First-person camera system to evaluate Tender Dementia-care skill

Atsushi Nakazawa
Graduate School of Informatics, Kyoto University
nakazawa.atsushi@i.kyoto-u.ac.jp

Miwako Honda
Geriatric Research Division, Tokyo Medical Center
honda-1@umin.ac.jp

Abstract

In this paper, we describe a wearable first-person video (FPV) analysis system for evaluating the skill levels of tender dementia-care technique. Using this system, caregivers can evaluate and elevate their care levels by themselves using the systems’ feedbacks. From the FPVs of care sessions taken by wearable cameras worn by caregivers, we obtained the 3D facial distance, pose and eye-contact states between caregivers and receivers by using facial landmark detection and deep neural network (DNN)-based eye contact detection. We applied statistical analysis to these features and developed algorithms that provide scores for tender-care skill. To find and confirm our idea, we conducted chronological study to observe the progression of tender-care skill learning using care learners. First, we took FPVs while care training scenes involving novice caregivers, tender-care experts and middle-level students, and found major behavioural differences among them. Second, we performed the same experiments for the participants before and after training sessions of the care. As the result, we found the same behavioural difference between 1) novices and experts and 2) novices before and after taking training sessions. These results indicate that our FPV-based behavior analysis can evaluate the skill progression of the tender dementia-care.

1. Introduction

As the elderly population increases, the number of people suffering from dementia continues to grow. As a result, the care that needs to be administered to them is becoming increasingly important in social terms [19, 9, 2, 31, 10, 13, 12, 26]. According to the recent meta-review paper [2], the larger caregivers burden is related to 1) female sex, 2) low education, 3) cohabitation with care recipient, 4) caregiving time and effort, 5) financial stress, 6) lack of choice and inability to continue regular employment. As the result, caregiver tends to having larger risk in mortality, weight loss, poor self-care and sleep deprivation.

Effects of interventions for reducing caregiver’s burden have been reported as well [25, 16, 1, 24, 11, 12]. Interventions are categorized into several types: psychoeducational intervention, psychosocial intervention, cognitive behavior therapy, respite, caregiver support groups, anticholinergic and antipsychotic drugs, and skill training. As the results, practical interventions to reduce caregiver’s burden are 1) encouraging caregivers to function as a member of the care team, 2) encouraging caregivers to improve self-care and maintain their health, 3) providing education and information, 4) coordinating for assistance with care, 5) encouraging caregiver to access respite care and 6) using the supports of technology [2]. Specifically, there are several reports that skills training such as coping skill training (CST) may reduce the caregiver strain, depression and fatigue in caregivers of the patient with cancers [24, 8].

Humanitude tender-care style: As one of the inter-
vention approach to reduce the caregiver’s burden, we are studying about the caregiving style Humanitude, which has been spotlighted by care professionals and family caregivers since it can reduce the occurrence of BPSD (Behavioral and Psychological Symptoms of Dementia) events and caregivers’ burden [17]. Humanitude was developed by Y. Geneste and R. Marescotti 35 years ago [15] and has been introduced in more than 600 hospitals and nursing homes in Europe. Humanitude primarily uses a combination of four communication skills: gaze, verbal communication, touch, and helping care receivers to stand up. Example pictures in Humanitude care are shown in Figure 1. Several studies have reported that the cost-efficiency of introducing Humanitude is around 20 times that of care without it because of a 40

First person camera system to evaluate tender-care skill: In this paper, we show our studies to understand the tender-care skill through the behavior quantization using first person video (FPV) analysis. The system obtain the face-to-face postures and eye contact states between a caregiver and a receiver from FPV, and then infers the skill level from the feature vectors of FPV. Using the system’s outputs such as individual skill levels and difference to the experts, learners can perform self-training and raise their tender-care skills. The contributions of this paper are:

1. We show the FPV can differentiate and thus evaluate the skill-level of tender-cares, which depends on the mutual facial distances and poses between a caregiver and a receiver.
2. We show a prototype system that can be used for novice care learners who want to raise their care skills by themselves.
3. In contrast to our previous work [23], we newly introduced reliable face detectors and performed a chronological study that shows our system can visualize not only the skill levels, but also skill progression of the learners.

