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Abstract

This paper presents an outdoor video dataset annotated

with action labels, collected from 24 participants wearing

two head-mounted cameras (GoPro and SMI eye tracker)

while assembling a camping tent. In total, this is 5.4 hours

of recordings. Tent assembly includes manual interactions

with non-rigid objects such as spreading the tent, securing

guylines, reading instructions, and opening a tent bag. An

interesting aspect of the dataset is that it reflects partici-

pants’ proficiency in completing or understanding the task.

This leads to participant differences in action sequences

and action durations. Our dataset, called EPIC-Tent1, also

has several new types of annotations for two synchronised

egocentric videos. These include task errors, self-rated un-

certainty and gaze position, in addition to the task action la-

bels. We present baseline results on the EPIC-Tent dataset

using a state-of-the-art method for offline and online action

recognition and detection.

1. Introduction

We present a novel egocentric dataset, EPIC-Tent, in-

tended for activity recognition on a challenging, outdoor

and non-rigid objects scenario – camping tent assembly.

Egocentric activity recognition offers a range of challenges

as the camera moves in the world and observes complex ob-

ject interactions. But it also allows for observations that are

near the action and the purpose of the acting agent.

Various tasks have recently been considered in ego-

centric computer vision, such as handled object detection

[10, 7], food recognition [8], socialising pattern character-

isation [41] and event sequence description [6] in various

environments including a kitchen [9], office [1] and out-

doors [44]. Egocentric datasets are mostly focused on rigid

or low Degrees of Freedom (DoF) articulated objects and or

well-defined interactions. We are here interested in push-

ing the boundaries of egocentric video activity recognition

1The EPIC-Tent dataset is available from authors’ webpages.

Figure 1. Participant standing next to a completed tent, wearing the

GoPro and SMI eye tracker. To avoid the sun’s infrared interfer-

ence, the eye tracker was outfitted with protective lenses and black

cloth. (Top Left) Egocentric perspective from the SMI camera, the

orange circle represents the participant’s point of gaze. (Bottom

Left) Egocentric perspective from the GoPro camera.

by the introduction of a novel egocentric dataset consisting

of participants assembling a camping tent. Annotated with

the action and task error labels, participants’ self-rated level

of step uncertainty, and eye gaze position, EPIC-Tent of-

fers a rich set of data to challenge state-of-the-art activity

classification and detection. This dataset from users with

different levels of proficiency, includes foldable non-rigid

objects and at various task completion lengths, as shown in

Fig. 1 and 2. We also present results on offline, online ac-

tion classification and action detection as a benchmark for

future research.

The EPIC-Tent dataset provides a set of action and er-

ror labels, eye-gaze positions and participants’ frame-level

stage uncertainty self-ratings. It consists of videos and

labels from participants assembling a tent outdoors while

wearing an eye tracking system (SMI eye tracking glasses,

Sensorimotoric Instruments GmBH, Berlin, Germany) and

a GoPro HD camera (Go Pro Inc, San Mateo, CA, USA),

both head-mounted, as shown in Fig. 1. Participants wore



the cameras outdoors in a garden on campus, and were told

to assemble the tent however they liked using the printed

instructions as needed. We collected data from 24 par-

ticipants, all of whom answered a brief questionnaire on

their level of experience. An observer annotated the videos

with task/sub-task labels and error labels (Section 3). Par-

ticipants subsequently provided a frame-by-frame rating of

stage uncertainty by watching their performance from the

GoPro video, that is they were rating how certain they felt

performing each subtask. We consider this procedure better

than interfering with the activity as it is happening. Fur-

thermore, we believe this type of uncertainty information

is novel to provide and enabling of future studies in ego-

centric perception. The total duration of recordings for all

participants is over 5 hours, with a total number of clips of

24× 3 (3 for the following video types: SMI without eye

gaze, SMI with eye gaze, and GoPro video). The average

frame rate for the GoPro video is 60 Hz, SMI with eye gaze

is 30Hz and 24Hz for SMI without eye gaze. The resolu-

tion of videos are 1920× 1080 for GoPro and 1280× 960

for both SMI videos. Eye gaze text data files were saved at

60Hz.

