate multisensory information is a

fundamental feature of the human brain that allows effi-

cient interaction with the environment [14]. To mimic this

human characteristic is crucial for autonomous robotics to

reduce ambiguity about sensory environment and to form

robust and meaningful representations. Beside artificial

agents, multimodal integration has been used in tradition-

ally vision-based tasks such as scene classification [3, 57],

social behaviour analysis [1, 22, 36] and activity recogni-

tion [2, 35]. While scene classification [3, 57] and social

behaviour analysis [1, 22, 36] have been approached by in-

tegrating mostly audio and visual features, comparative lit-

tle attention has been payed to audiovisual integration for

activity recognition [2, 35, 48]. Indeed, most existing ap-

proaches for the latter aimed at combining different inertial

sensors such as accelerometers, gyroscopes and magnetic

field sensors [34] or inertial cues with audio or depth cues

[7, 10].

In this work, we focus on a particular case of activity

recognition, that is the recognition of activities involving

✁

Figure 1. Audio and vision are complementary sources of informa-

tion for recognizing egocentric object interactions. A limited num-

ber of interactions do not have an associated audio signal (top),

but in most cases, auditory sources provide valuable information

in situations such as the occlusion of the hands and objects (mid-

dle), and in some others they just strengthen the visual information

(bottom).

object manipulations. More specifically, the goal is to iden-

tify actions of the type verb+noun, i.e. pouring+jam per-

formed in a kitchen environment. Recently, promising re-

sults on this task based solely on audio features have being

shown in [9]. Motivated by this work, we proposed a frame-

work to integrate visual and audio features. Fig. 1 shows

how audio cues are crucial to identify the activity being

performed specially when visual information is ambiguous

from an egocentric perspective due to self-occlusions. Our

proposal aims at exploiting the complementarity of visual

and audio features to obtain robust multimodal representa-

tions.

In particular, our contributions can be summarized as fol-

lows: (i) We provide an extensive evaluation and compar-

ison with published methods of the proposed multimodal

architecture on the EPIC-Kitchens dataset [12] (ii) In addi-

tion to action performance, we provide for the first time a

detailed results on the object and verb components. The rest

of the paper is organized as follows. The next section dis-



Figure 2. Pipeline of our proposed approach. A video is divided into K = 3 time segments shown in green, red, and blue colors. Then,

RGB and optical flow frames are sparsely sampled from each time segment to be processed in their respective spatial and temporal streams.

At the end of each stream, the average consensus of the softmax scores is computed. A spectrogram is calculated from the raw audio signal

and processed in its audio stream. The class scores of each stream are joined together using late fusion.

cusses related work. Section 3 introduces the proposed ap-

proach, while section 4 and section 5 detail the experimental

setup and discuss the results, respectively. Finally, section

6 concludes the paper by summarizing the main findings.

2. Related Work

Activity recognition The literature on activity recogni-

tion is vast and spans several decades [24, 39]. In the fol-

lowing, we will limit the discussion to egocentric object

interactions recognition methods. Early approaches aimed

at modelling spatio-temporal features through probabilistic

models [16, 17], and temporal or spatio-temporal pyramids

[33, 38]. Later on, multi-stream neural network based ap-

proaches were proposed [32, 47]. Typically, each stream

treats a different modality (motion, RGB) or models differ-

ent cues (hands, objects, etc). Attention-based mechanisms

were proposed in [50, 51]. The key idea underlying these

approaches is learning to attend regions containing objects

correlated with the activity under consideration. Recently,

Baradel et al. [6] build on the output of an object detector to

perform a spatio-temporal reasoning about the action being

performed.

Two relevant works have been focused on acoustic scene

and activity classification from data collected in the wild

[26, 29]. Hwang and Lee [26] clustered thirteen acous-

tic classes based on Mel-frequency cepstrum coefficient

(MFCC) features from data gathered using mobile phones.

They used as a classification method a k-nearest neighbor-

hood on hand-crafted histograms from the same spectral

features. A closer work to ours is presented in [29]. They

proposed a model to classify 15 different one-minute home

activities of daily living. A shallow network was trained

using the encodings generated by pre-trained VGG-11 net-

work [25] and an oversampling strategy using a large audio

set [18].