2. Related work

In this section, we show related studies regarding care skill evaluation and first-person video-based skill evaluations.

Care skill quantization: There are several approaches that use care skill quantization. In computer science, Ishikawa et al. developed a method of care skill evaluation based on the knowledge of care experts [18]. They categorized care skills into three layers: intramodality, intermodality and multimodal-interaction. Intramodality consists of behavior primitives such as gaze, speech, touch, nodding and knocking on a door. Intermodality shows the relationships among intramodalities, such as comprehensiveness of care, waiting for elderly people’s actions and consistency. Multimodal-interaction consists of actions that develop a relationship between actors, such as eye contact and verbal/nonverbal dialogue. They also developed a web interface that shows care learners care skills in visual form to confirm the effectiveness of the system.

First-person video analysis for skill evaluation: There have been a number of studies on action recognition and prediction using FPVs [14, 30, 28, 29, 22]. However, few studies have been conducted for skill evaluation. In recent years, Bertasius et al. showed a method to assess a basketball player’s performance from FPVs. They designed and used temporal CNN and long short-term memory (LSTM) architecture to evaluate whether a particular play in basketball was good or not from a player’s FPV [5]. In the medical field, Hei et al. proposed a method for evaluating skill in robotic surgical operations from video images. Their method tracks the keypoints of surgical robot instruments by using cloud sourcing or hourglass networks and evaluates the skill by support vector machine analysis [21].

3. Proposed method

The flow of our skill evaluation is illustrated in Figure 2. From a first-person camera worn by a caregiver we obtained mutual facial distances, mutual facial poses and eye contact states. Then, we estimated tender-skill scores through an unsupervised analysis. In the following subsections, we first describe the first-person camera hardware and then our algorithms we used for analyzing FPVs.

3.1. Hardware

We used a Pupil Labs camera system [27] as the head-mounted first-person camera. Since we assume the application in real care training condition, we did not use the eye-gaze-tracking functionality of the system since the calibration is troublesome and the eye camera is sometimes unsafe for caregiver’s eyes. The Pupil Labs system have two types of frontal camera: one is narrow view (about 60 deg.) and another is spherical view. Regarding the videos taken by latter types of camera, we convert them to the view of
the former camera by using the image mapping techniques with their camera parameters.

3.2. Face detection and 3D pose estimation

We then obtained facial positions, poses and eye locations from the input FPVs. In here, we used the OpenFace library [4] or Amazkon Rekognition (Facial recognition) [3]. For the case using OpenFace, facial 3D position and facial 68 landmark points are directly obtained. For the case using Amazon Rekognition, we obtain 3D facial positions by solving PnP problem using a 3D facial model and the camera parameter of FPV camera.

3.3. Histograms of facial distances and poses

To quantize the face-to-face communication behaviors between caregivers and care receivers, we encoded the mutual facial distances and poses obtained from OpenFace as illustrated in Figure 4. We computed the histograms \(f_{\text{dist}} = \{f^1_{\text{dist}}, \ldots, f^9_{\text{dist}}\} \), \(f_r = \{f^1_r, \ldots, f^9_r\} \), and \(f_y = \{f^1_y, \ldots, f^9_y\} \) that represent the mutual facial distances and poses from all frames in a care session. The bins were set to every 0.1 [m] from 0.0 to 1.0 [m] for the distance feature and 20 [deg] from -90 to +90 [deg] for angular features. The distances larger than 1.0 [m] were voted to the last bin. Thus, for example, \(f^1_{\text{dist}} \) indicates the number of frames where the mutual facial distances were from 0.0 to 0.1 [m] and \(f^4_r \) indicates the number of frames where the mutual facial rotation \((r_x) \) was from -30 to -10 [deg].