The SMI and GoPro videos were unsynchronised during

recording but manually synchronised afterwards. All activ-

ity annotations were made using the SMI video. We then

converted these annotations to be synchronized with both

the GoPro and SMI videos. The EPIC-Tent dataset provides

timestamps for the start and end for video segments as well

as frame indices.

The EPIC-Tent dataset includes a rich set of information

as follows. Task / Subtask labels, there are 38 individual

subtasks which correspond hierarchically to 12 simplified

tasks that represent the main events required to build a tent,

as shown in Table 1. Error labels, there are 8 error labels

that occur when participants build a tent according to their

personal understanding or proficiency. Uncertainty ratio,

each frame of the GoPro video has a self-evaluated uncer-

tainty rating between 0 (low uncertainty) and 1 (highly un-

certain) provided by their respective participants. Eye gaze

position containing the 2D coordinates of where a partici-

pant is looking in the SMI video. Questionnaire responses,

each participant answered five questions about their level of

experience.

The challenges of the EPIC-Tent dataset are as follows.

Overlapped actions, a task (e.g., instruction reading) can

interrupt other tasks. Identifying or recognising these seg-

ments is a challenging problem due to the small set of ex-

amples. Non-rigid objects, the tent, bags, and support bars

are non-rigid and deform in a variety of ways presenting a

visual recognition challenge. Varied Task Durations, tasks

within the same class can vary in duration by 10 of seconds

both within and between participants. Egocentric motion,

ego-motion is a natural problem when capturing an activity

using a wearable camera. Coexistence of important ob-

jects, the coexistence of multiple task relevant objects in

the same scene can confuse predictions.

The remainder of the paper is organised as follows: In

Section 2, we review related work in egocentric datasets,

action recognition, and uncertainty prediction. In Section 3,

we describe the data annotation method. Benchmarks and

baseline results using the proposed EPIC-Tent dataset are

provided in Section 4. Conclusions are presented in Sec-

tion 5.

2. Related Work

Egocentric dataset: Computer vision research on ego-

centric viewpoints falls into several topics. The most com-

mon is focused on understanding activities in a particular

environment, such as a kitchen [9, 30], a house [36], an

office [1] or outdoors [44]. More specific topics include

hand-focused topics (e.g., pose [4], gesture [52], interac-

tion with objects [14, 33, 40, 28]), situation-relevant object-

related topics (e.g., food [8], daily life [7, 39], task [10]),

social activity-relevant topics (e.g., social pattern [2], so-

cial interaction [49, 13], search [50] and summary [27, 31]

in daily life videos), and contextual activity-relevant top-

ics (e.g., multi-modal data [41, 35], events [37], life log

[6, 48, 12, 43]). We note these studies have not addressed

recognition of specific task-related activities that could in-

clude errors and uncertainties that change task completion

times.

Action recognition: Egocentric video has unique char-

acteristics, but state-of-the-art deep learning methods are

still applicable to action recognition [54, 11] and local-

isation [22, 42] using RGB videos in egocentric view-

point [29]. However, fast processing times and recognition

accuracy are critical factors in providing real-time feedback

in an egocentric system. Among state-of-the-art online ac-

tion recognition [54, 51, 19, 23, 26] and localisation [42, 45]

methods, ECO [54] provides good performance in terms of

both processing time and action recognition accuracy. We

here use the ECO network [54] to provide offline and online

action recognition baselines for the EPIC-Tent dataset. Ac-

tion detection was not addressed by the original ECO net-

work authors, yet we introduce a simple method to detect

actions utilising frame-level predictions from the online ac-

tion recognition model.

