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Abstract

Recent advances in computer vision have made it pos-

sible to automatically assess from videos the manipulation

skills of humans in performing a task, which breeds many

important applications in domains such as health rehabili-

tation and manufacturing. Previous methods of video-based

skill assessment did not consider the spatial attention mech-

anism humans use in assessing videos, limiting their per-

formance as only a small part of video regions is informa-

tive for skill assessment. Our motivation here is to estimate

attention in videos that helps to focus on critically impor-

tant video regions for better skill assessment. In particular,

we propose a novel RNN-based spatial attention model that

considers accumulated attention state from previous frames

as well as high-level information about the progress of an

undergoing task. We evaluate our approach on a newly

collected dataset of infant grasping task and four exist-

ing datasets of hand manipulation tasks. Experiment re-

sults demonstrate that state-of-the-art performance can be

achieved by considering attention in automatic skill assess-

ment.

1. Introduction

Skill assessment is a type of evaluation often used to de-

termine the skills and abilities a person has. Out of a vari-

ety of different skills, the assessment of manipulation skill

is of particular interests and are widely used in various pro-

fessional environments such as surgery, manufacturing and

health rehabilitation. However, manual assessment of skill

requires not only a large amount of labor and time but also

expert supervision which is rare and not always available

for ordinary applications.

With recent advances in computer vision, automatic skill

assessment from videos is believed to have many potential

applications and begins to attract research interests in recent

years [2, 10, 11, 22, 31, 37]. However, previous methods are

either task-specific and lacking generalizability or unable to

capture the fine details of motion in local regions of a video

which are critically informative about the skill level. In-

spired by the skill assessment procedure of a human expert

during which the attention is always paid to the most critical

part of a task (e.g., body pose of a basketball player rather

than the basketball court during shooting), we believe it is

important to capture the informative regions of a video in a

general framework for more reliable skill assessment.

In this work, we propose a spatial attention-based

method for skill assessment from videos. Spatial attention

models, especially recurrent neural networks (RNNs) based

models, have been extensively studied to capture critical ar-

eas from redundant backgrounds in video sequences since

spatial attention in different frames is temporally correlated.

They have been widely applied to many tasks such as ac-

tion recognition [12, 26, 39] and video classification [28].

Hence, we choose to adopt RNN-based attention models to

capture temporal transition patterns of attention in a video.

However, existing RNN-based attention models fall short to

be successfully applied for the task of skill level assessment

for the following reason.

It has been observed that during the procedure of assess-

ing the skill in a video, in addition to the visual informa-

tion in each frame, human’s transition of attention also de-

pends on the region of previous attention (e.g., the attention

tends to gradually transit from one object to another in adja-

cent frames) and the knowledge about the progress of a task

(e.g., people tend to focus on different objects at different

stages of a task). While previously attended regions tend

to indicate which regions to attend subsequently, the high-

level information about the undergoing task affects when

attention transits. Considering the case of assessing a bas-

ketball player’s shooting skill, after focusing on the hands

holding the ball for a while, the attention would be trans-

ferred to the ball trajectory and the target basket soon after

the player shoots.

Therefore, to reliably estimate attention for skill assess-

ment in videos, the attention model need consider simul-



taneously the following three types of information: 1) in-

stantaneous visual information in each frame; 2) high-level

information about the undergoing task; 3) accumulated in-

formation of spatial attention in previous frames.

In this work, we propose a novel RNN-based frame-

work to estimate spatial attention for skill assessment. The

proposed framework is mainly composed by two RNNs,

one for modeling the transition patterns of spatial atten-

tion (RNNatt), and the other for modeling the progress

of an undergoing task (RNNtask). The attention infor-

mation accumulated by RNNatt is utilized together with

low-level visual information to estimate spatial attention for

each video frame. The action information accumulated by

RNNtask is used to score the skill level in a video. In par-

ticular, the two RNNs interacts with each other: while spa-

tial attention estimated by RNNatt is used to focus on the

informative regions for RNNtask to better assess skill level,

the accumulated action information represented by the hid-

den state of RNNtask is incorporated into RNNatt for bet-

ter attention estimation.