3.4. Visualization

After obtaining histograms, we normalized the histogram and applied principal component analysis (PCA). While many data analysis or machine learning techniques have been proposed, we used PCA for its simplicity and reliability in exploratory data analysis (EDA). Since we tried to find tender-care technique skills in a bottom-up (data-driven) manner, this nature of PCA fitted our task better than other more complicated methods such as non-linear or supervised-learning based approaches.

We here denote \(f^s \) as a \(D \times 1 \) column vector that represents a normalized histogram of either \(f_{\text{dist}} \), \(f_r \), \(f_y \) or \(f_z \) of a subject \(s \in \{1, \ldots, M\} \). Histograms of all subjects can be decomposed by using \(D \times 1 \) column eigenvectors \(\{e_1, \ldots, e_M\} \) and eigenvalues \(\{\lambda_{1,1}, \ldots, \lambda_{D,M}\} \), where \(D \) is the dimension of the histogram:

\[
\begin{bmatrix}
 f^1 \\ f^2 \\ \vdots \\ f^M
\end{bmatrix} =
\begin{bmatrix}
 e_1 & \cdots & e_M
\end{bmatrix} \begin{bmatrix}
 \lambda_{1,1} & \cdots & \lambda_{1,M} \\
 \vdots & \ddots & \vdots \\
 \lambda_{D,1} & \cdots & \lambda_{D,M}
\end{bmatrix}
\]

We plot the eigenvalues of all subjects to visualize the distribution of their behaviors, as well as to analyze the elements of eigenvectors to find the relation between skill levels and behavioral features.

3.5. Eye contact features

Another feature is counting eye contact bids, which was introduced by Ye et al. [33]. They assume eye contact bids, i.e., situations when a subject wearing an FPV camera is gazed at by other subjects. Since the definition of eye contact is making mutual eye gazetwo people look at each other at the same time – eye contact bids are not the same as actual eye contact. If we want to accurately detect eye contact, two people must wear FPV cameras or a caregiver must use an eye gaze tracker (EGT) device that detects observers gaze information. However, from the practical point of view it is difficult to use two FPV cameras or an EGT device since 1) it is difficult for subjects with dementia to wear such devices and 2) even for caregivers it is difficult to use eye trackers in actual care scenes due to their noticeable appearance, calibration requirements and headmount drift. Therefore, rather than accurately detecting eye contact, we tried to measure and use eye contact bids for evaluating care skills. We used facial poses and eye images for detecting eye contact bids using DNNs developed by our group that utilize facial position, eye-region images and their temporal changes [23].
4. Dataset

The took FPV dataset obtained in care learning scenes. We recorded the FPV videos equipped to the caregiver during Humanitude care teaching classes.

4.1. FPVs in care scenes with different skill levels

To find the behavioral difference between novices and experts, we prepared first-person videos of a) two Humanitude care experts (instructors), b) seven middle-level Humanitude caregivers and c) three novice Humanitude caregivers as shown in Table 1 and Figure 5. In all videos, caregivers were equipped with the Pupil Labs first-person camera and performed the same task (Figure 6):

Step 1 Approach the simulated patient while making eye contact,
Step 2 Perform the care, namely, move turn over the patient’s body and clean the back, and
Step 3 Leave the care receiver.

4.2. FPV in care scenes with chronological difference

Since we want to observe novices’ skill progressions while learning Humanitude technique, we took FPVs of the care novices of a) before taking Humanitude care learning sessions and b) one-week later. We asked 12 participants to perform the same task as the dataset of 4.1 and obtain their FPVs.

5. Experiments

The first experiment was performed for an actual Humanitude care training scene. In it, we obtained data from a novice caregiver and a Humanitude care expert and compared the results through the use of an unsupervised learning algorithm. In the second experiment, we obtained the data of 12 novices before and after one-week training session, and compared the differences.

