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Abstract

In this work we employ multitask learning to capitalize

on the structure that exists in related supervised tasks to

train complex neural networks. It allows training a network

for multiple objectives in parallel, in order to improve per-

formance on at least one of them by capitalizing on a shared

representation that is developed to accommodate more in-

formation than it otherwise would for a single task. We

employ this idea to tackle action recognition in egocentric

videos by introducing additional supervised tasks. We con-

sider learning the verbs and nouns from which action labels

consist of and predict coordinates that capture the hand lo-

cations and the gaze-based visual saliency for all the frames

of the input video segments. This forces the network to ex-

plicitly focus on cues from secondary tasks that it might oth-

erwise have missed resulting in improved inference. Our ex-

periments on EPIC-Kitchens and EGTEA Gaze+ show con-

sistent improvements when training with multiple tasks over

the single-task baseline. Furthermore, in EGTEA Gaze+

we outperform the state-of-the-art in action recognition by

3.84%. Apart from actions, our method produces accurate

hand and gaze estimations as side tasks, without requiring

any additional input at test time other than the RGB video

clips.

1. Introduction

Human activity recognition from video is a growing

field of computer vision that promises real-time and large-

scale behavior recognition and automated analysis. Activity

recognition applies to both the third and first-person vision

domains, incorporating the distinct visual characteristics of

each case. Third-person videos tend to capture the full

range of motions of the human body from a static point of

view. The viewing angle in egocentric videos matches that

of the human performing the activity, providing a unique,

moving perspective of the scene [20]. At the same time

egocentric videos usually offer a clear view of the camera

Figure 1. Visualizing the class activation maps [45] for an instance

of class ‘open’ from EPIC-Kitchens [7]. Left: Multi-Fiber Net-

work (MFNet) [6] trained end-to-end for the single task of classi-

fying short clips into actions. Right: MFNet trained to additionally

predict one (x,y) coordinate for each hand. Training with the hand

coordinates as the extra task leads to a greater inclusion of the right

hand area into the class activation map.

wearer’s hands [9], which in many cases are essential for

the execution of an activity. An outlook of the objects ma-

nipulated by human hands promises additional cues about

the performed activity culminating to improved recognition

performance [9, 26, 1].

Recent methods for video activity recognition employ

convolutional (CNN) and recurrent (RNN) deep neural net-

work structures to capture the information from RGB im-

ages or video frames, regardless of the viewing perspective

[22, 8]. More recent approaches use 3D convolutions [4] to

incorporate the temporal information that resides in frame

sequences. Occasionally, they are enhanced with attention

schemes [12] to select specific features or frames as more

informative for an activity. In order to expand the feature

space, the network input can be augmented with additional

data modalities. These can be optical flow [40], depth [49]

or input segmentation masks around interesting areas [52].

The information from them aims to guide the network to-

wards learning more activity-specific features that it might

otherwise have missed. In order to incorporate the supple-

mentary inputs, networks comprise multiple streams, i.e.



parts of the original structure are copied in the number of

modalities, trained individually (e.g. [54]) and their results

are combined at a later stage. The multi-stream approach

is associated with the combination of the individual feature

sets towards an extended and more expressive representa-

tion from which activities are inferred.

A related but fundamentally different concept that we

employ for this work is that of Multitask Learning (MTL)

[5]. The idea behind MTL is to train a neural network with

multiple related objectives (tasks) while sharing as much as

possible of a common network structure [5]. Branch di-

versification occurs only for the task-specific output layers

and there are as many output layers (branches) as there are

learnable tasks spawning from the main network block, in-

creasing the dimensionality of the output.

MTL is conceptually the opposite from multi-stream ap-

proaches, since the additional information is not used as

input but is expressed as the output of the network and is

only required for supervision. The significant merit of MTL

over multi-stream methods is that the additional information

is only needed during training and what would otherwise

come from the additional input modalities is already incor-

porated in the network weights at test time. For example, in

the video domain, the input of a network remains the same

set of RGB images regardless of the number of tasks.

The premise of MTL is that by combining the objectives

of related tasks in the same network, we can benefit from

their structural commonalities. This is the case because the

weights of the shared network block aim to jointly encapsu-

late each task’s representation requirements. When these

are complementary, they enhance the inputs of the task-

specific output layers. Then, inference can be improved for

all or some of them or just the one that we focus on the

most, by saving its best performing weights [5].