To evaluate our approach, we use existing public datasets

of hand manipulation tasks as well as a newly collected

dataset which records visuomotor skills of infants at differ-

ent ages (called as “Infant Grasp Dataset”). To alleviate the

difficulty of annotation, we annotate the videos pair-wisely

and use a pairwise deep ranking technique for training our

model. Using pairwise ranking is also a way for data aug-

mentation. The Infant Grasp Dataset contains 4371 video

pairs from 94 videos of object grasping task. Experimental

results show that our proposed approach not only achieves

state-of-the-art performance but also can learn meaningful

attention for video-based skill assessment.

Main contributions of this paper are summarized as fol-

lows:

• We propose an attention-based method for assessing

the skill level of manipulation actions from videos. To

the best of our knowledge, this is the first work to in-

corporate spatial attention mechanism in skill assess-

ment.

• We propose a novel RNN-based spatial attention

model which is carefully designed for skill assessment.

• We collect and annotate a new dataset for skill assess-

ment, which records object-grasping task of infants at

different ages.

• Extensive experiments are conducted on multiple pub-

lic datasets, which not only shows that skill assessment

performance could be greatly improved with attention

mechanism but also validates the effectiveness of our

proposed spatial attention model.

2. Related work

2.1. Skill assessment

Skill assessment has been extensively researched in the

context of computer-assisted surgical training since the cur-

rent process of surgical skill assessment sorely relies on

subjective evaluation by human experts which is highly la-

bor intensive [14, 23, 31, 41, 55, 40, 56, 57, 59, 58]. Jin

et al. [23] proposed to automatically assess surgeon perfor-

mance by tracking and analyzing tool movements in sur-

gical videos, which hints us that the model for skill as-

sessment should pay attention to the task-related regions

in video rather than treat visual information in every re-

gion equally. For the purpose of automatic rehabilitation or

sports skill training, there is another class of works focusing

on the assessment of motion quality or sports performance

through computer vision approaches [2, 3, 24, 33, 35, 37,

45, 49, 50]. Most of these methods are designed for specific

tasks, and thus the generalizability is restricted. Doughty et

al. [10] took a step towards the general architecture for skill

assessment by introducing a two-stream pairwise deep rank-

ing framework. However, their method is purely bottom-up,

without using the high-level information related to task or

skill to guide the bottom-up feed-forward process. This may

result in unsatisfactory performance since both task-related

regions and irrelevant regions are equally treated when ex-

tracting deep features. In this work, we apply the spatial

attention mechanism to guide the bottom-up feed-forward

process so that irrelevant information could be filtered out

and fine details that are critically informative for skill as-

sessment could be utilized for feature generation.

2.2. Spatial Attention mechanism

Evidence from human perception process shows the im-

portance of spatial attention mechanism [32]. Due to its

excellent performance in many image-level tasks such as

image recognition [46, 18, 34, 48], visual question answer-

ing [7, 29], image and video captioning [1, 4, 5, 13] and

visual attention prediction [19, 20, 21, 38, 53], the spatial

attention mechanism is naturally incorporated into the fea-

ture extraction process for video inputs. One of the classic

applicable tasks is action recognition [12, 15, 25, 26, 27, 30,

39, 43, 51].

The approaches of estimating spatial attention for video

inputs could be divided into two classes from the perspec-

tive of whether the temporal information is involved or

not. In the first class [15, 25, 51], the spatial attention in

each frame is independently inferred without considering

the temporal relationships between frames. For instance,

Girdhar et al.[15] proposed an attentional pooling method

based on second-order pooling for action recognition. Both

saliency-based and class-specific attention are considered in

their model, however, the attention is independently learned



Figure 1. The illustration of our skill assessment framework. At every time step, the network takes an RGB image and the corresponding

stacked optical flow images as input and firstly represents them as deep appearance-motion features. The spatial attention sub-module is

then used to generate an attention map, by integrating the low-level visual information from the deep appearance-motion features and the

high-level information of the undergoing task from the top part of the framework. Meanwhile, the temporal relationship between attention

is also considered in this module. An attended feature vector is then generated by weighted pooling the deep feature according to the

estimated attention map. The feature vector is forwarded to an RNN (RNNtask) for modeling temporal transition of actions. The output

of RNNtask at the final time step is used to yield a score for quantifying the skill level in a video.

from each frame where no temporal information between

frames is taken into account. It is effective in the task of

action recognition which emphasizes the overall variance

in appearance. However, the temporal evolution of actions

performed in detailed regions is critical for skill assessment

tasks so that modeling the temporal pattern becomes indis-

pensable. The second class [12, 26, 27, 30, 43, 39] incor-

porates temporal relationships in learning spatial attention,

which is usually implemented by forwarding the aggregated

temporal information, i.e., the hidden states of RNNs, into

the module for estimating spatial attention. Sharma et al.