Multisensory integration Most multimodal approaches

for activity recognition through wearable sensors build on

the combination of the several inertial features captured by

accelerometers, gyroscopes and magnetic sensors [34]. In-

ertial cues are often integrated with visual information [55].

Audiovisual integration has been extensively used in the

context of smart room scene analysis [44] and event detec-

tion in surveillance videos [11]. More recently, the integra-

tion of audio and visual features has been successfully used

for detecting human-to-human interactions [5], for apparent

personality trait recognition [22], for video description gen-

eration [27], and for multispeaker tracking [40]. Although

several works that combine audiovisual sources have been

reported in the context first-person action recognition chal-

lenges [15, 20, 21], they provide few details about their

models. In [30, 31] are proposed attention mechanisms

for action recognition using audio as a modality branch.

However, the use of audio-visual cues for object interac-

tion recognition is still very limited and previous works only

reported results on the full interaction (action) and not its

components (verb and noun).

The three main model-agnostic approaches largely used

in the literature for combining the audio-visual features are

early, late, and hybrid fusion [4, 28]. In the first approach,

a model learns from the multimodal features after joining



them [27, 37, 40]. In the second approach, different uni-

modal predictors are trained and the final decision is made

by combining their output [22]. The last approach combines

the output from early and late fusion predictors [11, 44].

3. Proposed approach

In this section we describe our multimodal approach

for action recognition1, that is summarized in Fig. 2.

We first present our vision-based recognition approach that

uses Temporal Segments Network (TSN)[52] for the spatial

(RGB) and temporal (optical flow) visual modalities. Then,

we present our audio-based recognition approach that uses

two different convolutional neural networks (CNNs): VGG-

11[46] and a custom network based on [41]. Finally, we de-

tail our fusion strategy to integrate the different modalities.

Vision The visual spatial and temporal input modalities

are RGB and optical flow frames calculated using [56].

Each visual modality was trained as a TSN stream. On the

TSN model, the frames of a video are grouped into K se-

quential segments of equal size. Similarly to [52], we de-

cided to set K = 3 as originally presented. Simultaneously

from each segment, a frame is sparsely sampled and pro-

cessed by a CNN. In our case, we used as backbone net-

works a ResNet-18 and ResNet-50 [23] in our experiments.

Then, a consensus of the scores from each processed frame

is done. We used as a consensus function the average of

the softmax scores. This model is an extension of [45], but

it learns long-range temporal structure of the action in the

video.

Audio The audio modality uses as input the spectrogram

of the raw audio signal from the video. The spectrogram

is calculated as follows. First, when the video has multi-

ple audio channels, we join them by obtaining their mean.

Then, we compute the short-time Fourier transform (STFT)

from this signal using a sampling frequency of 16 KHz. The

STFT uses a Hamming window of length equal to 30 ms

with 50% time overlapping. The signal spectrogram is cal-

culated as the logarithm value of the squared magnitude of

its STFT. The final step consists in normalizing all the input

spectrograms. The spectrogram has a resulting dimension

size for the frequency of 331. As in [9], we only consider

the first four seconds of the audio spectrogram. When it

has less than four seconds duration then a zero padding is

applied. This constraint results in a time dimension size of

248 for the input spectrogram.

A single spectrogram covers a larger time window than

the visual input frames. Therefore, our model only needs

one CNN to process the audio modality. Nonetheless, for

1Code at: http://github.com/gorayni/seeing_and_

hearing

Layer type Output size #Filters Kernel size Dilation

Conv2D 331×248 64 11×7 9×4

max-pool

Conv2D 166×124 64 6×4 9×4

Conv2D 166×124 32 6×4 9×4

Conv2D 166×124 16 6×4 9×4

max-pool

Dense 256 - - -

Dense 256 - - -

Table 1. Architecture of the traditional dilated network for audio

classification.

longer video durations a long short-term memory (LSTM)

could be added as in [43]. Our backbone audio CNN mod-

els are a VGG-11[46] network and a proposed smaller CNN

based on [42]. We call the latter traditional dilated network

and show its architecture on Table 1. This network was

adapted to spectrograms with bigger sizes by using dilation

convolutions [54].