In this work, we utilize MTL to improve action classifi-

cation performance in egocentric videos. We are motivated

by the idea that hands are critical for the comprehension of

egocentric actions but it remains difficult for networks to

capture this delicate motion information. In Figure 1, we

show that by having the network learn hand regions explic-

itly as an extra task in addition to the actions, we steer it to

produce activation maps that cover the corresponding hand

areas to a greater extent. Eventually, incorporating these

areas also improves the action classification results.

We experiment with egocentric datasets EPIC-Kitchens

[7] and EGTEA Gaze+ [25] by explicitly utilizing the loca-

tion of hands, gaze and other signals towards actions. We

leverage the motion and visual attention information that is

present in the hand movements and the gaze of the camera

wearer, respectively, which have proven descriptive for pre-

dicting egocentric actions on their own [9, 26, 21]. In addi-

tion, we show that when complementary classification tasks

are added during training, performance improves further.

The contributions of this paper are the following:

• An MTL scheme that extends 3D CNNs [6] and func-

tions with an arbitrary number of output tasks.

• Experiments demonstrating that MTL improves on

egocentric action classification over singe-task learn-

ing (STL) baselines without requiring any additional

information at test time, other than the input video.

• Experiments generalizing our MTL scheme to a num-

ber of related classification and coordinate estimation

tasks that improve egocentric action classification.

In Section 2 we review recent work on action classifica-

tion and MTL. In Section 3 we develop our MTL pipeline

for an arbitrary number of tasks. In Section 4 we document

our experiments on two egocentric video datasets. In Sec-

tion 5 we discuss our findings and in Section 6 we conclude.

2. Related work

In Section 2.1 we discuss feature-based egocentric ac-

tion recognition approaches. We continue with the more

recent deep network advances for activity recognition from

the third person perspective in Section 2.2 and their expan-

sion into egocentric in Section 2.3. In Section 2.4 we dis-

cuss related work from the perspective of MTL.

2.1. Feature-based egocentric action recognition

The hands, the manipulated objects, ego-motion and

their interrelationships have been established as some of the

most prominent characteristics for egocentric action recog-

nition [9, 44, 20]. In this observation lies the origin of the

hand-crafted feature approaches that prevail in earlier works

in egocentric vision.

Fathi et al. [9] use hand and object segmentations to in-

fer actions and based on feedback from the latter improve

the initial hand and object detections. The importance of

the detected objects and the interactions between them for

activities is highlighted in [32], where activity recognition

improves using additional information about objects being

either passive or actively engaged with in the scene. In [10],

the gaze of the camera wearer is used to define the salient

areas in first-person views, recognizing that egocentric ac-

tions are further correlated with modalities that describe hu-

man attention in the video. Global and local motion are con-

sidered in [36] to produce features that describe egocentric

actions. Feature-based egocentric action recognition is an-

alyzed in [26] where the importance of motion and object

cues, hand, head movements and gaze are evaluated in vari-

ous combinations. A review of these approaches appears in

[30]. In our work, we do not use an explicit feature-based

representation of modalities for the input, but use data from

these modalities as supervision to learn actions.



2.2. Advances in third-person activity recognition

Recent work in third-person vision [33, 46] has seen the

successful employment of deep network approaches. We

highlight the work of Karpathy et al. [22] who use 2D CNN

architectures to classify video frames and in order to in-

corporate information from multiple frames, explore var-

ious fusion schemes to enhance the classification output.

Other approaches include the use of two-stream networks

[40, 54, 13] that capture appearance and motion in images

with spatial and motion streams trained on single or multi-

ple frames concurrently. Further attempts to take advantage

of the temporal consistency in videos consider recurrent

units following frame-wise feature-extracting CNNs [8, 27].

More recent approaches in video activity recognition use 3D

CNNs [50, 4, 51, 6]. Here, video frames are modelled as a

result of convolutional kernels being learned not only on the

spatial dimension of images, but also on the changing pixel

values in frame sequences. We find that using a 3D CNN to

capture patterns in the temporal dimension also works well

for egocentric action recognition.

2.3. Advances in first-person activity recognition

Spatial networks A large volume of work in egocentric

vision already incorporates these advances. A CNN ap-

pearance feature extractor from images is used to categorize

egocentric actions in [37]. In [55], CNN features from RGB

images are used to produce embeddings that are semanti-

cally linked among videos and are used as the basis to model

relationships between objects and actions and classify them.

