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Abstract

Eye tracking is increasingly influencing scientific areas

such as psychology, cognitive science, and human-computer

interaction. Many eye trackers output the gaze location and

the pupil center. However, other valuable information can

also be extracted from the eyelids, such as the fatigue of

a person. We evaluated Generative Adversarial Networks

(GAN) for eyelid and pupil area segmentation, data gener-

ation, and image refinement. While the segmentation GAN

performs the desired task, the others serve as supportive

Networks. The trained data generation GAN does not re-

quire simulated data to increase the dataset, it simply uses

existing data and creates subsets. The purpose of the re-

finement GAN, in contrast, is to simplify manual annota-

tion by removing noise and occlusion in an image without

changing the eye structure and pupil position. In addition

100,000 pupil and eyelid segmentations are made publicly

available for images from the labeled pupils in the wild data

set (DOWNLOAD). These will support further research in

this area.

1. Introduction

The commonly used pupil recognition algorithms are

based on rule-based methods [12, 16, 40] using extracted

edges or specially designed filters. The reason for this is

the resource saving computations required to apply them.

Disadvantages of these methods are a non-constant run-

time as well as weaknesses in certain challenges. For edge

based methods these are blurred images, only partially vis-

ible pupils, poor light conditions, strong reflections as well

as low resolution images.

Since eye tracking is constantly moving into new areas

such as driver observation [30, 3], virtual reality [19, 34, 5],

augmented reality [22, 35], microscopy [33, 6] and many

more, the requirements for image processing are also be-

coming ever higher. Newer methods for pupil recogni-

tion use machine learning methods to be usable in a vari-

ety of applications as well as to be adapted to new chal-

lenges. A good example from industry is the Pupil Invisi-

ble [25, 51, 47] eye tracker. It uses modern convolutional

neuronal networks and offers the possibility to store data on

a server to further improve the detection. This allows the

eye tracker to adapt to new scenarios without the need of

new algorithm development.

In this work, we propose a framework to train Gener-

ative Adversarial Networks (GANs) [18] using the cyclic

loss function. The reason for this is that GANs can be used

for a wide range of applications in the field of image-based

eye tracking. The first purpose is the image segmentation

for usage in data post-processing and dataset generation.

The segmented data allows to improve the accuracy of eye

tracking experiments offline and can also be used to train

resource saving and realtime applicable machine learning

algorithms, e.g. random forests for online usage [36]. Since

there is a plethora of possible camera configurations, per-

spectives, and light conditions (RGB, NIR), we expect that

trained network are not always applicable to all eye track-

ing data. Therefore, the second GAN is trained to refine

images. This includes removing occlusions, noise, and ad-

justing the image contrast without changing the eye shape

or the pupil position. This will help detection algorithms

and also support annotation of ground truth data. The third

GAN is used to generate additional training data with anno-

tations based on provided data. This data can be generated



using rendering [48].

2. Related works

The main focus of the eye tracking community in the

past years was a robust and reliable pupil signal. There-

fore, a plethora of approaches have been proposed and sum-

marized in [17, 42] for head-mounted eye trackers. Since

the resolution, and the light and contrast conditions for sta-

tionary cameras (remote eye trackers) differ strongly from

those of head-mounted eye trackers, both types were con-

sidered separately for a very long time. A summariza-

tion for their respective pupil detection algorithms can be

found in [11]. The major advances in the field of pupil

extraction where achieved by edge detection [40]. This

approach was further improved by edge filtering [12, 16]

and edge combination [16, 37]. Since edge detection fails

for blurred images, other approaches using adaptive thresh-

olds [20] and segment selection [23] where proposed. Then,

machine learning also lead to CNN based pupil detection

methods [15, 43], where multi-stage approaches are applied

to achieve high accuracies. Other approaches, like random

ferns [10] and oriented edge boosting [9], where also ap-

plied for pupil center detection, but only the latter was ex-

tended by an ellipse fit to segment the pupil.