Uncertainty prediction: Uncertainty and the related

concept of confidence have been frequently studied within

psychology within the domain of decision making and per-

ception [38, 25, 5]. [32] examined action uncertainty,

demonstrating when participants choose between difficult

choices their computer mouse trajectories are altered. Dur-

ing novel tool use [34, 20] found that in actors and ob-

servers, respectively, prior knowledge and uncertainty alter

problem solving. Uncertainty in eye movements has been



Figure 2. Example time line of activities and uncertainty rating for a single participant: Screen captures illustrate video data from the SMI

video with eye gaze cursor for several example action classes.

examined both during cognitive decisions [15], problem

solving while copying a model [3], outdoor navigation [17]

and driving [46]. However, to our knowledge there have

been no prior attempts to combine egocentric video, eye

movement data, and frame-by-frame uncertainty ratings for

a complex extended task like ours. The EPIC-Tent dataset

opens the possibility to combine these psychological mea-

sures with state-of-the-art computational methods like deep

learning.

3. The EPIC-TENT Dataset

We recorded participants assembling a camping tent

outdoors while wearing a head mounted camera and eye

tracker. Participants setup a tent (Wilko 2-person dome

tent) in a grassy area and were allowed to take as much

time as they required and use the printed instructions as de-

sired. 24 participants (14 female, 10 male, mean age 23.3

and std.dev. 4.8) gave informed consent including autho-

rization for anonymized open data sharing. All participants

were informed that data were gathered as part of a project to

design a wearable computing system that will deliver real-

time assistance to wearers.

3.1. Video Annotations

Video data were annotated by observers to delineate

tasks, sub-tasks and errors involved in assembly. For the

uncertainty rating, after tent assembly, participants viewed

their first-person camera GoPro video and rated their level

of task uncertainty frame-by-frame using a specialized

video viewer. Gaze position was recorded both on the SMI

scene camera video (30 Hz) and in text file (60 Hz).

Subtask Labelling: From watching participants’

videos, we established a set of common events to be anno-

tated, see Table 1 for a list of tasks/subtasks and the typical

workflow in building a tent. Subtask divisions were some-

what arbitrary, but motivated by the pragmatics of manual

coding. As some subtasks are equivalent, for instance stak-

ing a tent corner is coded as a unique event referencing a

particular corner, but can be considered a repetition of a

generic corner staking sub-task. We were able to compress

setting up the tent into 12 generic labels along with a back-

ground label used when the participant was transitioning be-

tween subtasks, e.g. walking around the tent. One observer

annotated this task information.

Eye Tracking Quality: Eye tracking calibration accu-

racy was evaluated at the beginning and end of tent assem-

bly. The experimenter moved a fixation target in front of the

participant and asked them to fixate the point for 1∼2 sec.

An observer recorded the angular distance between the eye

gaze cursor and the intended point of fixation, once for each

test point. On average, 10 points were tested before and af-

ter assembly (this varied across participants as sometimes



Table 1. The details of sub-task annotation
Subtask Task Index Number of samples in task Number of samples in subtask

Assemble support1
Assemble support 0 56

29

Assemble support2 27

Insert stake c1

Insert stake 1 127

35

Insert stake c2 28

Insert stake c3 36

Insert stake c4 28

Insert support1 c1

Insert support 2 57

4

Insert support1 c2 9

Insert support1 c3 7

Insert support1 c4 9

Insert support2 c1 15

Insert support2 c2 19

Insert support2 c3 21

Insert support2 c4 22

Insert support1 tab c1

Insert support tab 3 147

9

Insert support1 tab c2 9

Insert support1 tab c3 5

Insert support1 tab c4 5

Insert support2 tab c1 17

Insert support2 tab c2 21

Insert support2 tab c3 17

Insert support2 tab c4 15

Instruction Instruction 4 205 205

Pickup/open stake bag Pickup/open stake bag 5 53 53

Pickup/open support bag Pickup/open support bag 6 32 32

Pickup/open tent bag Pickup/open tent bag 7 26 26

Pickup/place vent cover Pickup/place vent cover 8 35 35

Place guyline c1

Place guyline 9 126

30

Place guyline c1//c2 4

Place guyline c1//c3 1

Place guyline c2 30

Place guyline c2//c3//c4 1

Place guyline c2//c4 1

Place guyline c3 26

Place guyline c3//c4 4

Place guyline c4 29

Spread tent Spread tent 10 42 42

Tie top Tie top 11 15 15

the point was outside the camera field of view). Median

tracker accuracy (Euclidean distance between the target and

point of gaze cursor) was calculated across the points per in-

dividual, and averaged across participants, yielding an aver-

age of 1.87◦±1.16◦ (range: 0.68◦ ∼ 4.48◦). Three partici-

pants (1,13,21) have high error > 5◦ and are recommended

to be excluded in eye tracking coordinate analysis.