In [28], a two-stream network is trained to capture appear-

ance and motion features. The appearance stream is pre-

trained for hand segmentation and is finetuned for object

localization, to find the interesting regions of the image.

The motion stream is trained on optical flow and both fea-

ture representations are combined with late fusion to predict

short-term actions, objects and activities. Furthermore, in

[41], a three-stream architecture trained on egocentric fea-

tures from hand masks, head motion and saliency maps for

the first stream, and raw RGB images and optical flow maps

for the other two is adapted to recognize actions. We also

highlight the improvements from specific egocentric cues

such as hand movements and gaze-based visual saliency on

top of the image-based features, but from a contrasting per-

spective. Instead of using them as input, we consider them

as additional learnable tasks with the advantage of not re-

quiring the extra information at test time.

Spatio-temporal with recurrence Approaches utilizing

recurrent networks following 2D CNNs include [53, 15, 43,

24]. CNN features are propagated to recurrent units for tem-

poral action proposal generation [15], action related scene

identification [53] and action recognition [43, 24].

Recurrent with attention The temporal aspect of videos

is further studied with recurrent attention mechanisms [3,

39, 48, 47, 25, 11, 56] that act to find the most informative

parts in images (spatial attention) or the most informative

frames throughout videos (temporal attention). An encoder-

decoder scheme is described in [3] for textual description

of videos. Here, the current event’s frames are encoded

into CNN features and modelled temporally with LSTM.

From the current and previous step’s embedding, an atten-

tion mechanism selects the features that will be decoded as

the optimal textual description of the current activity. The

attention mechanism in [39] focuses on the frames that carry

the action specific information by learning the associations

between the input gaze, the detected objects and the seg-

mented hands. The combined focus on these regions allows

the network to discard redundant frames of the input video

segment that would otherwise obfuscate the prediction task.

Spatial attention is considered in [48] where the important

regions from every frame are given as input to an LSTM

for action recognition, whereas in [47] spatial attention is

further correlated sequentially through continuous frames.

In [56], attention is based on video specific spatial features

(such as person detections in third-person videos and ob-

jects with motion for egocentric), which are calculated in-

termittently over the course of a video. These temporally

examined spatial features introduce past information to pre-

dict the current action. In [11], the attention mechanism

weighs the importance of the input modalities to select op-

timal features for action anticipation and recognition. In

contrast to explicit attention mechanisms, we are using the

additional supervisory tasks to enhance the representation

in deeper layers by incorporating information from all and

learning them together, thus inciting the network to acquire

universally useful features.

2.4. Multitask learning

Training a network for multiple tasks jointly has been

shown to improve the performance on all of them or at least

the main task, as long as they share a conceptual similarity

[5] or they are not competing [38]. In [38], the problem

of loss function weighing is analyzed, to train for multiple

tasks efficiently with an optimization scheme that searches

for the optimal set of network parameters for the best trade-

off among tasks. Instead, we weigh all tasks equally with

our focus on properly selecting related tasks in advance.

MTL has been applied to computer vision problems such

as joint object and action detection [19], object detection

and segmentation [14] and boundary, surface normal and

saliency estimation together with object segmentation and

detection [23]. In [57], the relationship between tasks is

modelled in a latent space to transfer knowledge between

them and reduce the number of required training samples.

MTL in egocentric vision appears in [1, 28, 25, 18, 29, 47].



In [1], from an RGB video input, multiple network branches

learn activities, object proposals and segmentations, but

with large parts of the network trained independently. In

[28], an object and an action learning task are combined to

produce an activity prediction (as a combination of the two),

but the network layers except the last one are not sharing pa-

rameters. In [25], the network learns a gaze map which is

used to pool from the activations of the final feature map for

actions, thus the two tasks affect each other. Similarly, in

[18], a prior gaze estimation is used to influence the action

prediction, which in turn affects the final gaze prediction.

Training takes place jointly, but internally, each network

part is deployed for a specific task, without parameter shar-

ing. Another example of multitask learning in egocentric

vision is from [29] with joint learning of activities and en-

ergy expenditures from video. Still, the input to the network

is multimodal (video and accelerometer signals) and each

stream is trained individually with parameter sharing only

during a late fusion stage. Finally, in [47] the action task

is augmented by a verb and a noun learning task similar to

ours, however, the bias of the action classifier is applied to

the secondary tasks and alters their output explicitly. In this

work, we do not attempt to influence task outputs explicitly,

but employ parameter sharing in every network layer, down

to the last step before the final output, as a way to induce

implicit information sharing between them.