The field of the eyelid and eye-opening extraction has

received only a small amount of attention. In [46], the

first attempt based on edge detection and approximation

with parabolas was made. For iris recognition, an improved

approach was proposed in [4]; based on the iris location,

the eyelids are searched as curvilinear edges. Afterward,

a spline was fitted to these edges. Another approach used

the largest edges in the image [1] after anisotropic diffu-

sion. Since the eyelid edges can be covered by eyelashes

or blurred through motion, a pure intensity-based approach

partitioning the image in regions was proposed [39]. This

approach was further refined by computing a likelihood

map based on texture patches for the eye corners and the

central point of the upper and lower eyelid [49]. Since the

likelihood map had proven to be robust, another approach

used image patch statistics for the computation in combi-

nation with edge detection [13].VASIR [29] an open source

tool developed by the National Institute of Standards and

Technology, uses the linear Hough transform for iris seg-

mentation followed by a third order polynomial fitting for

eyelid extraction. An optimization that searches for four

eyelid points based on the optimal oriented edge value was

proposed in [14]. Modern machine learning algorithms for

landmark detection [36] where also applied for eyelid ex-

traction [8] together with histograms of oriented gradients

and support vector machines.

In recent years, CNNs achieved a considerable break-

through for image segmentation. The transposed convolu-

tion filters where proposed in [31], which allowed to scale

the output information of a network and remove the fully

connected layers. An alternative to this approach is en-

coder and decoder networks [2], which up-sample based on

pooling indices from the encoder. Both use a softmax loss

function to predict the labels. For further improvement of

segment borders, a region loss function was proposed [21].

They used aligned region of interests for loss computation,

which eliminates inter-class competitions. With the upris-

ing of image generation using a generator and discrimina-

tor [18] and the cycle loss function [52]. CNNs attained the

ability to transfer styles between images, which was already

used to perform a semantic segmentation [52] and can be

used for data generation using simulated data [38]. In this

work, we use GANs with the cyclic loss function for image

segmentation, data generation, and image refinement.

3. Method

Generative Adversarial Network (GAN) consists of two

competing networks. The generator (Figure 1) attempts to

create the most authentic representation of the output distri-

bution. Therefore, it learns to transform the input distribu-

tion into the output distribution (G(A) → B), which is also

known as style transfer [18]. The discriminator, tries to find

out whether it is a generated image or a true picture of the

output distribution (D(G(A)) ∈ B) [18].

Therefore, the discriminator, it has to minimize

its classification accuracy on the data distribution B

(log(D(B))) [18]. In contrast, the generator has to max-

imize the error of the discriminator based on the gener-

ated data (log(1 − D(G(A)))) [18]. Since this approach

is difficult to train because the discriminator tends to over-

fit and thereby rejects everything, the cyclic loss was pro-

posed [52]. The difference to the GAN is that both di-

rections are considered (G1(A) → B and G2(B) → A),

which allows an additional loss formulations between the

two generators and is called the cyclic loss function (A −

G2(G1(A)) and B − G1(G2(B))). It has to be mentioned

that for the cyclic loss, two generators and two discrimi-

nators are used. One pair of generator and discriminator

generates a new image and the other pair reconstructs the

input.

Figure 1 shows the used architecture for our evaluation.

It consists of three convolution blocks with batch normal-

ization and the rectifier liner unit (ReLU). Instead of pool-

ing, our network uses the stride parameter for downscal-

ing. These layers are responsible for feature extraction. The

style transfer or distribution transformation is performed by

consecutive residual blocks with equal block depth. Each

residual block consists of three convolution layers with

batch normalization and the rectifier linear unit. Afterward,

the new image is generated using transposed convolution

layers.

For our discriminator, we used four convolution layers



Figure 1. General architecture of the used generator and discriminator for all CNNs.

Figure 2. Results after one (first row) and ten epochs (second row)

for data segmentation (first four columns) and data generation (last

four columns).

with batch normalization and the stride parameter for down-

scaling. The last layer is a convolution to produce a one-

dimensional output. These architectures follow the original

structure proposed in [52]. The parameter L specifies the

block depth of convolution layers in the network. With the

parameter N , the amount of residual block in the central

part of the generator are specified. For our models we used

N = 5 and L = 64. In addition, the input size of the

network can be adjusted. For the runtime and memory con-

sumption evaluation we used the input resolutions 32× 32,

64 × 64, 96 × 96, 128 × 128 and 256 × 256 (Table 4). In

the segmentation task (Table 1) we used 64×64 and for the

pupil center detection evaluation (Table 2) we used a resolu-

tion of 128×128. The refinement GAN uses the highest res-

olution (256×256) to reduce the impact of the upscaling op-

eration to the original size of the image. We used Caffe [24]

for training and execution of our models. The least square

loss function was used as it stabilizes the training for GANs

in comparison to the negative log likelihood [32]. In ad-

dition we used a buffer of 100 generated images to reduce

oscillation during training as proposed in [38]. The used

optimizer was Adam [28] with momentum set to 0.5 and a

fixed learning rate of 0.0001.

