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Abstract

Following recent technological advances there is a grow-

ing interest in building non-intrusive methods that help us

communicate with computing devices. In this regard, ac-

curate information from eye is a promising input medium

between a user and computing devices. In this paper we

propose a method that captures the degree of eye close-

ness. Although many methods exist for detection of eyelid

openness, they are inherently unable to satisfactorily per-

form in real world applications. Detailed eye state esti-

mation is more important, in extracting meaningful infor-

mation, than estimating whether eyes are open or closed.

However, learning reliable eye state estimator requires ac-

curate annotations which is cost prohibitive. In this work,

we leverage synthetic face images which can be generated

via computer graphics rendering techniques and automati-

cally annotated with different levels of eye openness. These

synthesized training data images, however, have a domain

shift from real-world data. To alleviate this issue, we pro-

pose a weakly-supervised method which utilizes the accu-

rate annotation from the synthetic data set, to learn accu-

rate degree of eye openness, and the weakly labeled (open

or closed) real world eye data set to control the domain

shift. We introduce a data set of 1.3M synthetic face im-

ages with detail eye openness and eye gaze information, and

21k real-world images with open/closed annotation. The

dataset will be released online upon acceptance. Extensive

experiments validate the effectiveness of the proposed ap-

proach.

1. Introduction

Several advanced input technologies have been proposed

to simplify user’s interactions with computing devices. In-

formation from an eye is one of the input techniques which

improves the experience of working with a computer. While

measuring a users visual line of gaze (where s/he is looking
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in space) has been improving, the degree of eye closeness

- which is rich in information for applications such as user-

computer dialogue [18] - has not been well studied. Detec-

tion of human eyelid openness or blink state is a key step

for effective eye-based vision systems. There are plenty

of applications that require accurate eye states estimator:

user-computer interaction [18], face authentication system

where eye states are used for user’s attention assessment

and anti-spoofing [24, 32, 23], photography, deceit detec-

tion [22, 25], emotion analysis, eye tracking, avatar anima-

tion, gaming, virtual reality, and driver’s drowsiness detec-

tion which help avoid impairment that leads to, according

to The American National Highway Traffic Safety Admin-

istration (NHTSA), $109 billion in damages annually.

Typically, a computer vision approach for eye states de-

tection first extracts features around eyes part, and then clas-

sify the eye states. Existing approaches are designed only

for binary eye states detection (open or closed). In an eye

blink detection system, the process needs to collect multi-

ple image frames as input. However, due to the speed of

an eye blink, a fully eye-closed image may not be cap-

tured/sampled, and thus a binary state system could eas-

ily lead to incorrect decision due to missed blinks. A bi-

nary state is often insufficient for accurate user-computer

dialogue and other similar applications that require higher

speed and accuracy, such as photography, anti-spoofing, and

others. For example, one of the goals of advanced driving

assistance systems is early detection of driver’s drowsiness.

An alert is raised when the eyes are at least 80% closed over

a certain time period [6]. As in prior examples, a two-state

eye openness system is insufficient for high accuracy. Esti-

mation of eyelid openness with more granularity allows for

the extraction of more meaningful information for address-

ing these real-world applications. An example of detailed

and binary eye states is shown in Figure 1.

In this work, we develop a deep neural network (DNN)

based framework that can detect the degree of eye-openness

with high granularity. It provides more accurate and de-

tailed information than current binary states (open/closed)

systems. Using deep learning for eye openness requires



highly granular and accurately annotated training data.

Such training data is often scarce and cost prohibitive. To

address this problem, we introduce a large data set of syn-

thetic face images rendered using advanced graphics tech-

niques with accurately controlled degree of eye openness

(Figure 1), and a limited set of real face images with bi-

nary eye states labels. One issue that arises is the domain

shift between these synthetically generated data vs authen-

tic real world face images. To overcome this, we propose

a weakly-supervised training method which utilizes the ac-

curate annotation from the synthetic data, and weak anno-

tation (open or closed) on recorded data for eye openness

estimation. The contribution of our work is listed as fol-

lows:

• A computer vision based system to detect eye open-

ness with high granularity for several applications

such as human computer interaction. Our approach

achieves high granularity results from low-granularity,

binary labeled (opened or closed eye) real-world im-

ages.