Audio-visual fusion In our experiments we used two late

fusion methods. The first method is the weighted sum of the

class scores from each stream. The second method uses a

network with two fully connected (FC) layers. Its input vec-

tor is calculated by concatenating the outputs of the penul-

timate FC layers from each stream. During training, the

weights of each modality CNN stream are kept frozen.

4. Experimental Setup

The main objective of our experiments was to mea-

sure the performance of our proposed multimodal approach

on an egocentric object interaction recognition task from

videos. More specifically, the task consists on predicting

what a person is doing (verb) using a specific object (noun).

Both classifications can be trained and evaluated separately

or combined as a single action classification. Therefore,

our secondary objective was to determine the contribution

of audio and visual information on each type of classifi-

cation (noun, verb, action). Contrary to previous works

[15, 20, 21], we did not make any assumption on which

classification type the audio source would perform better.

We provide further details of our experimental setup in the

following subsections. In section 4.1, we describe the used

dataset and its data partition. The specific evaluation met-

rics and baselines are presented in section 4.2. Finally, the

implementation details of our model are detailed in section

4.3.

4.1. Dataset

We carried out our experiments on the EPIC Kitchens

dataset [12]. Each video segment in the dataset shows a

participant doing one specific cooking related action in a

kitchen environment. Some examples of their labels are

“cut potato” or “wash cup”. The EPIC Kitchens dataset



Top-1 Accuracy Top-5 Accuracy Avg Class Precision Avg Class Recall

VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION

Chance/Random 11.38 01.58 00.43 47.58 07.74 02.12 01.00 00.34 00.06 01.00 00.34 00.07

Largest class 20.19 04.11 02.10 66.93 18.38 07.54 00.21 00.01 00.00 01.05 00.36 00.07

A
C

T
IO

N

Audio VGG-11 29.44 05.99 05.84 70.49 16.90 17.41 00.92 00.51 00.20 01.86 00.79 00.45

Traditional Dilated 32.16 06.86 10.77 72.22 22.34 25.86 01.64 00.84 03.04 02.31 01.90 04.58

TSN Flow 36.70 14.82 22.54 75.98 37.25 41.52 02.94 03.46 05.98 03.89 03.06 07.04

Vision TSN RGB 34.06 31.01 32.80 76.71 63.90 59.06 04.17 13.45 15.37 04.83 11.16 19.62

RGB+Flow 37.12 30.15 36.19 79.56 62.02 59.92 04.96 11.94 15.14 04.19 09.21 17.84

Flow+Audio 38.04 13.03 25.35 77.42 35.81 45.06 03.89 04.52 09.25 03.59 03.21 09.32

Multimodal

RGB+Audio 37.65 27.03 34.93 79.52 59.41 60.69 04.03 13.88 16.08 03.66 09.49 18.50

RGB+Flow+Audio 39.95 27.45 36.78 80.47 59.17 60.38 03.30 11.03 15.51 04.02 08.26 16.96

W
ei

g
h
te

d Flow+Audio 39.66 14.44 26.03 77.53 39.15 46.16 03.60 04.78 09.30 03.97 03.39 09.29

RGB+Audio 38.80 30.15 35.50 80.31 63.44 61.71 04.22 14.97 16.71 04.20 10.91 19.63

RGB+Flow+Audio 40.06 29.68 36.92 80.82 61.69 61.14 03.16 12.47 15.56 04.12 09.47 17.76

F
C

Flow+Audio 41.58 21.26 27.34 79.63 48.33 47.84 05.81 07.16 12.63 05.08 05.69 14.01

RGB+Audio 40.85 36.39 35.94 76.84 70.05 61.31 09.03 17.13 16.40 07.11 12.88 19.57

RGB+Flow+Audio 42.56 36.81 40.15 77.06 70.38 64.19 08.48 18.08 19.21 07.55 12.93 22.68