5.1. Experiment 1: Difference of face-to-face communication between experts, middle levels and novices

In the first experiment we compared the occurrence of Humanitude care skill between novice and expert caregivers using the FPVs of care learning scenes. We obtained the number of eye contact frames, mutual facial distances and poses from a care scene dataset and compared the results.

Analysis and results: The occurrences of eye contact frames, average mutual facial distance and poses (angles) are shown in Table 1 and normalized histograms of each feature are shown in Figure 7 (left). As seen from the table, the facial detection rate of the amazon rekognition is higher than that of OpenFace for all videos.

For analyzing the facial mutual distance and pose, we applied PCA to the histograms. The resulting PCA scores are shown in Figure 7 (right), where the x-axis shows the scores of the first component and the y-axis indicates the scores of the second PCA component. From the eye contact rates and PCA analysis results, we were able to clearly distinguish the scores of novices and experts for eye contact rate, mutual facial distance and r_z PCA scores. There were significant differences in eye contact rate between the expert & middle-level and novice groups ($p = 0.0452$), and clear thresholds at about $x = 0.16$ for mutual facial distance and at about $x = -0.18$ for the r_z PCA scores. In the mutual facial distance category, the histograms showed that the expert caregivers and most of the middle-level ones approached the care receiver such that the distance was less than 30 [cm]. In the mutual facial pose category, there were clear dissimilarities in the z-rotation, which is the rotation...
Table 1. The result of Experiment 1.

<table>
<thead>
<tr>
<th>Name</th>
<th>Total frames</th>
<th>Face detected (OpenFace)</th>
<th>Face detected (Amazon Rekog.)</th>
<th>Eye contacted frames</th>
<th>Av. mutual facial distance [mm]</th>
<th>Av. mutual facial pose [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>r_x</td>
</tr>
<tr>
<td>Expert A</td>
<td>3442</td>
<td>2148 (62.4%)</td>
<td>2887 (83.9%)</td>
<td>3637 (76.6%)</td>
<td>388.76</td>
<td>-0.90</td>
</tr>
<tr>
<td>Expert A</td>
<td>4851</td>
<td>2070 (42.7%)</td>
<td>3468 (71.5%)</td>
<td>3032 (62.5%)</td>
<td>668.60</td>
<td>1.94</td>
</tr>
<tr>
<td>Middle A</td>
<td>3214</td>
<td>1857 (57.8%)</td>
<td>2324 (72.3%)</td>
<td>1587 (49.4%)</td>
<td>533.89</td>
<td>3.49</td>
</tr>
<tr>
<td>Middle B</td>
<td>2659</td>
<td>1248 (46.9%)</td>
<td>1660 (62.4%)</td>
<td>1511 (56.8%)</td>
<td>475.06</td>
<td>5.35</td>
</tr>
<tr>
<td>Middle C</td>
<td>2024</td>
<td>1171 (57.9%)</td>
<td>1765 (87.2%)</td>
<td>1254 (62.0%)</td>
<td>461.81</td>
<td>-1.06</td>
</tr>
<tr>
<td>Middle D</td>
<td>2775</td>
<td>1108 (39.9%)</td>
<td>1875 (67.6%)</td>
<td>1153 (41.5%)</td>
<td>580.13</td>
<td>4.44</td>
</tr>
<tr>
<td>Middle E</td>
<td>4506</td>
<td>2547 (56.5%)</td>
<td>3530 (78.3%)</td>
<td>1126 (45.3%)</td>
<td>680.19</td>
<td>-0.57</td>
</tr>
<tr>
<td>Middle F</td>
<td>3062</td>
<td>2176 (71.1%)</td>
<td>2859 (93.4%)</td>
<td>941 (15.3%)</td>
<td>902.94</td>
<td>-0.72</td>
</tr>
<tr>
<td>Middle G</td>
<td>2485</td>
<td>683 (27.5%)</td>
<td>1646 (66.2%)</td>
<td>1126 (45.3%)</td>
<td>680.19</td>
<td>-0.57</td>
</tr>
<tr>
<td>Novice A</td>
<td>6287</td>
<td>1648 (26.2%)</td>
<td>3642 (57.9%)</td>
<td>842 (13.4%)</td>
<td>902.94</td>
<td>-0.72</td>
</tr>
<tr>
<td>Novice B</td>
<td>6168</td>
<td>2675 (43.4%)</td>
<td>3642 (59.0%)</td>
<td>941 (15.3%)</td>
<td>902.94</td>
<td>-0.72</td>
</tr>
<tr>
<td>Novice C</td>
<td>4710</td>
<td>1102 (23.4%)</td>
<td>2180 (46.3%)</td>
<td>764 (16.2%)</td>
<td>940.46</td>
<td>4.07</td>
</tr>
</tbody>
</table>

