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Abstract

In recent years gaze estimation methods have made sub-

stantial progress, driven by the numerous application areas

including human-robot interaction, visual attention estima-

tion and foveated rendering for virtual reality headsets. How-

ever, many gaze estimation methods typically assume that

the subject’s eyes are open; for closed eyes, these methods

provide irregular gaze estimates. Here, we address this as-

sumption by first introducing a new open-sourced dataset

with annotations of the eye-openness of more than 200,000

eye images, including more than 10,000 images where the

eyes are closed. We further present baseline methods that al-

low for blink detection using convolutional neural networks.

In extensive experiments, we show that the proposed base-

lines perform favourably in terms of precision and recall.

We further incorporate our proposed RT-BENE baselines in

the recently presented RT-GENE gaze estimation framework

where it provides a real-time inference of the openness of

the eyes. We argue that our work will benefit both gaze es-

timation and blink estimation methods, and we take steps

towards unifying these methods.

1. Introduction

Accurately estimating a subject’s gaze is a challenging

task. While in the past specialised devices such as head-

mounted eye trackers were used for gaze estimation [25], re-

cently several methods have been proposed that take images

captured by a standard webcam as input [5, 13, 28, 33, 48].

Methods that rely on deep learning have been shown to be

particularly effective for gaze estimation [13, 48, 50], but

their generalisation capabilities largely depend on the un-

derlying datasets that the methods have been trained on.

Therefore, a variety of datasets have been proposed, ranging

from interactions with phones [28], tablets [23, 28], lap-

tops [48] and computer screens [16] to larger distances that

are suitable e.g. in human-robot interactions [13].

Despite the remarkable progress on gaze estimation, the

state-of-the-art methods treat images where the subject’s

eyes are open in the same way as images where the eyes

are closed due to blinking [13, 49, 50]. Therefore, even

if the eyes are closed, gaze estimates are provided albeit

being irregular. Similarly, previous methods for blink de-

tection [4, 14, 15, 29] have not been integrated with gaze

estimation methods, and have used separate datasets that sig-

nificantly differ from those used by gaze estimation methods.

In addition, many of these datasets are either not available

for the research community, or are captured in “non-wild”

scenarios which limit their applicability.

In this work, we present “Real-Time Blink Estimation in

Natural Environments” (RT-BENE) to address these short-

comings. We first annotate over 200,000 images of the RT-

GENE dataset [13] that was introduced for gaze estimation

in natural settings with large camera-subject distances and

less constrained subject motion. Our dataset contains more

than 10,000 samples of blinking instances, which are signifi-

cantly more compared to previous datasets. We then use our

dataset to train a variety of convolutional neural networks

that predict the openness of the eyes.

We evaluate these networks on our proposed dataset and

several other datasets (Eyeblink8 [11], Talking Face and

Researcher’s Night [15]) where we achieve state-of-the-art

performance. We also incorporate our networks in the RT-

GENE pipeline to allow for joint blink and gaze estimation.

As an additional contribution, we extend RT-GENE to esti-

mate the gazes of multiple subjects simultaneously. To foster

future research on joint blink and gaze estimation, we make

our code and dataset available to the research community1.

RT-BENE has many possible application areas. Within

the computer vision community, gaze has recently been used

for visual attention estimation [9], saliency estimation [30]

and labelling in the context of video captioning [47]. We

argue that incorporation of blinks will further improve per-

formance in these tasks, as it is well known from studies

with humans that blinks impact task performance in atten-

1www.imperial.ac.uk/Personal-Robotics/



Figure 1: Overview of the proposed RT-BENE method. Top row: in case of a blink, without RT-BENE the gaze was previously

incorrectly estimated. Middle & bottom rows: when using RT-BENE, the gaze is correctly estimated when the eyes are open

(middle row) and incorrect gaze estimates are avoided when a blink was detected (bottom row).

tion and workload estimation [2] and can be used for user

modelling [17].