For the data augmentation image flips in horizontal and

vertical direction were used as well as gaussian blur with a

factor of 1 − 1.2. Additionally the image was shifted and

the resulting margin was filled with random noise. Further

data augmentations were random noise up to 20%, squares

and ellipses inserted at random positions and reflections.

The squares and ellipses were also filled with random val-

ues. For the reflections, images from the ImageNet im-

agenetcvpr09 dataset were randomly selected and placed

over the original image wan2017benchmarking.

Translated with www.DeepL.com/Translator

3.1. Image segmentation task

Figure 3. Input and output pairs of the finally trained cycle GAN.

For the training of the image segmentation, we used

paired images. While it is also possible to use unpaired

training, our results improved ≈ 10% using paired image

examples (Table 1). The input to the network is a grayscale

image inserted into all three channels with a resolution of

64 × 64 pixels. As output, we used the grayscale image in

the red, the visible part of the eye in the blue and the pupil

in the green channel. It makes it easier to evaluate the seg-

mentation based on the output and also allows the network

to learn the reconstruction of the input image similar to a

deep autoencoder. Row one and two in Figure 2 show some

examples for the first and tenth epoch. While these are early

stages in training, it can be seen that the segmentation of the

tenth epoch significantly improved, whereas the reconstruc-

tion is still incomplete. Figure 3 shows the segmentation



results of our cycle GAN after ≈200 epochs. As can be

seen, the image was reconstructed and segmented.

3.2. Image generation task

For data generation, we separated the input dataset into

two sets. Each image was constructed equally to the output

image of the segmentation. It means that in the red channel

we inserted the grayscale image, in the blue channel the

eyelid and in the green channel the pupil area. Therefore,

input and output contained the image and the segmentation.

The training itself was done with unpaired image examples;

Figure 4 shows some generated images. More interesting

is that the GAN learned to add a bright pupil (third image

in the top row) as well as eyelashes (last image top row)

or glass frames with reflections. Therefore, our approach

we used the same data distribution we can use the results of

both generators as new training data.

3.3. Image refinement task

The data generator cycle GAN can increase the amount

of training data for human related challenges like eyelashes,

eye shape, pupil size, moles in the eye area, and many more.

Challenges related to the image acquisition such as noise,

reflections, and illumination are not covered if they are not

frequently available in the training data. In addition, new

images with challenges that have to manually annotated are

usually difficult to segment by hand. Therefore, we propose

to use the cycle GAN for image refinement, which gives us a

generator for image augmentation too. Our data augmenta-

tion includes random noise, image patch covering, blurring,

contrast variations, and reflections. For adding reflections,

we used the approach from [45], where the reflection is as-

sumed to be a blurred additive of a second image. Examples

of our data augmentation and the results of the refiner are

shown in Figure 5. In the first column of the figure, the input

images are shown. The second column shows when changes

in the image contrast, blur, and noise is added. For the third

column, we added a cat image a reflection. The fourth col-

umn shows the input image with reflections, noise, blur, and

contrast change. For training, we used paired images, where

the images from the dataset were used multiple times with

different challenges.

4. Evaluation

For the training of our cycle GANs, we used the dataset

proposed in [8] which consists of 16, 200 hand-labeled im-

ages with a resolution of 1280 × 752 pixels from six sub-

jects. For the pupil center detection evaluation we used ad-

ditionaly ≈ 25, 000 images from nine subjects which are

not publicly available. The recording system was a near-

infrared remote camera in a driving simulator setting. Fig-

ure 6 shows images from the dataset. In the first row, the

recordings are shown. In the second row, the eye regions

are shown with annotations. As can be seen, the dataset

contains images with reflections as well as open and closed

eyes together with head rotations.

For the comparison to the state-of-the-art, we made a

cross-subject evaluation. Therefore, we trained our network

on all but one subject and used this left out subject for eval-

uation. We repeated this procedure until each subject was

evaluated once. The same was done for the landmark detec-

tion algorithm [26] implemented in DLIB [27]. For [14], we

only need to evaluate all subjects since it does not have to

be trained. As metric, we used the Jaccard index (GT∩DT

GT∪DT
),

which is the cut between the detected area (DT ) and the

ground truth area (GT ) divided by their union. This met-

ric is a common metric for segmentation quality analysis,

where 0.5 can be seen as a good result.