Figure 7. PCA analysis of the Experiment 1. (Left) Histograms of mutual facial distances and poses (r_x, r_y and r_z). (Right) PCA score results where the x and y axes show the first and second components. There are clear thresholds between novices and others at about x = 0.16 for the distance PCA score, and between experts and others at about x = -0.18 in r_z PCA score.

5.2. Experiment 2: Skill progressions while face-to-face communication before and after taking care-learning sessions

In the second experiment, we compared the mutual facial distance and pose of novice caregivers before and after taking Humanitude care sessions. We obtained the number of facial distances and poses from the dataset of 4.2 and find the difference.

Analysis and results: The average mutual facial distance and poses (angles) are shown in Table 2 and Figure 8. We could find the significant difference in the average mutual facial distance between caregiver and receivers (p = 0.043), and marginally significance in r_z (p = 0.066), which follows the same trend as the Experiment 1.

Thus, we further performed the PCA analysis for the 20-dimensional feature vector combining the distance (f_dist) and z-angular (f_rz) histograms. Figure 9 shows the result. In here, we first obtain the PCA subspace of the data in the experiment 1, then map all the data in the subspace. As the result, we can clearly observe 1) the clusters of novices, middle level, novices after taking the Humanitude care ses-

of the care receiver’s face in the FPV image plane (the plane perpendicular to the facial frontal direction) as shown in Figure 4. Namely, the average and peak z-rotation values of the experts and the middle-level caregivers were located around 0 [deg] while those of novices were much larger.
Table 2. The result of Experiment 2.