V
E

R
B

+
N

O
U

N

Audio VGG-11 34.48 09.51 03.56 74.50 26.63 12.17 05.26 01.32 00.28 04.04 01.32 01.72

Traditional Dilated 34.82 15.44 06.26 74.72 36.96 17.83 04.53 05.77 01.12 03.88 04.95 01.39

TSN Flow 49.08 22.72 13.54 81.60 46.32 30.77 10.80 08.81 02.53 07.12 04.97 02.23

Vision TSN RGB 50.65 54.01 32.51 88.63 80.87 59.72 25.96 38.83 16.23 19.36 34.43 18.94

RGB+Flow 55.47 52.82 32.76 88.48 78.01 58.13 28.94 39.82 13.53 14.25 27.81 14.22

Flow+Audio 50.06 26.26 15.13 81.02 51.45 33.49 11.72 11.32 02.99 06.61 06.42 02.42

Multimodal

RGB+Audio 53.51 53.11 32.21 87.35 79.63 57.82 26.57 38.89 13.67 13.07 28.98 14.94

RGB+Flow+Audio 56.27 51.09 32.27 87.24 77.15 55.96 25.06 37.17 11.81 11.34 24.28 12.05

W
ei

g
h
te

d Flow+Audio 51.40 26.39 15.62 81.57 51.54 34.24 11.86 12.57 03.37 06.98 06.48 02.72

RGB+Audio 54.24 54.90 33.84 88.19 80.89 59.72 31.21 38.96 15.03 15.07 31.74 16.73

RGB+Flow+Audio 56.65 53.90 33.86 87.70 79.47 58.37 25.75 40.87 13.36 12.58 28.17 14.02

F
C

Flow+Audio 52.00 33.02 20.22 82.24 58.50 39.37 09.72 18.58 05.80 08.11 16.63 06.58

RGB+Audio 55.41 55.08 35.21 87.15 79.78 60.27 20.49 38.47 15.35 14.28 33.55 17.64

RGB+Flow+Audio 60.21 56.14 38.55 89.07 80.96 62.97 27.05 39.89 17.14 19.09 33.85 19.28

Table 2. Classification performance for the equally stratified action data split. The action part show the results of training one classifier on

the action labels, whereas the verb+noun part show the results of independently training two classifiers over the verb and noun labels. The

scores in gray color were calculated based on the respective action or verb+noun classifiers.
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Figure 3. Accuracy difference of the noun split for the unweighted test predictions that changed with respect to RGB+Flow and

RGB+Flow+Audio.

includes 432 videos recorded from a first-person perspec-

tive by 32 participants in their own kitchens while cook-

ing/preparing something. Each video was divided into seg-

ments in which the person is doing one specific action (a

verb plus a noun). The total number of verbs and nouns

categories in dataset is 125 and 352, correspondingly.

For comparison purposes, we considered two data par-

titions derived from the labeled data of the EPIC Kitchen

Challenge:

Home made partition In this partition, all the partici-

pants were considered for the training, validation, and test

splits. The data proportions for the validation and test splits

were 10% and 15%, accordingly. Since the resulting distri-

bution of action classes is highly unbalanced, the data split

was done as follows. At least one sample of each action

category was put in the training split. If the category had

at least two samples, one of them went to the test split. We

also report the results obtained on the EPIC Kitchens Chal-

lenge board from the models trained on this partition.

Unseen verb partition The second data partition was the

one proposed [6]. This partition only used the verb classes

from the labeled data. Moreover, the training and test

splits are on the participants 01-25 and 26-31, respectively.

Therefore, the test set is only composed of unseen kitchens.

In order to train our methods, we created a randomly strati-

fied validation split with 10% of data from the training split.