Uncertainty Labelling: Participants viewed and rated

their performance by watching the GoPro video using a

Matlab video viewer that let the participant control the

video (forward, backwards, speed up and down) and give

a continuous uncertainty rating using mouse position. Par-

ticipants gave a rating between 0 (low uncertainty) and 1

(highly uncertain) for each frame of the video. To help mo-

tivate giving good self-ratings, before rating the video, par-

ticipants were told of our goal to build a digital assistant and

to imagine when they would have required help. Note, only

particpants 8-24 gave these ratings.

Error Labelling: Two observers annotated the eye

tracking videos for errors including: 1) Motor errors, 2)

misuse of equipment, 3) steps out of order, 4) equipment

failure, 5) omission of a step, 6) searching for an item, 7)

correction of a prior error, 8) slowness in movement, and

9) repetition. All errors were annotated with begin and end

times, except omission. Ordering errors were marked for

the duration of the out of order subtasks, where the correct

order was defined as the sequence in the printed instruc-

tions.

Statistics of videos: EPIC-Tent dataset involves videos

over 5.4 hours. There are 24 videos containing individ-



ual subject in each video. The total number of frames in

the dataset is 1,171,897. The average length of the video

is 13.6 minutes. The average total number of frames is

48,829. The total number of action instances in the dataset

is 921.

3.2. Participant Behaviour

To assess participants’ experience, they completed a sur-

vey asking: (1) How often do you camp each year?; (2) Are

you an experienced camper?; (3) Do you own a tent?; (4)

How many times a year do you setup a tent?; (5) How many

times have you ever setup a tent?

Questionnaire responses were turned into a numeric

score and normalized by dividing by the maximum response

across participants, and then averaged to yield a number be-

tween 0 and 1 that represented past experience with camp-

ing and tents. Participants generally had a low amount of

prior experience setting up a tent. Mean self-rating of expe-

rience, 1.4 out of 5, (std.dev. 1.3, range: 0 ∼ 4.1). Self-rated

experience was negatively correlated with total time spent

reading the instructions r(22)=-0.56, p=0.005, β=-36 sec.,

intercept=151 sec., i.e. the more self-rated experience, the

less time spent reading instructions. Participants took be-

tween 4.3 to 24.1 minutes to complete the task (mean=12.1

min., median=11, std.dev.=4.7). All participants were able

to erect the tent, albeit sometimes with slight problems, e.g.

forgetting the vent cover, not tying the support beams to

the top of the tent or staking the guy lines incorrectly. Note,

self-rated experience did not correlate significantly with du-

ration, r(22)=-0.31, p=0.14.

4. Benchmarks and Baseline Results

The EPIC-Tent dataset lends itself to a range of possi-

ble challenges, including predicting uncertainty, recognis-

ing errors and omissions, predicting the level of expertise,

as well as predicting and anticipating gaze/attention. We

leave such challenges to future research and focus on three

standard benchmarks.

We provide baseline results on the EPIC-Tent dataset for

three tasks: offline action recognition (Off-AR), online ac-

tion recognition (On-AR), and online action detection (On-

AD). We use a state-of-the-art action recognition architec-

ture for video (ECO network) [54]. The ECO network is

light-weight, able to process long videos while maintain-

ing real-time performance, and produces competitive results

on several action recognition datasets (tested on UCF101,

HMDB, Kinetics and Something-Something). The ECO

architecture uses BN-Inception as a backbone [47] for the

2D convolutional layers and several layers of 3D-Resnet-

18 [18] for the 3D convolutional layers to capture the spa-

tial and temporal features, respectively. Results in this sec-

tion use ECOLite−16F . We also use two pre-training set of

weights, one on Kinetics [24] and the other on Something-

Something V2 [16] - both weights provided in the ECO

github repo. We report the best result from either initiali-

sation in each case.