Table 1. Average Jaccard index per algorithm cross validated on

the dataset from [8]. Best result in bold.
Class: Eyelid Pupil
[26] 0.52 -
[14] 0.52 -

ElSe remote [11] - 0.33
BORE ellipse [9] - 0.65
DeepVOG [50] - 0.22

real data unpaired 0.7 0.62
real data paired 0.79 0.72

gen. data unpaired 0.71 0.63
gen. data paired 0.78 0.72

paired with gen. and real data 0.84 0.78

Table 1 shows the results of our segmentation GAN with-

out data generation and with additional data from the gen-

erator GAN. As can be seen, our approach outperforms the

state-of-the-art by a large margin. The main error stems

from the lower resolution (64 × 64) in comparison to the

original (100 × 74). For the pupil segmentation, the accu-

racy of our approach drops, which is due to one pixel having

a higher impact on the error. While the first four algorithms

run on a single CPU core in real time, our approach requires

≈ 18ms on an NVIDIA GTX 1050Ti with a resolution of

64 × 64. For the DeepVOG [50] and our model we used a

threshold parameter of 0.9 for the heat map output.

In Table 2, the results for pupil center detection in com-

parison to the state-of-the-art on puplicly available datasets

are shown. The evaluation metric is the euclidean distance

to the ground truth annotation. If the distance is below or

equal to 5px the position is seen as accurate which was

proposed in [12] to compensate for annotation inaccura-

cies. The values in Table 2 represent the percentage of im-

ages where the detected position was equal or below the

5px. Our approach requires ≈ 33ms on an NVIDIA GTX

1050Ti with a resolution of 128×128. The other approaches

exception of DeepEye [44], [7], and DeepVOG [50] run in

real time on a CPU. For DeepVOG [50] and our model we

used the same threshold parameter (0.9) as in the segmenta-

tion evaluation. The extraction of the pupil center position



Figure 4. Generated images using our trained cycle GAN for data generation.

Figure 5. Augmented images for refinement and augmentation

training.

Table 2. Average detection result over all subjects from the datasets

provided with ElSe [12], ExCuSe [16], PNET [15], Świrski [40],

and labeled pupils in the wild [42]. The five pixel euclidean dis-

tance was used to compensate for inaccurate annotations as pro-

posed in [12, 16]. Best result in bold.
Datasets: [12, 16, 15] [40] [42]
ElSe [12] 0.67 0.81 0.54
ExCuSe [16] 0.54 0.86 0.50

Świrski [40] 0.30 0.77 0.49
PURE [37] 0.72 0.78 0.73
CBF [10] 0.91 - -
PNET [15] 0.76 - -
DeepEye [44] 0.83 0.54 0.50
[7] 0.79 0.74 0.84
DeepVOG [50] 0.43 0.52 0.62
Prop. (128× 128), paired,

real data 0.87 0.89 0.85
gen.&real data 0.91 0.93 0.89

out of the segmentation we used the center of mass from the

segmented area.

As can be seen in Table 2 and Table 1 the trained GANs

are applicable to the segmentation and pupil center detec-

tion task. In addition, the generated data using the generator

GAN improves the results for both experiments.

In Table 3, the improvement using refined images for

pupil center detection on publicly available datasets is

shown. As can be seen the results of all algorithms was

Table 3. Average detection result over all subjects from the datasets

provided with ElSe [12], ExCuSe [16], PNET [15], Świrski [40],

and labeled pupils in the wild [42]. The five pixel euclidean dis-

tance was used to compensate for inaccurate annotations as pro-

posed in [12, 16].
Datasets: [12, 16, 15] [40] [42]