4.2. Evaluation metrics

Following [12], we measured the classification perfor-

mance using aggregate and per-class metrics. As aggre-

gate metrics for measuring the classification performance

we used the top-1 and top-5 accuracy, whereas as per-class
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Figure 4. Accuracy difference of the verb split for the unweighted test predictions that changed with respect to RGB+Flow and
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Figure 5. Normalized noun confusion matrix with an accuracy of

61.94%. Only the categories with more than 100 samples are

shown.

metrics we used precision and recall. Moreover, the per-

class classification improvement was measured by calculat-

ing the accuracy difference between the visual (RGB+Flow)

and the audiovisual (RGG+Flow+Audio) sources. We also

computed two baselines using the largest classes and ran-

dom classifiers for each experiment. The latter baseline was

approximated by sampling a multinomial distribution.

4.3. Implementation

We first trained all modality streams separately on each

training split for verb, noun, and action. Subsequently, we

trained their late fusion on different combinations of audio

and vision streams. On our experiments, we searched for

the best learning rates while performing early stopping us-

ing the validation split. The following paragraphs provide

more training details for each part of the model.

Audio We only trained our audio network on the spec-

trogram of the first four seconds of each video segment.

As stated in [9], setting a time threshold of 4 seconds al-

lows to completely cover 80.697% of all video segments

using a single time window. For all our experiments we

used the stochastic gradient descent (SGD) optimization al-

gorithm to train both networks from scratch. We used a

momentum and a batch size equal to 0.9 and 6, correspond-

ingly. The learning rates for VGG-11[46] on verb, noun,

and action classification were 5 × 10−6, 2.5 × 10−6, and

1.75 × 10−6, respectively. The learning rates for the tradi-

tional dilated network on verb, noun, and action classifica-

tion were 4.5 × 10−4, 7.5 × 10−5, and 1 × 10−4, accord-

ingly. It was trained using a learning rate equal 1 × 10−5

and a batch size of 22 during 65 epochs. The difference be-

tween the different data splits was the number of training

epochs. The training times for the VGG-11 and the Tradi-

tional Dilated network were around fifteen and eleven hours

on a Nvidia GeForce GTX 980, respectively.

Vision We followed similar training specifications used

in [12], but considering the spatial and temporal CNNs as

single networks rather than two joined streams. As previ-

ously stated, we used ResNet-18 and ResNet-50 as back-

bone CNNs. The former was used only in the data split pre-

sented in [6] for comparison purposes, while the latter was

used in all other experiments. Each backbone CNN was

used for both visual streams and were initialized using pre-

trained weights on ImageNet [13]. Moreover, we trained

both visual modalities between 40 and 80 epochs using the

same learning rate of 1× 10−3 and decreasing it by a factor

of 10 after epochs 20 and 40. The tests were done using

25 samples with 1 spatial cropping. The training of each

modality and category took approximately twelve hours on

a Nvidia Titan X GPU.

Audio-visual fusion For the weighted sum of class

scores, the weights were found using a grid search of values

between 1 and 2. For the neural network method, depending

of the backbone network used on each modality, the length

of the input vector of the first FC layer was between 4,352

and 5,120. The second FC layer had and input vector length

of 512. We used a momentum and a batch size equal to 0.9

and 6, correspondingly. The learning rates for the fusion of

all modalities on verb, noun, and action classification were

1× 10−4, 1× 10−3, and 3× 10−4, respectively.