We followed most of the detailed implementations used

to train the original ECO architecture. We resized the res-

olution of 1920 × 1080 of the original GoPro image to

456 × 256 and employed fixed-corner cropping and scale

jittering with horizontal flipping, per-pixel mean subtrac-

tion and resized the cropped regions to 224×224, as in [54].

We used a mini-batch size of 12, and randomly selected one

frame from each evenly split 16 segments. For Off-AR,

learning rate was initialised to 0.01 decaying by a factor

of 10 every 50 epochs. The learning was halted after 200

epochs. For On-AR/AD, the learning rate decayed every 25

epochs and the learning was halted after 100 epochs. We

fine-tuned the network with a momentum of 0.9, a weight

decay of 0.0005. Dropout ratio is 0.3.

For training and testing, we use 4-fold cross validation.

We shuffle the videos then split the dataset, at the video

level, so a full sequence is either in training or in testing.

For each fold, one quarter of the dataset is used for testing

with the remaining 3/4’s of the dataset for training. We ac-

cumulate the results of all folds to report the performance on

the whole dataset for each task. The folds will be released

alongside the dataset annotations, to allow replicating the

results.

For each fold, the whole fine-tuning process on the pro-

posed EPIC-Tent took around three hours and ten hours,

in Off-AR and On-AR respectively, on two GeForce GTX

1080 Ti. On the hardware, inference was achieved at 186

video clips per second (VPS) with 5.37 ms average process-

ing time.

4.1. Offline Action Recognition Benchmark

In offline action recognition (Off-AR), we use the la-

beled start/end times of each action, and train to classify

the video segment as one of 12 task labels (see Table 1).

We do not learn or predict the background class similar to

customary Off-AR approaches that assume the extents of

relevant actions have been predefined. We report results in

the confusion matrix in Fig. 3(a), using the normalised per-

formance in the colourmap, but also report the number of

test segments in each confusion cell. The overall accuracy

for Off-AR is 78.64%. Specifically, the first, second, third,

and fourth fold accuracies are 74.43%, 83.57%, 79.90%,

and 77.78%, respectively. These results use Something-

Something V2 pre-training weight, which mariginally out-

performed pre-training on Kinetics (77.66%). The largest

confusion is observed in temporally neighbouring and over-

lapping tasks, particularly when the number of training

samples is relatively small.



(a) Offline Action Recognition (Accuracy: 78.64%) (b) Online Action Recognition (Accuracy: 64.08%)

Figure 3. Confusion matrices for offline ((a)) and online ((b)) action recognition using four-fold cross-validation: (a) The number in a cell

represents the number of predicted actions. (b) The number in a cell represents the normalised accuracy (percent) of each class.

(a) Segmenting actions in On-AR

(b) Samples for training

Figure 4. Examples of dataset sampling for online action recogni-

tion: (a) segmenting an action into N segments and (b) sampled

windows from an action annotation during training.

4.2. Online Action Recognition Benchmark

The goal of online action recognition (On-AR) is to

recognise the ongoing task, given the current frame and pre-

ceding frames (i.e., history) of a fixed or variable length.

We report our baseline On-AR results using a fixed window

length W which we set to 350 frames. When actions over-

lap, we use the shorter action as the online frame ground

truth label. This is because shorter actions in fact interrupt

longer ones (e.g. checking instructions while spreading the

tent).

During On-AR, both task-relevant and background tasks

would take place. Thus, we add an additional class to rep-

resent background frames. As the dataset has actions of

variable length, we avoid oversampling windows of longer

actions during training, by sampling the same number of

windows from every annotated action, including the back-

ground segments. We show our sampling strategy in Fig. 4.