<table>
<thead>
<tr>
<th>Name</th>
<th>Total frames</th>
<th>Face detected</th>
<th>Av. mutual facial dist.</th>
<th>Av. mutual facial pose rx</th>
<th>Av. mutual facial pose ry</th>
<th>Av. mutual facial pose rz</th>
<th>Total frames</th>
<th>Face detected</th>
<th>Av. mutual facial dist.</th>
<th>Av. mutual facial pose rx</th>
<th>Av. mutual facial pose ry</th>
<th>Av. mutual facial pose rz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novice D</td>
<td>3932</td>
<td>1656 (42.1%)</td>
<td>1191.61</td>
<td>-3.19</td>
<td>-10.64</td>
<td>26.82</td>
<td>1889</td>
<td>993 (52.6%)</td>
<td>436.96</td>
<td>3.35</td>
<td>-13.52</td>
<td>33.49</td>
</tr>
<tr>
<td>Novice E</td>
<td>1154</td>
<td>540 (46.8%)</td>
<td>404.16</td>
<td>3.54</td>
<td>-2.34</td>
<td>43.94</td>
<td>3000</td>
<td>876 (29.2%)</td>
<td>436.96</td>
<td>3.35</td>
<td>-13.52</td>
<td>33.49</td>
</tr>
<tr>
<td>Novice F</td>
<td>2993</td>
<td>1341 (44.8%)</td>
<td>721.4</td>
<td>7.59</td>
<td>-1.59</td>
<td>42.36</td>
<td>1441</td>
<td>781 (54.2%)</td>
<td>406.4</td>
<td>8.91</td>
<td>0.08</td>
<td>36.18</td>
</tr>
<tr>
<td>Novice G</td>
<td>1376</td>
<td>574 (41.7%)</td>
<td>427.46</td>
<td>8.17</td>
<td>-2.30</td>
<td>38.85</td>
<td>2307</td>
<td>698 (30.3%)</td>
<td>326.16</td>
<td>6.91</td>
<td>-1.54</td>
<td>50.82</td>
</tr>
<tr>
<td>Novice H</td>
<td>624</td>
<td>237 (38.0%)</td>
<td>411.53</td>
<td>7.71</td>
<td>-5.87</td>
<td>44.01</td>
<td>1275</td>
<td>475 (37.3%)</td>
<td>368.73</td>
<td>8.62</td>
<td>-3.64</td>
<td>22.34</td>
</tr>
<tr>
<td>Novice I</td>
<td>971</td>
<td>345 (35.5%)</td>
<td>404.63</td>
<td>1.19</td>
<td>-20.82</td>
<td>55.17</td>
<td>2932</td>
<td>1134 (38.7%)</td>
<td>372.2</td>
<td>3.35</td>
<td>-9.61</td>
<td>32.22</td>
</tr>
<tr>
<td>Novice J</td>
<td>4704</td>
<td>2116 (45.0%)</td>
<td>535.36</td>
<td>7.27</td>
<td>-7.05</td>
<td>46.44</td>
<td>4523</td>
<td>1082 (23.9%)</td>
<td>476.04</td>
<td>15.44</td>
<td>-9.02</td>
<td>35.55</td>
</tr>
<tr>
<td>Novice K</td>
<td>1773</td>
<td>714 (40.3%)</td>
<td>379.49</td>
<td>15.59</td>
<td>9.79</td>
<td>23.77</td>
<td>1518</td>
<td>427 (28.1%)</td>
<td>523.26</td>
<td>7.38</td>
<td>1.07</td>
<td>19.53</td>
</tr>
<tr>
<td>Novice L</td>
<td>804</td>
<td>345 (42.9%)</td>
<td>697.66</td>
<td>11.27</td>
<td>-14.57</td>
<td>50.76</td>
<td>1071</td>
<td>403 (37.6%)</td>
<td>526.74</td>
<td>6.51</td>
<td>-19.64</td>
<td>33.10</td>
</tr>
<tr>
<td>Novice M</td>
<td>920</td>
<td>563 (61.2%)</td>
<td>555.78</td>
<td>10.28</td>
<td>-6.52</td>
<td>40.31</td>
<td>3816</td>
<td>2443 (64.0%)</td>
<td>332.86</td>
<td>3.21</td>
<td>-0.65</td>
<td>39.70</td>
</tr>
<tr>
<td>Novice N</td>
<td>746</td>
<td>179 (24.0%)</td>
<td>529.79</td>
<td>9.06</td>
<td>-15.59</td>
<td>41.39</td>
<td>2550</td>
<td>1442 (56.5%)</td>
<td>361.32</td>
<td>17.14</td>
<td>-1.81</td>
<td>25.56</td>
</tr>
<tr>
<td>Novice O</td>
<td>819</td>
<td>315 (38.5%)</td>
<td>498.8</td>
<td>-0.12</td>
<td>-6.06</td>
<td>42.65</td>
<td>1462</td>
<td>630 (43.1%)</td>
<td>603.64</td>
<td>5.24</td>
<td>-11.80</td>
<td>31.91</td>
</tr>
</tbody>
</table>

Figure 9. (Left) PCA analysis of all dataset. We performed the PCA for 20-dimensional feature vectors (f_{dus} and f_{r_z}) and plot the PCA scores of the data. In here, x-axis and y-axis denote the 1st and 2nd components of PCA score. The green markers indicate experts, blue markers indicate middle-levels, purple markers indicate the novices after taking the Humanitude care learning sessions, and red markers indicate the novices before taking the Humanitude care learning session. We can clearly observe the contiguous clusters from novices, middle levels and experts in the space. The allows shows the relation of the data before and after taking the care learning session, (right) visualization of expert, middle and novice clusters.