Original
ElSe [12] 0.67 0.81 0.54

Świrski [40] 0.30 0.77 0.49
PURE [37] 0.72 0.78 0.73

Down & upscaling of the image
ElSe [12] 0.58 0.79 0.69

Świrski [40] 0.14 0.78 0.48
PURE [37] 0.65 0.77 0.72

Refined images
ElSe [12] 0.74 0.81 0.73

Świrski [40] 0.69 0.79 0.71
PURE [37] 0.74 0.79 0.74

improved on the refined images. This improvement does

not rise from the down and upscaling as can be seen in the

central part of the table. It is even the case that scaling down

and up worsens the results. An exception to this is the la-

beled pupils in the wild data set in which ElSe has improved

by 15%. Another very interesting result is the Swirski data

set in which only a minimal or no improvement (ElSe) was

achieved. This is due to the fact that part of the data set con-

tains occluded pupils through the eyelid. The second step of

ElSe is effective for such images but does not benefit from

the refinement. All evaluated algorithms use edges as a fea-

ture for pupil detection, which shows that the refinement

GAN also improves the fine structure of an image.

Table 4 shows the runtime and memory usage for dif-

ferent input resolutions. For our architecture, we set the

parameters N = 5 and L = 64 as shown in Figure 1. The

input resolution of 256×256 exceeded the memory capacity

of our GPU, which forced our framework to only partially

load the models on the GPU. This is the reason of the in-

creased runtime for the training of this model.



Figure 6. Dataset for training of our GANs [8].

Table 4. Average runtime (10000 samples) on a NVIDIA GTX

1050ti (4GB Ram) for training and execution using different in-

put and output resolutions with a batch size of one and the same

architecture.
Resolution Execution(Memory) Training(Memory)
32× 32 16.7ms (800MB) 341ms (1.5GB)
64× 64 17.4ms (850MB) 418ms (1.7GB)
96× 96 24ms (900MB) 515ms (2.0GB)

128× 128 33ms (1GB) 657ms (2.3GB)
256× 256 91.4ms (1.5GB) 1715ms (5GB)

5. Labeled pupils in the wild segmentations

For further research in the field of pupil and eyelid detec-

tion we have segmented 100,000 images of the well-known

”Pupils in the wild” data set. These segmentations are made

publicly available. In the selection of images, we have

focused on challenges that often overtax the current state

of the art algorithms. In addition, some images are also

from simple data sets, so that the basic task is covered by

the annotations without additional image-based challenges.

The original dataset contains 130,856 images separated into

66 videos from 22 participants. We have always selected

whole videos so that tracking algorithms can be evaluated

and trained on them. For the selection of the particularly

challenging videos we have used the results of the state-of-

the-art algorithms (Table 5).

As can be seen, the videos 3, 4, 5, 9, 10, 11, 13, 15, 18,

19 and 22 are especially challenging. These videos con-

tain different challenges. Figure 7 shows pictures of these

videos and others with segmentations. These challenges in-

clude reflections, pupil occlusion, poor lighting conditions

and motion blur. Especially those challenges make it diffi-

cult to extract clean edges which is the reason for the poor

detection rate of the state-of-the-art algorithms. While this

evaluation shows how accurate the pupil center can be de-

tected, it does not show how accurately the pupil area and

shape was extracted.

The selected videos for our segmentation are 2, 3, 4, 5,

7, 9, 10, 11, 13, 15, 18, 19 and 22 as well as 1, 6, 8 and

12 which represent the images without image-based chal-

lenge. Therefore, our annotations are exactly for 101,125

Table 5. Detection rates for the state-of-the-art algorithms per

video on the labeled pupils in the wild dataset [42]. The five pixel

euclidean distance was used to compensate for inaccurate annota-

tions as proposed in [12, 16]. Each video [1, 3] per subject [1, 22]
is evaluated separately for each algorithm. Best result in bold.