Method Top-1 Accuracy Top-5 Accuracy Avg. Class Precision Avg. Class Recall

Chance/Random 11.75 48.87 00.99 00.98

Largest class 21.27 69.44 00.31 01.41

A
u

d
io Traditional Dilated 30.51 74.19 04.71 03.60

VGG-11 33.27 74.13 05.72 04.08
V

is
io

n

ResNet-18 [23]† 32.05 - - -

I3D ResNet-18 [8]† 34.20 - - -

TSN ResNet-18 RGB 34.69 77.13 08.38 05.08

ORN [6]† 40.89 - - -

TSN ResNet-18 Flow 44.48 77.88 08.15 06.18

RGB+Flow 43.36 78.77 09.98 05.58

M
u

lt
im

o
d

a
l

RGB+Audio VGG-11 41.09 80.10 08.82 04.76

Flow+Audio VGG-11 45.75 80.34 08.41 05.57

RGB+Flow+Audio VGG-11 45.86 80.72 09.33 05.25

W
ei

g
h

te
d RGB+Audio VGG-11 40.83 79.42 09.45 04.85

Flow+Audio VGG-11 43.74 79.80 09.68 05.31

RGB+Flow+Audio VGG-11 46.07 80.76 09.34 05.30

F
C

RGB+Audio VGG-11 42.08 79.44 12.51 06.55

Flow+Audio VGG-11 44.50 78.68 08.17 06.86

RGB+Flow+Audio VGG-11 45.92 80.33 11.01 07.31

Table 3. Classification performance results on the comparison verb data split. The results marked with † were originally reported in [6].
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Figure 6. Accuracy difference of the action split for the unweighted test predictions that changed with respect to RGB+Flow and

RGB+Flow+Audio.

5. Results

Noun The performance results for the noun classification

on the home made partition are shown in the lower part

of Table 2. The best accuracy score was achieved by the

weighted multimodal combination that improved the visual

baseline by 1.24%. These results also indicate that the sepa-

rated or combined unweighted fusion of the optical flow and

audio decreases the top-1 and top-5 accuracy of the task.

This effect can also be seen on the higher number of classes

that decreased their accuracy on Fig. 3. The most misclassi-

fied pair of objects are spoon-knife, spoon-fork, plate-bowl,

tap-sponge, and knife-fork, as shown in Fig. 5.

Verb The verb classification results on the home made

partition are also presented in the lower part of Table 2.

Each visual method combination boosted their respective

performance by adding the unweighted audio score. The

multimodality combination is greater than the best visual

method by 4.74%. According to Fig. 4, the multimodality

helps to disambiguate turn-on and turn-off verbs, but fails

on verbs that lack of sound like scoop or adjust. Fig. 8

shows that the most misclassified pair of verbs are take-put,

put-open, take-close, take-open, and put-close.

Action The results of our experiments on the home made

partition are presented in the upper part of Table 2. They

show that using multimodal information outperforms sin-

gle audio or visual classification when training separately

the verb and noun classifiers. Even though the best top-1

accuracy was achieved when considering the verb and noun

labels as a single action classification problem, all other per-

formance metrics were lower than when considering them

separately. The upper part of Table 2 shows that the accu-

racy of noun is diminished when adding audio scores to the

action classification. The categories that changed their pre-

diction on the multimodality setting for the action classifier



AUDIO VISUAL FUSION

Open tap Close tap Open bin Wash spatula Pour water Close drawer

Open cupboard Close cupboard Dry hand Adjust hob Wash glass Wash bowl

Wash hand
Wash cloth
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Figure 7. Qualitative results for the unweighted multimodal action classification experiment. The top and bottom rows shows true and false

positive prediction, respectively. The columns indicate when the audio, vision, or their fusion scores were the final multimodal decision.

The true and false labels are shown in white and red colors.
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Figure 8. Normalized verb confusion matrix with an accuracy of

62.43%. Only the categories with more than 100 samples are

shown.

are presented in Fig. 6.

Some qualitative results of true and false positive predic-

tions are shown in Fig. 7. The action predictions made by

the audio modality rely more on the verb than noun classi-

fication. For instance, it correctly predicts the verb wash in

Fig. 7, but falsely predicts the noun hand instead of cloth.

The visual modality obtained similar accuracy on verb and

noun classification. Their predictions fail in cases where the

actions occur in similar contexts, for example, the actions

take cup and wash cup can occur in the sink, as illustrated

in in Fig. 7. The combination of audio and visual modalities

help to disambiguate actions where the objects are occluded

such as open drawer and close drawer, as shown in first row

of the fusion column in Fig. 7. Their complementarity also

helps on the classification of actions with the same verb, but

different noun, such as the case of washing glass and bowl,

shown in the second row of the fusion column in Fig. 7.

Comparison with other methods Table 4 shows the re-

sults obtained on the EPIC Kitchen Challenge board using

the models trained on the home made partition. These re-

sults indicate that directly training over the action performs

better than the combination of verb+noun. Our multimodal

models obtained better scores than the challenge baseline

and has similar results as previous works [50]. Additionally,

the results obtained on the unseen participants (S2) test split

are in the top-ten ranking of the first challenge. We can also

observed that the unweighted addition as fusion method for

noun diminishes the aggregate and per-class performance,

not only for our method but also in the baseline results [12].