3. Methodology

In Section 3.1, we describe the process to adapt a net-

work from single to multitask and in Section 3.2 the output

layers with their individual loss functions for the tasks we

consider. In Section 3.3, we discuss the details of the co-

ordinate prediction layer and its application to 3D CNNs to

model the progression of movements through time.

3.1. Multitask network structure

In Figure 2 we visualize our network architecture for

multitask training. The backbone of the network is a fea-

ture extractor (the shared network block), upon which the

task-specific output layers are attached. We represent the

feature extracting network block with g(x; θ), where x is

an input data point from input space X and θ are the pa-

rameters of g. For each task t, we define an output function

ft(g(x); θt), where θt are the parameters of the task-specific

layer and t ∈ T , with T being the set of tasks. For this

work, function g is approximated with a 3D Convolutional

Neural Network and the input space X is defined as a set of

RGB images sampled from a video clip.

3.2. Task-specific output layers

In order to train the network, we formulate the loss func-

tion based on the number and types of tasks it encapsulates.

We perform MTL with two types of tasks: classification and

Task specific outputs and lossesInput RGB Frames

Last conv

layer

Classification task 1

Classification task N

Coord. regression task 1

Coord. regression task N

Shared network block

Figure 2. MTL Network Structure. The shared network block can

be any convolutional network that extracts features from the in-

put. Each task-specific output layer is plugged to the ‘last conv

layer’. They are independent from the others and their parameters

are trained individually. However, all output layers use the feature

representation produced by the shared part of the network as input.

coordinate regression. For a classification task i, Lclsi is the

categorical cross-entropy loss. For a coordinate regression

task j, Lcoordj
is defined as the Differentiable Spatial to

Numerical Transform (DSNT) loss from [31], explained in

Section 3.3. The full loss function L is defined as

L =
∑

i

Lclsi +
∑

j

Lcoordj
. (1)

During training the value of L is not propagated through

each task-specific layer, but each task layer t produces gra-

dients with respect to its individual loss, hence its parame-

ters θt are not affected by the remaining tasks. Finally, the

gradients from all the output layers are summed and back-

propagated through g.

3.3. Coordinate prediction

Our approach for predicting coordinates stems from the

numerical coordinate regression layer introduced in [31]. It

enables a 2D CNN to output an (x, y) coordinate without

using a fully connected layer, thus ensuring spatial invari-

ance in the predicted coordinate [31]. Instead, it relies on

an additional convolutional layer that predicts a heatmap Z

of shape m × n. The softmax activation is applied on Z,

such as Ẑ = σ(Z), to create a 2D probability distribution,

which is passed through the Differentiable Spatial to Nu-

merical Transform (DSNT) layer to become a coordinate.

In DSNT, Ẑ is discretized by calculating its Frobenius

inner product for each dimension, against two uniformly

distributed vectors with values in [-1, 1], shaped m× 1 and

1 × n respectively and copied over their singular dimen-

sion (n and m times) to become matrices the shape of Ẑ.

The output value of the Frobenious inner product for each

matrix is the respective coordinate value with sub-pixel pre-

cision in the range [-1, 1]. This process preserves differen-

tiability through the layer and allows gradient flow from a



loss function directly associated with the error in coordinate

space instead of the error in heatmap space.

The coordinate loss Lcoord is the Euclidean distance be-

tween the predicted (cp) and the expected (cgt) coordinate

with an added regularization factor λ = 0.5 to smooth the

gradients around the prediction, i.e.

Lcoord = λLeuc(cp, cgt) + (1− λ)Lreg(Ẑ), (2)

where the Euclidean loss is

Leuc = ‖(cp, cgt)‖2 (3)

with cp = DSNT (Ẑ) and the regularization loss is

Lreg(Ẑ) = LJS(Ẑ, cgt) = JS(Ẑ ‖ N (cgt, σ
2)) (4)

based on the Jensen-Shannon divergence.

In order to successfully apply this coordinate regression

layer in our setup, we need to account for the output dimen-

sions of the last convolutional layer of the 3D CNN. In the

2D case that is B × C ×m × n with B the batch size and

C the channel dimension. In the 3D case the output shape

extends to B × C × l × m × n with l the added tempo-

ral dimension due to the 3-dimensional input. This leads to

having l heatmaps Z as well as l coordinate losses (instead

of 1) for an RGB clip, which are averaged over the temporal

dimension to avoid huge gradients.