• Augmenting, using weakly-supervised learning, the

real-world training images with binary annotation

(opened or closed eye) with synthetically generated

images with detail information on the degree of eye

openness. We introduce 1.3M synthetic face images

(Figure 1) and 21K real-world images.

• We conduct experiments which show that the proposed

approach effectively estimates the degree of eye open-

ness for real-world image with high accuracy and gran-

ularity.

2. Related Works

Several eye-based systems have been proposed in the lit-

erature which use the percent of closeness (PERCLOSE)

and average eye closure speed (AECS) measures for dif-

ferent decisions, such as drowsiness detection where PER-

CLOSE increases [8, 10, 28, 30, 21, 9, 26, 7, 5] and AECS

decreases [12, 3, 4], for a drowsy driver. Existing eye-based

approaches mostly use eye and face detectors, such as Viola

Jones algorithm [33], and detect the eye state using classi-

cal computer vision techniques. [8] trained a Support Vec-

tor Machine (SVM) for eye state classification. Tomas et

al. [11] divided the eye region into 3×3 cells where local

motion vectors are estimated whose variance of the vertical

components is used to determine the eye state. [10] detected

the eye states equalizing the eyes using a Hat transformation

followed by eye tracking strategy in a sequence of frames.

[24] introduced an appearance based image feature to de-

tect the eye openness using the AdaBoost algorithm. [16]

detect the eye states by analyzing the response of a hori-

zontal Laplacian filter around the eyes; numerous vertical

line segments should be visible, due to the pupils and eye

corners, when the eyes are open, and only horizontal lines

are observed when eyes are closed. [20] detects the closed

and open eye states based on the number of black pixels

the eye has; in a binarized eye region, closed eye image has

higher number of black pixels compared to an open eye im-

age. [31] first detects 98 facial landmarks and the average

height-width eye ratio is used to determine the eye’s state in

a given frame. A real-time eye state detector, designed for

very low near-infrared image, is proposed in [19]. More re-

cently, [13] introduced deep learning into the field of fatigue

detection. The method detects the face and feature point lo-

cations using multi-task cascaded convolutional neural net-

work (MTCNN). The eye region is obtained according to

the geometric relationship between eye feature points, and

then eye state is classified by convolutional neural network

(CNN).

All the above referenced works and other several eye

state based systems detect only two levels of eye opening,

which is not enough to model a practical system. From

a perspective of practical real world system applicability,

the eye state detection system should satisfy several con-

straints which could not be solved just by using only the

two eye states. Drowsiness is a very good practical exam-

ple which is a state a driver might be in with a partially

closed eye. Very few works introduced percentage of eye

openness which is more accurate than methods that detects

only two levels of openness [2, 15, 1]. [2] just added a

third level (partially opened) to the two eye states (opened

and closed). [1] and [15] are drowsiness detection methods

that uses the notion of percentage of eye openness (various

states of eye openness). Both of them, to detect detailed eye

states, use classical computer vision techniques. [1] is a ge-

ometry shape-based approach which uses Circular Hough

Transform method to localize iris and eyelids. Since it’s

a geometric-based approach, a very small variation in eye-

lids localization leads to a wrong decision, and it also easily

gets affected by illumination variation. Our approach, since

we use deep learning, does not need iris and eyelids de-

tection and is more robust for illumination variations. [15]

is a video-based solution for eyelids movement detection.

Classical approaches are used to detect the face and eye and

only the left eye part is then taken as input to the next stage

which vectorizes the input, does dimension reduction and

input the result to a single linear model which detects the

eye openness score. The eye openness score is then passed

to a clustering module which helps the system detect some

pattern based on which eyelids movement is detected. The

method is not a general model, not fully automated and is

subject dependent, and the structure of features extraction

scheme needs to be defined by the user. It needs different

levels of feature clustering whose number of clusters should

be known for different level of feature extractions. The sys-



Figure 1. Left: eye portion of synthetic faces with labeled degree of openness (100 and 0 refers fully open and fully closed respectively).