[39] proposed a soft-attention on top of the RNNs to pay at-

tention to salient parts of the video frames for classification.

However, when learning spatial attention for each frame,

the approach only considers the high-level temporal infor-

mation aggregated in previous frames without the visual in-

formation in the frame itself. Some other RNN-based meth-

ods require the auxiliary information such as human poses

[12, 27, 43] and object proposals [30] to guide the learning

process of spatial attention, which not only requires the pre-

computation on videos but also restricts the approach’s gen-

eralization since the auxiliary information are not always

available (e.g. human poses may be absent in first-person

videos).

In contrast, we propose an RNN-based spatial attention

module for skill assessment in this work, which fully ex-

ploits necessary information for inferring spatial attention

without any pre-computed auxiliary information.

3. Approach

In this section, we first describe the overview of the

framework for skill assessment. Then we introduce the de-

tails of each part, especially the proposed spatial attention

module which integrates temporal relationships into the es-

timation of spatial attention. We also describe the pairwise

ranking scheme for training our model.

3.1. Model architecture

Our goal is to learn models for skill assessment in dif-

ferent tasks. Given a video in which a whole procedure of

finishing a certain task is recorded, our model estimates a

score to assess the skill performed in the video. Figure 1

depicts the architecture of our model. As is done in [10],

we split the video into N segments, and randomly sam-

ple one frame in each segment to form a sparse sampling

of the whole video. At every time step t ∈ {1, · · · , N},

the feature encoding module extracts deep appearance-

motion features from a single RGB image and the corre-

sponding stacked optical flow images. To estimate a spa-

tial attention map, the attention pooling module accepts

both the deep appearance-motion features and a task-related

feature generated from the temporal aggregation module

which will be described below. The temporal relationship

between attention is also considered in this module to cap-

ture the transition pattern of attention. By pooling the deep

appearance-motion features with weights derived from the

attention map, an attended vector is generated to encode the

actions that are critically informative about the skill level.

The vector is then fed into the temporal aggregation mod-

ule, which aggregates the action information carried by the

vector temporally and tries to model the temporal transition

of actions in a certain task. A score for quantifying skill

level in a video is regressed from the final accumulated ac-

tion information. We illustrate the details of each module in

the following subsections.

3.2. Feature encoding

From each of the t-th segment, the module takes an RGB

image It and the corresponding stacked optical flow images

Ot as input, since appearance and motion are both impor-

tant for skill assessment. The feature encoding module first

extracts two deep features FS,t and FT,t from It and Ot

by feeding them into two ResNet101 networks respectively.



Figure 2. The details of the spatial attention sub-module. To estimate the task-related significance for the regional vectors at different

locations, the module incorporates not only the low-level visual information x̄t globally extracted from the deep feature maps, but also the

high-level information of the undergoing task h
task

t−1 which is accumulated by a high-level RNN (RNNtask in Figure 1). We also use an

RNN (RNNatt) to accumulate the attention information and learn the temporal relationship of attention. The hidden state of RNNatt is

utilized to estimate attention weights for all locations in deep feature map Xt.

The ResNet101 networks are pre-trained on ImageNet [9]

and then fine-tuned on UCF101 [44] in a two-stream frame-

work for action recognition[42]. As in [16, 20], we extract

deep features from the last convolution layer of the 5th con-

volutional block.

Then we build a two-layer convolution network for fea-

ture fusion, which takes FS,t and FT,t as input (concate-

nated in the channel dimension) and outputs the fused deep

appearance-motion representation Xt ∈ R
C×H×W :

Xt = fconv2(ReLU(fconv1([FS,t;FT,t]))), (1)

where [.; .] denotes the concatenation operation.