4. Experiments

In this section we describe our experiments for various

task combinations. Besides having improved performance

on action recognition we produce accurate detectors for

hands and gaze without complicated modules other than the

DSNT layers for the coordinate prediction tasks. Finally,

we compare against the state-of-the-art.

4.1. Datasets

We use EPIC-Kitchens [7] and EGTEA Gaze+ [25] for

our experiments. EPIC is a collection of 432 videos by 32

participants, performing kitchen-related activities in their

homes. We use the publicly available training split which

consists of 272 videos by 28 participants (28,470 action seg-

ments). It is annotated with start and end times and 125

verb and 352 noun class labels, the valid combinations of

which are 2,521 actions. We partition the fully annotated

training split into custom training and validation splits with

participants 1-29 used for training (26,375 clips) and 30-31

for validation (2,095 clips). EGTEA consists of 86 videos

of 32 people in 7 scenarios of food preparation activities in

kitchens. The videos are cropped into 10,321 clips based on

action segment annotations. The dataset comes with three

predefined training and testing splits, with the first one com-

prising 8,299 and 2,022 clips, respectively. We use this split

unless stated otherwise, to train and evaluate at the clip level

[25]. Each clip is labeled from 19 verbs and 53 nouns and

their 106 valid action combinations in the dataset. In ad-

dition, the dataset is complemented with a gaze annotation

for every video frame, which consists of an (x, y) coordi-

nate and its type (fixation, saccade or unknown).

Hand locations One of the tasks we consider for MTL

is hand coordinate prediction. Similar to gaze annotations,

this task requires a supervision signal for the hand locations

on each frame. To accommodate our experiments we use

the egocentric hand detection, tracking and identification

algorithm from [21] to produce hand location information

for every video frame. It uses [34] to detect hand bounding

boxes, [2] to track them through time and hand-crafted pri-

ors to remove false-positives and identify between left and

right hands. We further modify [21] to track the top right

area of the left hand bounding box and the top left area of

the right hand leading to coordinates that more accurately

pinpoint the hands instead of the forearms.

4.2. Training and evaluation

For the shared network block of Figure 2 we employ the

Multi-Fiber Network (MFNet) [6]. It contains 3D convolu-

tional layers in its structure to capture spatio-temporal in-

formation from frame sequences and uses a relatively low

number of parameters (8M) and computational resources

(11.1 GFLOPs), which leads to an efficient training scheme

for large video datasets. For all our experiments we use

weights pretrained on Kinetics [4] and retrain the full net-

work structure end-to-end on the respective dataset.

We train with a triangular cyclical learning rate [42] pol-

icy that shifts learning rate from 5× 10−4 to 5× 10−3 and

back in 20 epochs. For optimization we use stochastic gra-

dient descent with Nesterov momentum (0.9) and weight

decay (5 × 10−4). We input a sequence of 16 frames, ran-

domly scaled to 256×256 and cropped to 224×224. Frames

are uniformly sampled from a 32-frame window that starts

at a random point of an action video segment and does not

exceed its last frame. Batch size is 32 for our setup with two

Nvidia 1080Ti GPUs, training lasts for 60 epochs and re-

sults are reported for the best performing epoch for the main

task (early stopping). To evaluate we sample uniformly 16

frames from a window of 32, centered around the temporal

center of an action segment. We resize them to 256 × 256
and use the 224× 224 center crop as the network input.

4.3. Results on EPIC-Kitchens

Our results on EPIC-Kitchens are summarized in Ta-

ble 1. Initially, we train the STL baseline with verbs for su-

pervision. Then, we combine verbs with nouns and hands

as separate tasks. Training for hands together with verbs

(V+H) increases Top1 accuracy to 49.31% (+0.75). Adding



Top1 Acc. (%) Top5 Acc. (%) Avg class Prec. (%) Avg class Rec. (%)

Tasks Actions Verbs Nouns Actions Verbs Nouns Actions Verbs Nouns Actions Verbs Nouns

V - 48.57 - - 78.32 - - 34.39 - - 25.29 -

V + H - 49.31 - - 78.80 - - 29.85 - - 25.68 -

V + N + H - 47.47 27.6 - 78.37 51.19 - 27.80 21.43 - 23.61 18.80

A 18.48 - - 36.20 - - 2.76 - - 2.67 - -

A + V + H 18.58 49.05 - 38.82 78.75 - 2.89 28.43 - 2.87 23.23 -

A + V + N + H 19.29 48.9 27.27 35.91 78.18 47.85 3.25 29.31 22.68 3.04 24.03 17.84
Table 1. Multitask learning results on EPIC-Kitchens. The first column shows the trained tasks for a model: Actions (A), Verbs (V), Nouns