We divide each annotated action uniformly into N segments

Si = {S1, · · · ,SN}, after subtracting Wh =
W
2

frames from the

start. This ensures at least half the window contains the rel-

evant action, similar to the approach used in [53] for online

action recognition. In this paper, N is 5. Then,we randomly

sample one frame within the each segment, as the observed

frame, along with a history of size W . Fig. 4(b) shows how

multiple windows would be extracted over different itera-

tions in training. This offers a natural data augmentation

strategy, while ensuring 1) actions of various lengths are

equally represented, and 2) the various stages of the task

from start to conclusion are included in training.

In testing, a sliding window of the same width and a

stride of 22 frames is utilised, sampling 16 frames uni-

formly in each window. We report On-AR results over

the test set, using the same 4-folds in training/testing as in

Sec 4.1. Experimental results show that the overall accu-

racy of On-AR is 64.08%, as shown in Fig. 3(b). Specifi-

cally, the first, second, third, and fourth fold accuracies are

66.37%, 68.01%, 62.12%, and 58.75%, respectively. These

results use pre-training weights from Kinetics.

Qualitative results are shown in Fig 5, comparing the

ground truth to On-AR predictions on two parts of the same

video. Errors around frame 8000 show the complexity of

recognising tasks such as ‘inserting support’ and ‘assem-

bling support’.



Figure 5. Example of Online Action Recognition (On-AR)

Table 2. Online Action Detection (On-AD) results – allowing overlapped action detection

IoU mAP
Average Precision (AP) for Each Action

0 1 2 3 4 5 6 7 8 9 10 11

0.1 68.65 73.83 70.20 71.51 67.23 74.68 40.05 56.07 78.65 74.35 80.92 73.31 63.02

0.2 69.85 80.78 70.71 67.09 64.16 78.70 32.50 57.79 78.83 72.43 86.20 80.09 68.96

0.3 70.41 81.50 67.26 62.46 64.53 80.02 36.78 54.43 78.83 71.93 88.12 86.11 72.95

0.4 67.10 76.09 57.63 58.84 64.26 80.52 36.79 51.08 75.92 64.23 83.62 87.58 68.67

0.5 64.31 74.87 51.52 56.04 57.86 76.03 36.19 50.78 73.03 67.92 70.54 85.12 71.83

0.6 57.30 65.95 41.25 48.63 54.93 70.36 37.55 49.80 58.09 51.94 60.58 76.73 71.83

0.7 51.88 65.42 29.89 44.77 48.57 64.51 33.28 36.17 42.32 51.89 55.97 73.39 76.36

0.8 37.94 33.77 17.72 43.24 26.99 58.40 09.26 29.86 27.78 51.04 44.36 46.53 66.27

4.3. Online Action Detection Benchmark

We report results for Online Action Detection (On-AD),

where the task is to localise the extent of actions, including

overlapping actions/tasks. We use the same train/test splits

and model as in Sec. 4.2. For each class, we consider all

consecutive frames with class confidence above a threshold

α = {0.01,0.02, · · · ,1}. This is used to plot the Precision-

Recall curve, from which we calculate the interpolated av-

erage precision for each class, as in [21]. We report average

precision as well as class mean average precision (mAP) for

various IoU = {0.1,0.2, · · · ,0.8} in Table. 2. At IoU 0.5, we

report an overall mAP of 64.31%. From the table, we note

that tasks involving inserting stake/support (1-2) and open-

ing stake/support bags (5-6) are the hardest to detect.

5. Conclusion and Future Work

In this paper we have described the process of collecting,

annotating and benchmarking an egocentric video dataset

of natural behavior while participants assembled a camp-

ing tent (EPIC-Tent). The dataset features natural outdoor



lighting, behavior from novice to moderately experienced

participants, and a wide variance in examples of each action

class. It offers a rich set of data from egocentric video, eye-

tracking data, self-rated uncertainty for each video frame,

and error in performance labels. In future work, we plan to

use convolutional networks to relate visual features to the

uncertainty rating and error labels. The EPIC-Tent dataset

opens the possibility to combine these psychological mea-

sures with state-of-the-art computational methods to help

push forward research in egocentric perception.
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