ElSe Świrski PURE
1 2 3 1 2 3 1 2 3

1 0.88 0.95 0.81 0.92 0.9 0.7 0.93 0.98 0.83
2 0.41 0.82 0.86 0 0.37 0.89 0.56 0.86 0.93
3 0.21 0.58 0.94 0 0.03 0.91 0.3 0.59 0.96
4 0.09 0.53 0.51 0.13 0.03 0.32 0.09 0.38 0.81
5 0.31 0.35 0.02 0.22 0.02 0.01 0.25 0.43 0.01
6 0.83 0.8 0.89 0.67 0.33 0.88 0.84 0.87 0.93
7 0.67 0.94 0.6 0.79 0.97 0.23 0.79 0.94 0.72
8 0.88 0.87 0.69 0.94 0.68 0.75 0.93 0.9 0.76
9 0.41 0.5 0.94 0.17 0.56 0.95 0.4 0.49 0.95
10 0.91 0.37 0.9 0.95 0.59 0.58 0.94 0.47 0.96
11 0.51 0.84 0.79 0.13 0.38 0.43 0.54 0.89 0.83
12 0.96 0.92 0.81 0.6 0.94 0.61 0.97 0.97 0.88
13 0.34 0.69 0.51 0.16 0.27 0.44 0.32 0.68 0.54
14 0.83 0.49 0.79 0.95 0.41 0.92 0.87 0.59 0.83
15 0.5 0.58 0.53 0.23 0.31 0.6 0.55 0.63 0.59
16 0.97 0.59 0.88 0.96 0.53 0.71 0.94 0.62 0.89
17 0.5 0.84 0.85 0.49 0.77 0.77 0.5 0.81 0.85
18 0.54 0.87 0.95 0.46 0.8 0.58 0.64 0.92 0.94
19 0.83 0.79 0 0.29 0.44 0 0.93 0.84 0
20 0.78 0.78 0.94 0.69 0 0.55 0.86 0.97 0.96
21 0.88 0.96 0.82 0.19 0.96 0.54 0.92 0.98 0.84
22 0.63 0.63 0.85 0 0 0.18 0.66 0.71 0.92

images from the pupils in the wild dataset. Figure 7 shows

some examples of the segmentations as well as the images

from the dataset. For the annotation process, we used all

three GANs. The generator GAN for the extension of our

training data as well as our segmentation GAN for the ini-

tial annotation. In some images it was difficult to check and

correct the annotation without improving the image quality.

For this purpose the refinement GAN was used.

These annotated videos now also offer the possibility to

use other metrics such as segmentation quality in addition

to the detection rate. In the case of the pupil this is espe-

cially important for 3D eyeball creation [41] and therefore,

to estimate a 3D gaze position as well as to compensate eye

tracker drifts in case of head mounted eye trackers. The seg-

mentation results can be seen in Table6. As metric we used



Figure 7. Segmented images from the pupils in the wild dataset [42].



the Jaccard index averaged over all images per video.

Table 6. Segmentation results using the average Jaccard index for

the state-of-the-art algorithms per video on the labeled pupils in

the wild dataset [42]. Each video [1, 3] per subject is evaluated

separately for each algorithm. Best result in bold.

ElSe Świrski PURE
1 2 3 1 2 3 1 2 3

1 0.92 0.93 0.92 0.91 0.91 0.83 0.9 0.91 0.9
2 0.32 0.83 0.89 0.01 0.51 0.78 0.56 0.85 0.89
3 0.21 0.92 0.9 0 0.11 0.82 0.31 0.92 0.88
4 0.29 0.9 0.73 0.33 0.5 0.54 0.31 0.61 0.85
5 0.49 0.22 0.36 0.17 0.06 0.02 0.5 0.36 0.08
6 0.87 0.91 0.92 0.76 0.61 0.91 0.84 0.91 0.91
7 0.55 0.89 0.5 0.75 0.9 0.25 0.69 0.87 0.62
8 0.91 0.94 0.65 0.93 0.79 0.7 0.91 0.93 0.7
9 0.82 0.81 0.94 0.46 0.76 0.93 0.83 0.82 0.92
10 0.86 0.37 0.9 0.85 0.56 0.79 0.84 0.44 0.92
11 0.55 0.88 0.91 0.12 0.64 0.58 0.64 0.89 0.91
12 0.95 0.91 0.87 0.72 0.92 0.79 0.93 0.91 0.88
13 0.67 0.91 0.64 0.44 0.43 0.55 0.74 0.9 0.72
15 0.79 0.82 0.73 0.55 0.6 0.77 0.79 0.83 0.74
18 0.61 0.89 0.96 0.59 0.82 0.74 0.65 0.86 0.94
19 0.9 0.88 0.19 0.6 0.65 0.15 0.91 0.9 0.21
22 0.76 0.69 0.88 0 0 0.18 0.78 0.76 0.91

An interesting result is provided by subject 1. By com-

paring the detection rate of ElSe in Table 5 to the results of

PuRe, it can be seen that PuRe has always a higher detec-

tion rate. In the case of segmentation accuracy (Table 6),

this is not true. Here ElSe is more accurate in comparison

to PuRe on all three videos. This is due to the used convo-

lution filters for edge detection. ElSe uses the differential

of Gaussian whereas PuRe uses large Sobel filters. The So-

bel filters are more robust to noise especially since they are

used as 2D convolutions. This effects the edge pixel accu-

racy and therefore, the resulting ellipse of the fitting proce-

dure. As can be seen in Table 6 from the best results (bold),

that they are distributed equally across all algorithms.