Right: cyan simulates results of available eye openness detection and red simulates results from our proposed approach.

Figure 2. The proposed architecture for estimating degree of eye openness (training upper and inference bottom). (a) raw face image with

landmarks (could be real or synthetic), (b) normalized version of the face, and (c) last stage of the preprocessing, contains cropped eye

portion of the face. The preprocessed real and synthetic data are separated into two different groups with their corresponding labels (L R

and L S). ‘Conv’, ‘FC1’ and ‘FC2’ represent a shared convolution block, and two fully connected blocks respectively. The output of FC2

estimates the degree of eye openness. O1 S = output of the synthetic data at FC1, O1 R = output of the real data at FC1, O2 S = output

of the synthetic data at FC2, O2 R = output of the real data at FC2. O2 is a scalar which represents openness amount and O1 is feature

vector of size 256.



tem, in general, has 6 parameters to tune which make it

harder to be used in fully automated systems.

3. Proposed approach

We propose a deep learning solution to estimate the de-

gree of eye openness. One of the things which make solv-

ing this problem using deep learning difficult is data. The

high performance of deep learning results from abundant la-

belled training data. Collecting a data with accurate degree

of eye openness is a difficult task. To best serve our purpose

we used a synthetic data with different levels of eye open-

ness. Using synthetically generated data, though solves the

data scarcity, has a problem in training a general-purpose

deep learning model for our task. Models trained on the

synthetic data, due to the domain gap the data has with the

real data, fail when tested on a real dataset. Domain adap-

tation studies the domain shift problem for the better use of

available training data for new testing domains. In this work

we propose to train a model, using a synthetic data that have

known levels of eye openness and real data that only have

open/closed annotation, which help us get the different eye

states on real test dataset addressing the domain shift our

data has with the synthetic data.

During training, the input batch to the network contains

images from both the synthetic and real ones. The network,

as shown in figure 2, consists of an input which comes from

both synthetic and real data blocks, a convolution block

(Conv) and two fully connected blocks (FC1 and FC2).

Given an image, in the first step we detect the face and land-

marks utilizing dlib toolkit [17]. In step (b) we align and

normalize the face based on the landmarks shown by red

and green dots, and the eye portion of the face is cropped

to be passed through the newtwork. The output of the FC2

block regresses the degree of eye openness (0 means closed,

and positive numbers represent different levels of eye open-

ness). The real data has no detail eye openness annotation.

It just has information if the eye is closed or open, a kind of

dataset much cheaper than a dataset with labeled degree of

eye openness. We train the network leveraging all the avail-

able information both from the synthetic and real data. To

this end, we propose a loss combined from three different

losses.

Architecture: Very light network architecture based on

Max-Feature-Map (MFM) operation, neural inhibition op-

eration proposed in [35], is used. MFM operation is a spe-

cial case of maxout [14] to learn a light convolutional neural

network (CNN) with a small number of parameters. It is an

alternative of ReLU which adopts a competitive relationship

to suppress low-activation neurons in each layer. It not only

is able to separate noisy and informative signals but also

does feature selection between two feature maps. We re-

fer the reader to [35] for better understanding of the MFM

operation. ’Conv’ (Figure 2) is constructed by 5 convolu-

tion layers with Max-Feature-Map operations and 3 max-

pooling layers, shown in Figure 3. The 256-D deep features

are extracted from the output of fully connected layer after

MFM operation (layer MFM 6).

Loss Functions: The main challenge for training our

model is the lack of ground truth for the real data. To

address the problem we use a combination of three losses

which leverages recent ideas from the problem of domain

adaptation [29].