(N) and Hands (H). We report Top1 and Top5 accuracy on our validation set. Average class precision and recall are reported for many-hot

verbs, nouns and actions. Many-hot verbs and nouns have more than 100 instances in our training set. Many-hot actions are the valid

combinations of many-hot verbs and nouns with at least one instance in the training set, following [7].

nouns (V+N+H) harms verb Top1 by 1.1% but produces our

best performing noun classifier.

In the EPIC-Kitchens literature [7] verb and noun pre-

dictions are combined following their individual inference

stages and are later synthesized into an action prediction.

In our MTL scheme we train for the action task explicitly,

i.e. the 2,521 valid verb and noun combinations. Having

actions, verbs and hands for supervision (A+V+H) leads

to 49.05% for verbs, improving on the STL baseline by

0.48% and additionally using the nouns (A+V+N+H) still

improves from STL (+0.33). However, both cases do not

improve as much as with only the hands, implying a conflict

between the extra tasks. On the other hand, if we consider

actions as the main task, the addition of verb, noun and hand

learning tasks will only improve on the action STL baseline

reaching 19.29% (+0.81 from A and +0.71 from A+V+H).

4.4. Results on EGTEA Gaze+

In Table 2 we delineate our results as the network moves

from one to multiple tasks in the EGTEA Gaze+ dataset.

We establish the action STL baseline (A) at 63.75% Top1

accuracy. Next, we train using additional supervision from

verbs and nouns (A+V) and (A+V+N) and reach 67.80%

(+4.05) and 68.00% (+4.25), respectively. For further ex-

periments we utilize coordinate regression layers to train on

gaze points and hand tracks. We see that with either task we

improve in both Top1 and mean class accuracy over STL;

A+G is 66.59% (+2.84) and A+H is 67.46% (+3.71). Fur-

ther improvements stem from training for all classification

tasks together with gaze or hand prediction. A+V+N+G

reaches Top1 68.74% (+4.99) and A+V+N+H is 68.20%

(+4.45). The attempt to combine gaze and hand coordinate

regression tasks only with actions shows that the two co-

ordinate tasks are competing to influence the shared repre-

sentation and have the smallest improvement over the STL

baseline with A+G+H Top1 at 66.12% (+2.37). However,

when all the classification and coordinate prediction tasks

are present in one model (A+V+N+G+H), we achieve our

best Top1 accuracy at 68.99% (+5.24) and our best mean

class accuracy 61.40% (+6.05 from STL at 55.35%).

4.5. Comparison to the state-of-the-art

In Tables 3 and 4 we compare with the state-of-the-art in

action recognition for EPIC-Kitchens and EGTEA Gaze+,

respectively. For EPIC we demonstrate slightly lower but

comparable performance to the top methods for the seen

(s1) and unseen (s2) test splits, by requiring only a fraction

of the input. For example [11] requires RGB and flow at test

time and [56] utilizes knowledge from past video segments,

in effect having a larger temporal view of the action. How-

ever, we still outperform the attention mechanism of [47].

For EGTEA, we test against several methods, for different

metrics. Top1 recognition accuracy for the first split at the

clip level is reported in [18] (55.63%) and in [48] (62.17%)

where we improve by 13.36% and 6.82% respectively. Li

et al. [25] report 47.71% mean class accuracy on the first

split at the clip level (and 53.3% on the video level). Our

method depending on the task combination reaches 58.91%

up to 61.4% (+11.2 to +13.69 respectively).

For a more elaborate comparison on EGTEA Gaze+, we

train the A+V+N+G+H model for splits 2 and 3 and average

the Top1 accuracy over all splits. We achieve 65.7% Top1

accuracy which is the highest among the reported values by

a margin of 3.84%. For future reference we also report the

mean class accuracy averaged over the three splits (57.6%).