3.3. Attention pooling

We aim to apply attention to guide the bottom-up feed-

forward process. In our work, this is done by our proposed

attention pooling module that dynamically adjusts spatial

attention based on both the low-level visual information

and the high-level information about the undergoing task.

Specifically, at each time step, the attention pooling module

accepts two inputs: deep appearance-motion feature maps

of the frame as the low-level visual information, and the

hidden state vector given by top RNN in temporal aggrega-

tion module representing the high-level information about

the undergoing task. The two inputs will be explained in

detail as follows.

To extract a compact low-level representation vector

from the deep appearance-motion feature maps, follow-

ing [48], we firstly squeeze spatial information of the

deep feature map Xt by performing average-pooling and

max-pooling. As a result, two features are generated and

summed together to form a highly abstract low-level repre-

sentation vector x̄t ∈ R
C for Xt as following:

x̄t = AvgPool(Xt) +MaxPool(Xt). (2)

The high-level representation vector htask
t−1

and the low-level

representation vector x̄t both serve as a basis for estimat-

ing attention map. We name this part as spatial attention

sub-module, and its details are shown in Figure 2. Briefly

speaking, we concatenate the two vectors together, deriving

a vector ct integrating the information for estimating the at-

tention map:

ct = [x̄t;h
task
t−1

]. (3)

Since the attention in video is temporally correlated, a

Recurrent Neural Network (RNN) [6] (called RNNatt) is

adopted to capture the transition pattern of attention by tem-

porally accumulating the attention information ct. The out-

put hatt
t at time step t is a vector integrating both the current

low-level visual information and the high-level information

about the undergoing task. Moreover, the temporal depen-

dencies between the information for attention estimation are

also taken into account simultaneously:

hatt
t = RNNatt(ct, h

att
t−1

). (4)

Given the output vector hatt
t and the deep feature maps

Xt, our model generates an attention weight ai,t for each

spatial location i of the deep features xi,t at all H×W loca-

tions of feature maps and normalize them by softmax acti-

vation function. The output of softmax activation function

is marked as αi,t. With this procedure, the attention on each

spatial location will be guided by the integrated information

hatt
t , which leads to a better decision on the importance of

each specific location.

ai,t = ωT
a [tanh(Wxaxi,t + bxa +Whah

att
t + bha)],

i = 1, 2, ..., H ×W ;
(5)



αt = softmax(at), (6)

where {ωa,Wxa, bxa,Wha, bha} denotes attention parame-

ters. We call this part as Attend part in the spatial attention

sub-module (Figure 2).

The attended image feature which will be used as input

to the final RNN for skill determination is calculated as a

convex combination of feature vectors at all locations:

vt =

H×W
∑

i=1

αi,txi,t. (7)

3.4. Temporal aggregation

In [10, 42, 47], a video-level prediction is derived by av-

eraging the image-level predictions of sampled frames, in

which no temporal relationship between information in dif-

ferent frames is considered. However, in skill assessment, it

is hard to yield an accurate prediction only from the visual

information in a single frame, since the skill level is deter-

mined by the temporal evolution of actions. For example,

during the procedure of assessing one task, both the execu-

tion order of different actions and the speed of performing

an action could affect the judgment of the skill level. For

this reason, we choose to use an RNN to model the tempo-

ral transition of actions in a certain task by accumulating the

changed action information temporally. The score for skill

level will be estimated based on the output of this RNN at

the final step.

Specifically, we aggregate the feature vectors temporally

using an RNN (noted as RNNtask),

htask
t = RNNtask(vt, h

task
t−1

). (8)

The output at the final temporal step of RNNtask is for-

warded into a fully connected layer (FC) to get the final

score S ∈ R for quantifying the skill level in a video:

S = FC(htask
N ). (9)

Here the hidden state vector htask
t is seen as representation

of the knowledge about the undergoing task since it accu-

mulated the action information in previous frames.

3.5. Training and implementation details

We use a pairwise ranking framework [10, 52] for train-

ing, which requires only pairwise annotations to assess the

skill in videos of the same actions. To be more precise,

given M = m(m − 1)/2 pairs of videos formed from a

set of m videos {V1, V2, · · · , Vm}, annotators only need to

point which video shows better skill in each pair rather than

giving an exact score for each video:

P (Vi, Vj) =

⎧

⎪

⎨

⎪

⎩

1 Vi performs better than Vj ,

−1 Vj performs better than Vi,

0 no skill disparity.