First, mean square error (MSE) loss is used, for inputs

from the synthetic data, to reduce the gap between the re-

gressed degree of eye openness and the ground truth labels,

see Loss1 in the follow paragraph. This loss is the key part

to facilitate the proposed weakly supervised training, it re-

lieve the painful detailed granular eye openness annotations

for real-world dataset.

The second loss uses information we have for the real

data, eye is closed or open, please see Loss2. If the real

input data is labelled as closed, the output prediction from

our network should be zero, otherwise the network should

output a number greater than a predefined threshold, open-

ness threshold (OT). OT = Openness threshold is a hyper

parameter, used with the formula:

{

1 (open eyes), if O2 R > OT;

0 (closed eyes), Otherwise;

Recent approaches which train a network to bring the

source and target distribution together show excellent per-

formance [29]. This inspired us to introduce a distribution

loss, a loss which help us train our network using the gradi-

ents from the change in the distribution from the synthetic

and real input data, see Loss3. This helps us bring the source

and target distributions closer in the feature space learned

by the network.

The proposed loss functions for cross domain (synthetic

and real) network training consists of the following three

terms:

• Loss1: MSE loss for accurately predicting level of

openness on synthetic data

Loss1 = MSE
(

O2 S, L S

)

,

where O2 S is the estimated eye degree of synthetic

data and L S is the accurately labeled eye degree, see

Fig 2;

• Loss2: Binary loss for accurately predicting binary

(opened/closed eye) labelled real data with OT

Loss2 = 1

N

∑

i

{

||O2 Ri||
2 ∗ (1 − L Ri) +

max

(

(OT−O2 Ri), 0
)

∗ L Ri

}

,



Figure 3. Model architecture.

where O2 R is the estimated eye degree of real image

data and L R are the corresponding binary open/close

labels. OT is the eye openness threshold;

• Loss3: Distribution loss for controlling domain mis-

match between synthetic and real data; the distribution

from synthetic and real data should be similar.

Loss3 = abs

(

mean(O1 S) − mean(O1 R)
)

+

abs

(

var(O1 S)− var(O1 R)
)

,

where O1 S and O1 R are the feature vectors of syn-

thetic/real data from the ‘FC1’ layer of the model, see

Fig 2.

The final loss is computed as

Loss = λ1Loss1 + λ2Loss2 + λ3Loss3.

4. Q ECE: Eye Openness Estimation Dataset

Although problems related to eye-based systems have

received a lot of attention, their performance still has not

reached an acceptable level for practical use cases. The lack

of high quality training data is one of the issues which lim-

its the development of such systems. Existing databases,

such as ZJU [24], Eyeblink8 [11] and Silesian5 [27] lack

the information necessary to address essential challenges.

The datasets mentioned above do not take into account im-

portant characteristics such as human pose or image illu-

mination. Furthermore, the samples are captured from a

limited number of subjects. Another requirement of high

quality datasets is high quality annotation of the data. In

order to work well in real-world conditions, most eye-based

systems require knowledge of all possible eye states. One

of the main reasons existing eye-based approaches do not

perform well for real-world applications is the low number

of ‘eye states’ they use. This is typically only two: closed or

open. Many existing real-world data sets require additional

annotation, which can be cost prohibitive.

To alleviate the data annotation burden we create a

dataset of 1.3M synthetic data by rendering face images us-

ing computer graphics techniques. The dataset was created

using high quality 3D scans of 13 human head models 6 fe-

male and 7 male from different age groups and ethnicities

1. Eyeball models were separate, and placed in the 3D eye

sockets. Additionally, the subjects’ eyelids were animated

in conjunction with the up and down rotation of the eyeball.

The dataset included 198 eye directions, via look-at target

points (11 vertical x 18 horizontal, in a grid pattern), +/- 25

degrees vertical, +/- 35 degrees horizontal, in 5 degree in-

crements. In addition, there were 11 different states of eye

openings (100 % open to close in 10 % increments). Fi-

nally 49 camera positions were generated (-30 to 30 degree

in 10 degree increments, horizontally and vertically). Some

examplar images from this synthetic dataset are shown in

Figure 4. Our work is the first to create and use such a

large dataset of high quality rendered face images with con-

trolled eyelid movement. Since the dataset contains eyeball

rotation and 2D and 3D look at point information as well,

the data is not only useful for eye openness estimation, but

also for gaze estimation and attention detection.