An additional interesting scope from EGTEA is gaze es-

timation. Since a number of our models are able to predict

gaze on the input frames, we proceed to evaluate it with

two standard metrics in the literature: Average Angle Error

in degrees (AAE) and Area Under the Curve (AUC) [35]

following [18]. For evaluation we use only the frames from

the clips of the first test split for which after resizing and

cropping to 224 × 224 there is a valid ground truth gaze

point in this area, regardless of the gaze type. This leads

to the evaluation of 177,292/206,649 (85.79%) frames from

2,022 clips (the remaining frames are not considered). The

results are shown in Table 5. We discover that the gaze es-

timation techniques which are explicitly designed to model

gaze through elaborate attention mechanisms such as [18]

achieve lower angular error (-3.11°) although our model



Top1 Acc. (%) Top5 Acc. (%) Mean Cls Acc. (%)

Tasks Actions Verbs Nouns Actions Verbs Nouns Actions Verbs Nouns

A 63.75 - - 91.05 - - 55.35 - -

A + V 67.80 79.03 - 91.89 99.41 - 59.15 79.44 -

A + V + N 68.00 78.98 78.93 91.94 99.31 96.24 59.67 78.24 72.06

A + G 66.59 - - 91.54 - - 59.44 - -

A + H 67.46 - - 91.99 - - 59.78 - -

A + G + H 66.12 - - 90.54 - - 58.91 - -

A + V + N + G 68.74 78.14 79.13 91.59 99.41 96.54 60.34 79.29 72.03

A + V + N + H 68.20 79.18 77.94 92.24 99.51 96.34 60.13 79.34 71.1

A + V + N + H + G 68.99 79.08 79.03 91.74 99.26 96.39 61.40 77.40 72.49
Table 2. Multitask learning results on EGTEA Gaze+. The first column shows the names of the supervised tasks: Actions (A), Verbs (V),

Nouns (N), Gaze (G) and Hands (H). We report Top1, Top5 and Mean class accuracy on the first split of the EGTEA Gaze+ test set.

(A+G+H) improves over [16] and is very close to [25]. Fur-

thermore, considering AUC, our model is second best to

[18] with a -0.06 margin. The two metrics imply that our

method is able to produce gaze predictions that lie in the

vicinity of the ground truth (high AUC) but with an angu-

lar offset with respect to the exact ground truth gaze. In

Figure 3 we show and qualitatively assess gaze and hand

predictions. The images show both the predicted saliency

in heatmap form as well as its transformation into a single

point per frame for gaze and each hand.

Top1 Acc. (%) Top5 Acc. (%)

Method Actions Verbs Nouns Actions Verbs Nouns

Test s1 (Seen kitchens)

TSN [7] 20.54 48.23 36.71 39.79 84.09 62.32

LSTA [47] 30.33 59.55 38.35 49.97 85.77 61.49

Ours (all tasks) 29.73 56.00 40.15 50.95 87.06 64.07

RU [11] 33.06 56.93 43.05 55.32 85.68 67.12

LFB [56] 32.70 60.00 45.00 55.30 88.40 71.80

Test s2 (Unseen kitchens)

TSN [7] 10.89 39.40 22.70 25.26 74.29 45.72

LSTA [47] 16.63 47.32 22.16 30.39 77.02 43.15

Ours (all tasks) 17.86 45.99 26.25 35.68 77.98 50.19

RU [11] 19.49 43.67 26.77 37.15 73.30 48.28

LFB [56] 21.20 50.90 31.50 39.40 77.60 57.80
Table 3. Comparison on action recognition against state-of-the-art

methods on EPIC-Kitchens. Our method is consistently close to

the best performing, while requiring less information at test time.

5. Discussion

Our first aim with MTL is to drive the focus of the ac-

tivation maps around hand regions and their movements.

By training for the hand coordinate task we imply greater

importance to them and introduce this requirement to the

weights of the shared network block via gradient descent.

An example of the expected behavior of the network is in

Figure 1, where the class activation maps after the last con-

volution layer cover a larger area of the visible hands.

The task of gaze prediction is similar to hand detection

Split 1 Avg. Splits 1-3

Method Top1 Mean Cls Top1 Mean Cls

Li et al. [25] - 47.71 - -

MCN [18] 55.63 - - -

RU [11] - - 60.20 -

ego-rnn [48] 62.17 - 60.76 -

LSTA [47] - - 61.86 -

Ours (all tasks) 68.99 61.40 65.70 57.60
Table 4. Action recognition comparison on EGTEA Gaze+. We

compare against the available values from each paper.

Method AAE AUC

SALICON [16] 11.17 0.881

Ours (A+G+H) 8.90 0.926

Li et al. [25] 8.58 0.87

DFG [58] 6.30 0.923

Huang et al. [17] 6.25 0.925

MCN [18] 5.79 0.932
Table 5. Gaze estimation comparison on EGTEA Gaze+ split 1.