(10)

Since P (Vi, Vj) = −P (Vj , Vi), we can change the order of

videos in each pair to ensure P≥0. Only video pairs per-

forming skill disparity are chosen for training and testing.

Therefore, denote Ψ as all pairs of videos in the training

set that contains skill disparity, all the video pairs 〈Vi, Vj〉
in Ψ will satisfy ∀Vi, Vj ∈ Ψ, P (Vi, Vj) = 1. In our pair-

wise ranking framework, two videos in one pair are fed into

a Siamese architecture consisting of two same models with

shared weights. The output of each model is a score denoted

as S(·), and the model learns to minimize the following loss

function:

L =
∑

Vi,Vj∈Ψ

max(0,−S(Vi) + S(Vj) + ǫ). (11)

S(Vi), S(Vj) depict the predicted skill measure for videos

i and j respectively. ǫ denotes margin, which is incorpo-

rated to adjust the distance between the predicted scores of

the two videos. In this work, we empirically select ǫ = 0.5
in all experiments. What should be noticed is that the score

S(·) is not an absolute score given by annotators but learned

from the training data such that the scores are consistent

with pair-wise rankings given as ground truth. The loss

function will punish the model if the predicted score S(Vi)
is no larger than S(Vj) by ǫ for the video pair 〈Vi, Vj〉 in

which Vi has higher skill level.

We use PyTorch [36] to implement our framework. The

optical flow images for motion input are extracted by TV-

L1 algorithm [54]. For the dataset of Infant-Grasp, the op-

tical flow images are extracted with the original frame rate

and for the other datasets, we use the frame rate of 10-fps

since motion is slow in these videos. The deep features in

Figure 1 is extracted from the output of the 5-th convolu-

tion block (conv5 3) of ResNet101 [17]. The input images

are resized to 448 × 448, so the size of deep features ex-

tracted from ResNet is 2048 × 14 × 14. The conv-fusion

module consists of 2 convolution layers, in which the first

layer followed by ReLU activation. The first layer has 512

kernels with a size of 2 × 2, and the second convolution

layer has a kernel size of 1 with 256 output channels. The

dimensions of parameters {ωa,Wxa, bxa,Wha, bha} in the

Attend part of the spatial attention sub-module are set as

{1× 32, 32× 512, 32× 1, 32× 128, 32× 1}. The RNN

for both attention pattern learning and temporal aggrega-

tion are implemented with a 1-layer Gated Recurrent Unit

(GRU) [6] whose hidden state size is set as 128. We uni-

formly split each video into N = 25 segments, and sam-

ple one frame randomly from each segment during training.

The last frame of each segment is utilized to test our model.

We use stochastic gradient descent with a momentum of 0.9

to optimize our model. We set learning rate as 5e-4 for the

Infants-grasp dataset, and 1e-3 when for other datasets. All

weight decays are set as 1e-3. As [10], our model is trained

and tested separately on different datasets.



Figure 3. Image examples of two videos showing different skill levels in our Infant Grasp Dataset. The skill level in the bottom row is

better than in the top row because the action of putting is not continuous in the top row. Infants’ faces are blurred for privacy.

4. Experiments

We evaluate our method on our newly collected dataset

as well as four public datasets. Similarly to [10], we re-

port the results yielded by four-fold cross-validation, and

for each fold, we use ranking accuracy as the evaluation

metric. Ranking accuracy is defined as the percentage of

correctly ranked pairs among all pairs in the validation set.

4.1. Datasets

4.1.1 Infant Grasp Dataset

Since the related public datasets are either small in size

(e.g., up to 40 videos [10, 14]) or unsuitable for manipu-

lation skill assessment (e.g., comparing skill between dif-

ferent diving actions [37]), we construct a larger dataset

for infant grasp skill assessment. The dataset consists of

94 videos, and each video contains a whole procedure of

an infant grasping a transparent block and putting it into a

specified hole. The videos were originally captured for an-

alyzing visuomotor skill development of infants at different

ages. Figure 3 shows representative frames selected from

a pair of videos. The length of each video ranges from 80

to 530 frames with a frame rate of 60fps. This dataset is

expected to be of great importance not only to the computer

vision community but also to the developmental psychology

community. To annotate the dataset, we asked 5 annotators

from the field of developmental psychology to label each

video pair by deciding which video in a pair shows a better

skill than the other or there is no obvious difference in skill.