In order to highlight this effect more clearly, we have

conducted another experiment (Table 7). Here the average

segmentation accuracy is shown for all pupil with a pupil

center detection with less or equal to 5 pixels euclidean dis-

tance. As segmentation metric we used again the Jaccard

index. All remaining pupils were ignored. This shows how

well a correctly detected pupil based on the center estima-

tion is segmented.

In Table 7 it can be seen that the results have changed

entirely which supports our argument that the differential of

Gaussian is a more accurate edge filter while less robust as

separated 1D filters (Table 5). This is especially true since

one of the main difference between ElSe and PuRe is the

used filter for edge extraction. The inaccurate segmentation

results from ElSe steam from iris edges which are selected

as best ellipses. A disadvantage of this evaluation for PuRe

could be the higher detection rate. However, in most cases

where all algorithms are similarly good, ElSe still performs

Table 7. Segmentation results using the average Jaccard index for

images where the pupil center was detected with less or equal 5

pixels euclidean distance. The images are from the labeled pupils

in the wild dataset [42] with the provided segmentations. Each

video [1, 3] per subject is evaluated separately for each algorithm.

Best result in bold.

ElSe Świrski PURE
1 2 3 1 2 3 1 2 3

1 0.95 0.94 0.94 0.94 0.93 0.93 0.93 0.92 0.91
2 0.62 0.91 0.93 0 0.85 0.92 0.82 0.88 0.92
3 0.75 0.96 0.93 0 0.29 0.91 0.8 0.94 0.9
4 0.85 0.97 0.93 0.74 0.88 0.88 0.84 0.96 0.92
5 0.9 0.83 0.58 0.41 0.34 0.14 0.88 0.78 0.3
6 0.92 0.95 0.95 0.85 0.91 0.92 0.89 0.93 0.93
7 0.8 0.93 0.85 0.85 0.91 0.82 0.83 0.9 0.83
8 0.94 0.97 0.85 0.94 0.95 0.86 0.92 0.95 0.83
9 0.96 0.92 0.95 0.93 0.91 0.95 0.95 0.9 0.93
10 0.92 0.79 0.95 0.87 0.78 0.9 0.9 0.81 0.94
11 0.87 0.93 0.97 0.87 0.9 0.93 0.84 0.92 0.95
12 0.96 0.93 0.92 0.93 0.92 0.89 0.95 0.91 0.89
13 0.93 0.97 0.87 0.93 0.93 0.88 0.9 0.95 0.86
15 0.93 0.93 0.93 0.89 0.93 0.9 0.92 0.93 0.91
18 0.88 0.92 0.97 0.86 0.91 0.94 0.85 0.89 0.95
19 0.95 0.93 0.57 0.89 0.9 0.81 0.93 0.92 0.84
22 0.93 0.91 0.96 0 0 0.92 0.91 0.9 0.95

best in segmentation. This evaluation is only one of many

possibilities and should show how it can help the algorithm

developer to evaluate algorithms in different ways.

6. Conclusion

We have demonstrated the applicability of GANs for

pupil and eyelid segmentation, data generation and data re-

finement. In all our experiments we were able to achieve

state-of-the-art results as well as improving the results of

state-of-the-art algorithms with data refinement. The run-

time of our models is significantly higher compared to state-

of-the-art algorithms and requires a modern GPU. However,

our models can be used for off-line data preparation, which

can be used for training smaller models or other machine

learning methods such as random forest. In addition, the

off-line data processing can improve the data quality of sci-

entific experiments and eye tracking user studies for market

research. Future work will go into the direction of dataset

generation for eye tracking in the area of augmented and vir-

tual reality. This will allow evaluations especially for these

areas and support training of machine learning approaches.
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lipse selection for robust pupil detection in real-world envi-

ronments. In Proceedings of the Ninth Biennial ACM Sympo-

sium on Eye Tracking Research & Applications, pages 123–

130. ACM, 2016.

[17] W. Fuhl, M. Tonsen, A. Bulling, and E. Kasneci. Pupil de-

tection for head-mounted eye tracking in the wild: an evalua-

tion of the state of the art. Machine Vision and Applications,

27(8):1275–1288, 2016.