The results on the comparison data split originally pre-

sented on [6] are shown in Table 3. Our method obtained an

improvement in accuracy of 5.18% with respect to the ORN

method [6]. This test on unseen kitchens showed that meth-

ods that only rely on RGB underperform optical flow meth-

ods. Likewise, they also showed that audio classification

methods can have similar performance to visual methods.

The addition of auditory sources increased the performance

of the best visual method by 3.47%.

Comparison of audio CNN architectures The VGG-11

and the Traditional Dilated network have similar classifi-

cation performance. The results on Table 2 indicate that

the Traditional Dilated network has better results on seen

test users, but the results on Table 3 shows that the VGG-

11 network outperforms the Traditional Dilated network on

unseen test users.



Top-1 Accuracy Top-5 Accuracy Avg Class Precision Avg Class Recall

VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION

S
1

A
u

d
io Traditional Dilated (Verb+Noun) 35.11 10.65 03.95 75.33 28.63 13.01 15.43 06.19 01.75 11.03 06.64 01.26

Traditional Dilated (Action) 34.06 05.31 07.43 73.51 18.24 20.94 05.19 02.74 01.81 07.85 04.14 03.08

V
is

u
al

TSN BNInception (FUSION) [12] 48.23 36.71 20.54 84.09 62.32 39.79 47.26 35.42 10.46 22.33 30.53 08.83

TSN ResNet-50 (Verb+Noun) (FUSION) 55.08 38.59 24.38 86.36 64.16 45.37 43.69 38.59 14.91 28.63 32.10 12.12

TSN ResNet-50 (Action) (FUSION) 38.62 25.84 27.95 79.51 54.18 49.12 10.50 24.63 14.13 14.30 21.12 14.61

LSTA (two stream) [50] 59.55 38.35 30.33 85.77 61.49 49.97 42.72 36.19 14.46 38.12 36.19 17.76

3rd Place Challenge [49] 63.34 44.75 35.54 89.01 69.88 57.18 63.21 42.26 19.76 37.77 41.28 21.19

2nd Place Challenge [19] 64.14 47.65 35.75 87.64 70.66 54.65 43.64 40.52 18.95 38.31 45.29 21.13

1st Place Challenge [53] 69.80 52.27 41.37 90.95 76.71 63.59 63.55 46.86 25.13 46.94 49.17 26.39

M
u

lt
im

o
d

al

V
er

b
+

N
o
u
n Ours 56.37 37.69 24.00 85.47 63.45 44.66 48.15 38.02 13.49 25.54 30.31 10.50

Ours (Weighted) 56.44 39.42 25.26 85.87 65.27 46.27 51.39 38.36 14.88 26.66 32.88 11.90

Ours (FC) 58.88 39.13 27.35 87.15 64.83 47.68 46.36 37.92 16.63 38.13 34.90 15.00

A
ct

io
n Ours 40.80 22.29 28.83 81.04 50.59 49.68 11.43 23.00 15.89 13.40 17.90 14.18

Ours (Weighted) 41.22 24.29 29.09 81.16 53.25 50.57 11.24 23.61 15.35 14.04 19.72 14.51

Ours (FC) 44.64 30.64 29.13 76.41 59.39 49.71 19.90 32.28 16.51 21.99 25.28 16.54

S
2

A
u

d
io Traditional Dilated (Verb+Noun) 30.73 07.20 02.53 67.26 21.65 09.90 13.92 04.52 01.90 09.79 04.68 01.20

Traditional Dilated (Action) 31.96 03.89 03.96 64.73 13.96 13.45 05.05 01.66 00.97 07.91 04.04 01.94

V
is

u
al

TSN BNInception (FUSION) [12] 39.40 22.70 10.89 74.29 45.72 25.26 22.54 15.33 05.60 13.06 17.52 05.81