We form 4371 pairs out of 94 videos, among which 3318

pairs have skill disparity (76%).

4.1.2 Public datasets

We also evaluate our method using public datasets of an-

other four manipulation tasks: Chopstick-Using, Dough-

Rolling, Drawing [10], and Surgery [14]. The Chopstick-

Using dataset contains 40 videos with 780 total pairs. The

number of pairs of video with skill disparity is 538 (69% of

total pairs). The Dough-Rolling dataset selects 33 segments

about the task of pizza dough rolling from the kitchen-based

CMU-MMAC dataset[8] and 538 pairs of videos are an-

notated with skill disparity (69%). The Drawing dataset

consists of two sub-dataset and 40 videos in total, among

which 380 pairs are formed and 247 pairs show skill dispar-

ity (65%). The Surgery dataset contains three sub-datasets

of three different kinds of surgery tasks: 36 videos of Knot-

Tying task, 28 videos of Needle-Passing and 39 videos of

Suturing. Each sub-dataset contains a maximum of 630,

378, 701 pairs respectively, and since the annotation is given

by a surgery expert using a standard and structured method,

more than 90% of pairs contains the difference in skill level.

Following [10], we train and test the 3 sub-datasets of the

Surgery dataset together using one model. Same is done for

the Drawing dataset.

4.2. Baseline methods

We compare with several baseline methods to validate

the effectiveness of our proposed approach. We firstly com-

pare our method with Doughty et al. [10] which is the most

relevant work with ours. They use the TSN [47] with a mod-

ified ranking loss function for skill assessment. We also use

four more baseline methods by replacing the spatial atten-

tion module in our method with existing spatial attention

modules so as to evaluate the effectiveness of our spatial

attention module.

• Attention Pool[15]: A static attention model origi-

nally proposed for action recognition task. The spatial

attention is estimated independently for each frame.

• CBAM Attention[48]: Another static attention model

which is proposed for any CNN-based tasks. Both

channel and spatial attention are estimated. Similar to

[15], the attention is estimated independently for each

frame with low-level visual information.



Figure 4. Visualization of attention maps estimated by our method

on the Infant Grasp dataset.

Accuracy(%)
Chopstick-

Using
Surgery Drawing

Dough-

Rolling

Infant-

Grasp

Doughty et al. [10] 71.5 70.2 83.2 79.4 80.3

Attention Pool [15] 74.9 68.8 83.9 79.3 83.6

CBAM Attention [48] 82.0 68.6 84.1 78.9 83.8

Visual Attention [39] 84.6 68.1 83.1 79.8 84.9

SCA-CNN [4] 84.2 69.6 84.4 81.8 84.6

Ours 85.5 73.1 85.3 82.7 86.1

Table 1. Performance comparison with baseline methods. Ranking

accuracy is used as the evaluation metric.

• Visual Attention[39]: An RNN-based spatial atten-

tion model for action recognition task. Only the state

information of RNN for action recognition is explicitly

used to estimate spatial attention.

• SCA-CNN [4]: An RNN-based attention model orig-

inally proposed for image captioning task. The visual

information in each frame and the state information of

RNN for image captioning are exploited, but the tran-

sition pattern of attention is not modeled explicitly.

Except for the spatial attention module, all the other parts

of our framework remain invariant when we are composing

baseline attention methods.

4.3. Performance comparison

Quantitative results of different methods are shown in

Table 1. Our method achieves the best performance on all

datasets and outperforms the state-of-the-art method [10]

by a large margin. Comparing within four baseline atten-

tion models, overall RNN-based attention models [39, 4]

outperform static attention models [15, 48]. Our method

outperforms all baseline attention models, which validates

the effectiveness of our proposed spatial attention module

for skill assessment.

We visualize the attention maps generated by our model.

Figure 4 shows attention maps on our Infant-Grasp dataset.