[18] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in neural information

processing systems, pages 2672–2680, 2014.

[19] B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Sny-

der. Foveated 3d graphics. ACM Transactions on Graphics

(TOG), 31(6):164, 2012.

[20] A. Haro, M. Flickner, and I. Essa. Detecting and tracking

eyes by using their physiological properties, dynamics, and

appearance. In Computer Vision and Pattern Recognition,

volume 1, pages 163–168. IEEE, 2000.

[21] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-

cnn. In International Conference on Computer Vision, pages

2980–2988. IEEE, 2017.

[22] S. Ishimaru, K. Kunze, K. Kise, J. Weppner, A. Dengel,

P. Lukowicz, and A. Bulling. In the blink of an eye: combin-

ing head motion and eye blink frequency for activity recogni-

tion with google glass. In Proceedings of the 5th augmented

human international conference, page 15. ACM, 2014.

[23] A.-H. Javadi, Z. Hakimi, M. Barati, V. Walsh, and

L. Tcheang. Set: a pupil detection method using sinusoidal

approximation. Frontiers in neuroengineering, 8:4, 2015.

[24] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. In International

Conference on Multimedia, pages 675–678. ACM, 2014.

[25] M. Kassner, W. Patera, and A. Bulling. Pupil: an open source

platform for pervasive eye tracking and mobile gaze-based

interaction. In International Joint Conference on Pervasive

and Ubiquitous Computing, pages 1151–1160. ACM, 2014.

[26] V. Kazemi and J. Sullivan. One millisecond face alignment

with an ensemble of regression trees. In Computer Vision

and Pattern Recognition, pages 1867–1874, 2014.

[27] D. E. King. Dlib-ml: A machine learning toolkit. Journal of

Machine Learning Research, 10(Jul):1755–1758, 2009.

[28] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[29] Y. Lee, R. J. Micheals, J. J. Filliben, and P. J. Phillips. Vasir:

an open-source research platform for advanced iris recogni-

tion technologies. Journal of research of the National Insti-

tute of Standards and Technology, 118:218, 2013.

[30] X. Liu, F. Xu, and K. Fujimura. Real-time eye detection

and tracking for driver observation under various light con-



ditions. In Intelligent Vehicle Symposium, 2002. IEEE, vol-

ume 2, pages 344–351. IEEE, 2002.

[31] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Computer Vision

and Pattern Recognition, pages 3431–3440, 2015.

[32] X. Mao, Q. Li, H. Xie, R. Y. Lau, and Z. Wang. Multi-

class generative adversarial networks with the l2 loss func-

tion. arXiv preprint arXiv:1611.04076, 5, 2016.

[33] I. T. Oltean, J. K. Shimmick, and T. N. Clapham. Eye track-

ing device for laser eye surgery using corneal margin detec-

tion, Oct. 9 2001. US Patent 6,299,307.

[34] A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman,

N. Benty, D. Luebke, and A. Lefohn. Towards foveated ren-

dering for gaze-tracked virtual reality. ACM Transactions on

Graphics (TOG), 35(6):179, 2016.

[35] T. Pfeiffer and P. Renner. Eyesee3d: a low-cost approach

for analysing mobile 3d eye tracking data using augmented

reality technology. In Proceedings of the Symposium on Eye

Tracking Research and Applications, 2014.

[36] S. Ren, X. Cao, Y. Wei, and J. Sun. Face alignment at 3000

fps via regressing local binary features. In Computer Vision

and Pattern Recognition, pages 1685–1692, 2014.

[37] T. Santini, W. Fuhl, and E. Kasneci. Pure: Robust pupil de-

tection for real-time pervasive eye tracking. Computer Vision

and Image Understanding, 2018.

[38] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang,

and R. Webb. Learning from simulated and unsupervised

images through adversarial training. In Computer Vision and

Pattern Recognition, pages 2107–2116, 2017.

[39] M. Suzuki, N. Yamamoto, O. Yamamoto, T. Nakano, and

S. Yamamoto. Measurement of driver’s consciousness by im-

age processing-a method for presuming driver’s drowsiness

by eye-blinks coping with individual differences. In SMC,

volume 4, pages 2891–2896. IEEE, 2006.
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