TSN ResNet-50 (Verb+Noun) (FUSION) 45.72 24.89 14.95 77.06 49.37 31.07 24.44 20.30 08.79 18.04 18.96 10.10

TSN ResNet-50 (Action) (FUSION) 36.63 18.06 17.14 75.28 42.03 34.65 11.38 10.89 07.27 12.96 14.38 10.78

LSTA (two stream) [50] 47.32 22.16 16.63 77.02 43.15 30.93 31.57 17.91 08.97 26.17 17.80 11.92

3rd Place Challenge [49] 49.37 27.11 20.25 77.50 51.96 37.56 31.09 21.06 09.18 18.73 21.88 14.23

2nd Place Challenge [19] 55.24 33.87 23.93 80.23 58.25 40.15 25.71 28.19 15.72 25.69 29.51 17.06

1st Place Challenge [53] 59.68 34.14 25.06 82.69 62.38 45.95 37.20 29.14 15.44 29.81 30.48 18.67

M
u

lt
im

o
d

al

V
er

b
+

N
o
u
n Ours 46.88 25.16 14.58 77.13 48.69 31.00 28.72 16.63 08.93 17.25 17.83 08.55

Ours Weighted 47.46 25.95 15.74 77.16 50.12 31.85 28.71 16.47 09.26 17.85 19.21 09.94

Ours FC 47.49 26.36 15.98 76.68 49.37 31.75 24.64 20.61 09.80 20.59 21.35 10.03

A
ct

io
n Ours 38.37 15.23 18.40 75.15 39.84 35.64 10.93 11.60 06.88 11.75 13.31 10.91

Ours (Weighted) 38.10 16.76 18.23 75.38 42.23 35.68 11.58 12.83 07.72 11.79 14.16 11.26

Ours (FC) 40.87 20.38 17.65 69.27 45.82 33.73 15.72 15.35 09.61 17.34 16.95 12.20

Table 4. Performance comparison with EPIC Kitchens challenge baseline results. The results highlighted in bold blue are the best obtained

by our method.

5.1. Discussion

The experimental results show that our model improves

the top-1 accuracy by 3.61% in average for verb, noun,

and action classification on our home made data partition.

Likewise, the results suggest that audiovisual multimodality

benefits the classification of verb, and consequently action,

more than for the classification of noun. Furthermore, al-

though multimodality improves the aggregate performance

metrics and the avg. class precision for noun classification,

the unweighted fusion decreases their value as observed in

Table 2. This might be as a consequence of three main rea-

sons. First, an interacting object can produce several sounds

and not being described by one in particular. For instance,

the sounds of a fridge being opened and closed are char-

acteristically different. Second, rather than describing an

object, sounds are better suited for describing the materi-

als they are made of. For example, water and milk are liq-

uids and their emitting sound while being poured is indis-

tinguishable. Third, objects lack of a time dimension, but

doing an action and making a sound involve time. Nonethe-

less, not all actions produce any sound, like checking the

coffee pot. The verb confusion matrix in Fig. 8 shows that

the multimodality classification on verbs fails on categories

that does not produce any sound and that are more visually

abstract, like checking the heat. Additionally, harder audio-

visual classes are empty, flip, and squeeze, as seen in Fig.

8 and Fig. 4. The most discriminative input source for the

noun, verb, and action comes from the RGB frames as ob-

served from Tables 2 and 4. However their performance de-

creases when the test is performed on images from unseen

persons and the optical flow achieves a higher accuracy, as

seen in Table 3.

6. Conclusions

We presented a multimodal approach for egocentric ac-

tion classification and we validated it on the EPIC Kitchens

dataset. Our approach combines audiovisual input sources.

Specifically, its audio input is the spectrogram extracted

from the raw audio of the video, while its visual inputs

are RGB and optical flow frames. We tested and analyzed

our approach for classifying each separate category (verb

and noun) or merged (action). The obtained results show

that our model improves the top-1 accuracy by 3.61% in

average. Additionally, the results suggest that multimodal

information is spacially beneficial for the verb recognition

problem. Indeed, our multimodal approach outperformed

the state of the art methods on verb classification by 5.18%

accuracy.
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