In addition to the synthetic data we also collected a real

data from 16 subjects, different age groups and ethnicity,

using NIR and RGB sensors. In the real data collection

we tried to consider several situations as pose, illumination,

(sun) glasses and others. For the case of pose variations we

asked the subject to move the head 360 degree and in four

different directions (Left, right, up and down). We consider

the illumination variation collecting the data from different

environments as ’indoor full light’, ’indoor low light’, ’in a

dark’ (NIR sensor only), ’outdoor shade’ and ’outdoor sun-

light’. ’(Sun) glass’ and ’No (sun) glass’ situations are also

included in most of the subject’s data. In total we collected

around 21k real images (17k NIR and 4k RGB images) with

more than 12k closed and around 9k opened eyes. We also

collected, from four of the subjects’ a data which covers de-

tail eye states, we asked the subjects to close and open the

eye very slowly. A good model which estimates detail eye

openness should give us ’U’ kind of shape on plotting the

frames versus degree of eye openness, please see the result

on figure 5

5. Experiments and results

Since, to the best of our knowledge, there is no available

dataset and recently proposed methods related to detailed

1The 3D scans could be found here: www.3dscanstore.com



Figure 4. Sample synthetic face models.

eye states estimation, we conduct experiments on Q ECE

dataset introduced in this work.

5.1. Implementation Details

We implemented our method with Pytorch. For all train-

ing we take 80 epochs with an initial learning rate of 0.0001

and a batch size of 256. In case of joint training the percent-

age of input data (from a batch) is fixed as 25% real and

75% synthetic. Based on the generated synthetic data, as

shown in figure 1, and using some experimental validation,

we observed that a openness threshold (OT) of 15 gives the

best result. λ1 is set to 0.01 and both λ2 and λ3 are set to 1.

For all experiments with synthetic data, we learn eye open-

ness estimation using the synthetic data branch only. For

the real-world datasets we use a joint training with the syn-

thetic dataset, any input batch to the network contains im-

ages from both synthetic and real images. For an effective

transfer learn from synthetic data, we follow similar ideas

from existing works [34, 36]; it is important that both the

synthetic and real dataset have the same distribution of eye

openness. In our model, gray-scale face images are used

instead of RGB images. The face images are aligned to

144×144 by the landmarks and the eye portion of 48×128

is cropped and used as inputs to the ’Conv’ layer. Besides,

each pixel value is normalized to be between [0, 255].

5.2. Results and Metrics

The performance of degree of eye openness is measured

using the mean squared error (MSE) computed between the

regressed degree of eye openness and the ground truth eye

states. We believe that MSE is the best metric for our pur-

pose (detail eye openness estimation). When we label the

dataset, to avoid the resolution and the camera distance is-

sues, we consider the normalized face image based on de-

tected landmarks; a person whose image is taken from dif-

ferent camera distances and different sensors with different

resolution should have similar openness amount for simi-

lar eye states. The openness amount from our data ranges

from 0 (fully closed) to 100 (fully open). 100 (fully open

eye state) is given to the biggest eye from all eyes in our

dataset. That means if we test using a bigger eye than the

biggest eye from our dataset, the eye openness estimation

result will be beyond 100, and openness amount of a fully

open small eye will be much smaller than 100. The per-

formance of eye openness and closeness is measured using

accuracy metric.