AAE lower is better, AUC higher is better. SALICON [16], Li et

al. [25], DFG [58] and Huang et al. [17] are reported from [18].

in that it expects the network to focus on specific regions of

the input frames. The difference is that these regions do not

necessarily contain the well-structured form of hands, but

the salient areas of a scene, which are not predetermined.

This limits the ability of region-specific features to become

significant making it a dataset- and class-specific quality.

In both datasets, we observe almost consistent improve-

ments over STL with the introduction of hands and other

tasks. However, the choice of tasks involves a significant

amount of intuition as well as the weighing of their impor-

tance in the loss function. In this work, we use a naive

weighing mechanism and consider all tasks equal regard-

less of the loss they incur. When training multitask models

for EPIC-Kitchens we notice high values of loss in the clas-

sification tasks, which stem from the class imbalance and

the large number of action, verb and noun classes. These

losses initially affect their individual layers, but the back-



(a)

(b)

(c)

Figure 3. (a) Gaze, (b) left hand, (c) right hand coordinate prediction from the A+G+H model. The green circle represents the ground truth

coordinate, the red circle the predicted coordinate and the underlying heatmap the 2D probability distribution Ẑ.

propagated gradients to the shared weights are also higher,

affecting the representation in an unbalanced way. In the

EPIC-Kitchens results we see that by adding classification

tasks with more classes (such as N at V+N+H, or A at

A+V+N+H), we get a worse verb classifier. This is caused

by the high losses incurred from the added tasks. In certain

cases, they act as regularization but when they are too high

they can increase training times and even prevent conver-

gence. We believe further research is needed in MTL for

video recognition to establish weighing mechanisms such

as [38] for a more optimized shared parameter space.

On the other hand, on EGTEA Gaze+, MTL consistently

outperforms STL for every task combination. This shows

that carefully designing the classification tasks (e.g. fewer

classes, balanced dataset) can be mutually beneficial to all,

but more importantly to the action task we are most inter-

ested in. Incorporating hands in training confirms our initial

intuition that motions create a fitting side-task to actions,

increasing performance. A possible reason for the higher

improvement due to hands on EGTEA compared to EPIC

is the presence of hand annotations from the former in the

training set of the hand detector of [21]. This, could result in

a more accurate synthetic hand dataset for EGTEA. Finally,

improvements due to gaze validate the connection between

actions and gaze [18, 25] also from the perspective of MTL.

A possible pitfall of MTL is competition among tasks

with negative effects on performance. This is possible if

tasks are incompatible or if the network is not large enough

to create a representation that engulfs the different aspects

of information required for each one. The former regards a

(lack of) conceptual relevance, for example verbs and nouns

on EPIC, or structural, for example classification layers

operating differently from coordinate regression ones and

possibly requiring a distinct representation in earlier lay-

ers. The concept of task compatibility has been studied for

other domains in [5] concluding that the degree of assis-

tance from an extra task in learning another cannot be clear

a priori without experimentation. This can be viewed as

treating tasks as an additional hyperparameter. An example

of task incompatibility with respect to actions is when both

gaze and hands are used for action recognition (A+G+H)

but lead to worse performance than training individually

(A+G, A+H). Adding a task may not improve as much as

another combination but can also reduce the expected base-

line performance. Here, however, the trade-off is actions

and hands contributing towards an optimal gaze detector.

6. Conclusions

In this work, we have developed a Multitask Learning

scheme for egocentric action recognition that supports a

variable number of tasks. We train for actions together with

related classification tasks, such as verbs and nouns, and

show that performance on one or all of them will improve

over the single-task baseline. We further combine classi-

fication with coordinate regression tasks to learn the ego-

centric left and right hand and gaze locations, by predict-

ing coordinate sequences for video segments exploiting the

temporal dimension of 3D CNNs. We highlight that hav-

ing a network estimate coordinates allows it to focus more

on certain areas of the activation maps with higher corre-

spondence to the hands or other salient objects in the origi-

nal image. Our tests on the EPIC-Kitchens show improve-

ments on action recognition performance over single-task.

On EGTEA Gaze+ we achieve state-of-the-art performance

in action recognition reaching 65.70% surpassing the pre-

vious best by more than 3.8%. In addition, with multitask

learning we can produce accurate hand detectors, as well as

gaze predictors with performance close to state-of-the-art.
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