6. Discussion and conclusion

Unsupervised analysis results of mutual facial distances and facial poses enabled us to find significant differences between novices, middle-level and expert Humanitude caregivers. Specially, we found a clear threshold in eye contact frequency and PCA scores of facial distance and r_z-rotation histograms, which indicate that the important skills in Humanitude tender-care are related to a) frequent eye contact, b) a nearest mutual facial distance of less than 30 [cm] and c) mutual facial poses being in the same direction. This can also be seen from the 1st PCA components of the distance and r_z histograms.

In the experiment 2, we applied the same analysis to observe the skill progressions of the novice care learners. As the result, we found the clear contiguous clusters of novices, middle levels and experts in the PCA subspace. We also found that 8 out of 12 novices obtain the larger scores in the 1st component of the PCA, which means their behaviors become closer to the experts. These skills are a part of Humanitude gaze skill: caregivers should communicate to the care receivers while keeping eye contact from a close distance and possessing the same facial angles of the care receiver’s face. This is based on the idea of Humanitude care methodology that all behaviors are considered to imply non-verbal messages. To have the eye contact straight in front of the care receiver expresses the fairness, and the distance between caregivers and care receivers reflects their friendliness. The study results show that the experts expressed fairness and friendliness much more than the novices. This skill is a core skill with which to establish a good relationship that leads to high-quality care.

Acknowledgements: All the experiments were conducted in compliance with the protocol which was reviewed and approved by the ethical committee of Unit for Advanced Studies of the Human Mind, Kyoto University (Permit Number: 30-P-4). This work was supported by JST CREST Grant Number JPMJCR17A5 and JSPS KAKENHI 17H01779, Japan.

References

B. Given, P. R. Sherwood, and C. W. Given. What knowl-
Y. Gineste and J. Pellissier. Humanitude: comprendre la
L. Etters, D. Goodall, and B. E. Harrison. Caregiver burden
J. J. Dunkin and C. Anderson-Hanley. Dementia caregiver
D. W. Coon, L. Thompson, A. Steffen, K. Sorocco, and
L. D. Clyburn, M. J. Stones, T. Hadjistavropoulos, and
S. Biquand and B. Zittel. Care giving and nursing, work con-
G. Bertasius, H. S. Park, X. Y. Stella, and J. Shi. Am i a
[23] M. S. Lachs. Caregiver burden: a clinical review. Jama,
[24] S. Biquand and B. Zittel. Care giving and nursing, work con-
[26] S. K. Ostwald, K. W. Hepburn, W. Caron, T. Burns, and
[27] M. Ma, H. Fan, and K. M. Kitani. Going deeper into first-
[29] S. Su, J. P. Hong, J. Shi, and H. S. Park. Predicting behav-
[31] S. Su, J. P. Hong, J. Shi, and H. S. Park. Predicting behav-
[33] R. D. Adelman, L. L. Tmanova, D. Delgado, S. Dion, and
[34] Amazon Inc. Amazon rekognition, 2019.
Basketball performance assessment from first-person
Y. Gineste and J. Pellissier. Humanitude: comprendre la
B. Given, P. R. Sherwood, and C. W. Given. What knowl-
[16] B. Given, P. R. Sherwood, and C. W. Given. What knowl-
[17] M. Honda, M. Ito, S. Ishikawa, Y. Takebayashi, and L. Tier-
caregiver burden in caregivers of individuals with dementia.
[21] H. Law, K. Ghani, and J. Deng. Surgeon technical skill as-
essment using computer vision based analysis. In Machine
[22] M. Ma, H. Fan, and K. M. Kitani. Going deeper into first-