Training data Test data Degree of eye Open/Close

openness (MSE) (Accuracy)

Synthetic Synthetic 9 100

Synthetic Real – 47.5

Synthetic + Real Synthetic 9 100

Synthetic + Real Real – 99.62

Real Synthetic 8094.8 52.3

Real Real – 96.30

Table 1. Results on Q ECE dataset, with varying training source

Table 1 shows quantitative results for the various input

configurations of our eye openness estimation network. The

degree of eye openness, evaluated using MSE metric, is

same with the two input configurations. The result tells us

that the degree of eye openness for the synthetic test data de-

viates, on average, from the ground truth only by 3%. Con-

sidering 8% variations, in degree of eye openness, from the



Figure 5. Performance on (100) video frames captured with ”Close-Open-Close-Open” sequence moving the eyelids very slowly.

Figure 6. Performance on a video with ”Close-Open” sequence moving the eyelids very slowly.

ground truth annotation as correct eye openness estimation

we end up with 100 % accuracy in estimating the openness

or closeness of the eyes. We observe that providing the real

dataset together with the synthetic as input to our network

(for joint training) results improved accuracy of eye open-

ness and closeness detection on the real data. Training only

using one (real or synthetic) and testing on the other end up

with a result close to random (open/close) decision. It is

also noticed that the joint training, since it helps to augment

training samples and regularize model from overfitting, im-

proves the accuracy on the real-real experiment scenario.

We also evaluated our model by assessing its perfor-

mance on video sequences collected from four of the sub-

jects which we have asked to close and open their eye with



very slow motion which help us have various eye states.

Figure 5 shows an example which is plotted from the pre-

dicted degree of eye openness from the video frames. A

blue point represents the degree of eye openness (y-axis) of

a face (x-axis). The entire process of closing and opening

the eye could be represented by a curve with ‘U’ kind of

shape. This help us extract meaningful information which

could be leveraged for different applications. As can be seen

from the figure, our model was able to capture the detail eye

states, and we could divide the states (based on the degree

of openness on the y-axis) into different meaningful infor-

mation as ‘fully open’, ‘moderately open’, ‘tired eye’, ‘near

closed eye’ and ‘closed eye’.

Experimental results on the other three subjects whose

data is collected with ”Close-Open” sequence moving the

eyelids very slowly is shown on figure 6. As shown from the

figure the proposed framework is able to capture detail eye

openness states for all the persons with and without glass.

The last experiment which we conducted is using the

small subset of our real dataset that are annotated with detail

eye openness, let us call it Real’. Real’ consists of 2000 im-

ages. We first compute the red and green points as shown on

figure 2 and used them to align and normalize the face and

then we annotate the upper and lower eyelid points which

is used to compute degree of eye openness that is used as

our ground truth. 75% of the data is used to fine-tune the

model trained using ’Synthetic + Real’ and the rest of the

data is used for testing. During training, since in this case

we have detail eye openness annotations, we compute the

loss for this dataset as losses that consider synthetic data an-

notations. The performance is then measured using ’MSE’

metric. As shown on Table 2 the joint training help us boost

the test result on real-world images. Moreover, adding few

samples with detail annotations has a minor improvement

over the binary labelled real data.

Training data Test data Degree of eye

openness (MSE)

Synthetic Real’ (test) 2045.80

Synthetic + Real Real’ (test) 45.35

Synthetic + Real + Real’ (train) Real’ (test) 34.20

Table 2. Result on Real’ face database

6. Conclusion

In this work, we shed the light to the research field of

degree of eye openness estimation which help us estimate

detail eye states, a problem which has not been well studied.

We have addressed essential issues of the problem in-terms

of practical and theoretical contributions. First, we created

fully annotated synthetic data for estimation of the degree

of eye openness which release the burden of detail eye state

annotation of real images. The dataset will be released on-

line upon acceptance. Secondly, we introduce a weakly-

supervised problem of leveraging low-cost binary labelled

(opened or closed eye) real images together with the syn-

thetic data for accurate estimation of the degree of eye open-

ness on the real images. To this end we also collected real

data which considers different practical situations. The ex-

periments verify that the proposed approach effectively esti-

mates the degree of eye openness for real world image. The

proposed method, leveraging the cheap synthetic images,

adapt easily to a weakly labelled real-world images.
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