To illustrate the transition process of the generated atten-

tion, we select 5 frames for each video to capture key ac-

tions in one video. The performance shown in the two

videos is in relatively low skill level since the cube is

dropped or switched between hands. However, it can be

seen that the generated spatial attention focuses on the de-

tailed regions in all images which are critically informative

for skill assessment. In the first row, the spatial attention

smoothly shifts between the infant’s hand and the dropped

cube, instead of locating on hand regions continuously. In

the second row, our attention module successfully locates

the correct task-related hand when the cube is switched be-

tween two hands. The reason our attention model is adap-

tive to the shifting attention might be the incorporation of

knowledge about the undergoing task and the modeling of

temporal relationship between attention.

We also compare the attention maps of two different

datasets obtained by our proposed model and two baseline

attention models of SCA-CNN [4] and CBAM Attention

[48] in Figure 5. With our model, the attention is always

paid onto the important regions that is informative for skill

assessment.

In contrast, the models of SCA-CNN and CBAM Atten-

tion tend to locate the salient but task-unrelated regions. For

CBAM Attention [48], the reason might be the absence of

temporal information. For SCA-CNN [4], the reason might

be the lack of explicit consideration of temporal relationship

between attention.

4.4. Ablation study

To validate the effectiveness of each component of our

model, we conduct ablation study on each dataset with the

following baselines:

• No Attention: Spatial attention module is entirely re-

moved and visual information AvgPool(Xt) is di-

rectly forwarded into RNNtask. We build this base-

line to examine the effectiveness of spatial attention in

skill assessment.

• No RNNatt: In spatial attention module, RNNatt is

replaced by one fully-connected layer. We build this

baseline to examine the effectiveness of attention tran-

sition patterns learned by RNNatt.

• x̄t based Attention: The RNNatt takes only x̄t as in-

put without the concatenation with htask. We build

this baseline to examine the effectiveness of low-level

visual information.

• htask based Attention: The RNNatt takes only htask

as input. We build this baseline to examine the effec-

tiveness of the high-level information about undergo-

ing task.

Note that except for NoAttention, all other baselines adopt

attention mechanism for skill assessment.

Ablation study results are shown in Table 2. The per-

formance of NoAttention is worse than other attention-



Figure 5. Visualization of the estimated attention maps estimated by our method, SCA-CNN [4] and CBAM Attention [48] on the

Chopsticks-Using and Surgery (Suturing) dataset. It can be seen that comparing with the two baselines, our method successfully focuses

on the critical regions that is informative for skill assessment.

Acc(%)
Chopstick-

Using
Surgery Drawing

Dough-

Rolling

Infant-

Grasp

No Attention 82.1 68.3 82.8 77.3 84.0

No RNNatt 84.1 70.8 82.4 82.0 85.1

x̄t-based Attention 84.1 70.1 83.4 81.8 85.3

htask-based Attention 82.8 69.1 84.8 81.6 84.7

Full model 85.5 73.1 85.3 82.7 86.1

Table 2. Ablation study for different components of our model.

Ranking accuracy is used as the evaluation metric.

Figure 6. Attention maps generated by different components of our

method.

based baselines, indicating the necessity of adopting atten-

tion mechanism for skill assessment. The advantage of our

full model over other attention-based baselines validates our

thought that the three types of information about instan-

taneous visual information in each frame (x̄t), high-level

information of the undergoing task modeled by RNNtask

(htask), and the information of attention in previous frames

accumulated by RNNatt (hatt) are all important elements

for attention-based skill assessment.

The qualitative comparison of attention maps generated

by two different components is illustrated in Fig.6. It can be

seen that: 1) x̄t-based attention tends to focus on visually

salient regions that are relatively large and may cover re-

dundant information; 2) htask-based attention is inclined to

cover small regions near the task-related regions; 3) To ac-

curately estimate the task-related regions, both x̄t and htask

(as in our full model) are needed.

5. Conclusion

In this study, we firstly incorporate the spatial attention

mechanism into the task of skill assessment. Rather than

merely duplicating of existing attention estimation models,

we specially designed our spatial attention module for skill

assessment by considering three elements: 1) instantaneous

visual information in each frame; 2) high-level task-related

knowledge; 3) accumulate information of attention. A new

dataset was collected and annotated, which contains a larger

number of videos recording infants’ grasping skills. Ex-

periments on multiple public datasets demonstrate that our

proposed method achieves state-of-the-art performance.
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