2. Related work

Gaze estimation In recent years a variety of appearance-

based gaze estimation methods have been proposed. Zhang

et al. [48, 50] demonstrated that convolutional neural net-

works (CNNs) can be used to find the mapping between

an eye image and the corresponding gaze angle. Cheng et

al. [8] have shown that it is beneficial to estimate which eye

image (left or right eye) results in better gaze estimation per-

formance, rather than randomly choosing the eye as above.

Zhang et al. [49] have demonstrated that the whole face im-

age can be used to estimate the gaze, rather than providing

eye images separately. Park et al. [37] propose an elegant

approach where the input image is first transformed into a

minimal image called gaze map, and the minimal image is

then used to estimate the gaze. Fischer et al. [13] demon-

strate that deeper architectures lead to better features, and

that ensemble models improve gaze accuracy.

Liu et al. [31] have recently addressed the issue that uni-

versal models do not capture variabilities in eye shape and

eye structure amongst individuals. They propose a linear

adaptation method to improve gaze estimation methods using

subject-specific models built from a few calibration images.

A related issue is that head pose significantly alters the ap-

pearance of the eyes. Deng and Zhu [10] propose to combine

separate models for the head pose and eyeball movement

using a gaze transform layer, which also addresses head pose

ambiguity amongst different subjects.

Gaze datasets The generalisation capabilities heavily

depend on the datasets that are used to train the methods re-

viewed above. The EYEDIAP dataset [16] captures subjects

in two different scenarios, one where the subject gazes at

targets appearing on a screen, and another where the subject

gazes at a floating target. The MPIIGaze dataset [48, 50]

captures subjects “in the wild” rather than in lab environ-

ments. The advantage of MPIIGaze is that lightning condi-

tions and backgrounds vary significantly more compared to

previous datasets. While MPIIGaze aims at laptop scenarios,

TabletGaze [23] and GazeCapture [28] contain recordings

of several hundred participants while using mobile phones

or tablets.

Recently, the RT-GENE dataset [13] has been proposed,

which takes a different approach compared to all previ-

ous datasets that all employ gaze targets appearing on

screens. Within RT-GENE, subjects wear eyetracking

glasses equipped with motion capture markers to obtain

ground truth annotations in free-viewing tasks. The eyetrack-

ing glasses are subsequently removed using image inpainting

with generative adversarial networks (GANs) to avoid over-

fitting the CNNs to these images. In our work, we annotate

the “natural” sub-dataset of RT-GENE where the subjects do

not wear the eyetracking glasses. In the original RT-GENE

work, this sub-dataset is used to train the GANs that “remove”

the eyetracking glasses from the subject’s face.
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Figure 2: RT-BENE: The first three rows depict five example annotations for each of the three groups (open eyes, closed eyes

and uncertain). The bottom row depicts pairs of images: the left image shows the plain eye image and the right image shows

the ground truth labels of the semantic labelling of the eye area (sclera in turquoise, iris+pupil in pink and closed eyes in red).

Blink estimation There have been a variety of proposals

to estimate whether an eye is closed or open. Traditional

methods, such as the one by Lalonde et al. [29] and Schilling-

mann and Nagai [40], rely on features extracted by SIFT and

HOG with a subsequent classification stage. However, the

accuracy of these methods is reduced for extreme head an-

gles and under varying skin colour and illumination. To

partly overcome these limitations, CNNs have been used to

extract more robust features [3, 26] and allow blink estima-

tion in cases where the faces are not full frontal, which is

considered challenging [19].

To improve the performance of these methods, it has been

proposed to track a sequence of images rather than inputting

a single image [4, 29]. Fogelton and Benesova [14] design

a state machine for eye blink detection [14] and propose a

merging scheme to integrate left and right eye images. In

another work, Fogelton and Benesova [15] use dense optical

flow to extract features that are inputted into a recurrent

neural network.

Blink datasets As in the gaze estimation task, the

dataset used to train blink estimation methods has a sig-

nificant impact on the performance, mainly when applied in

in-the-wild scenarios. Furthermore, deep learning models

such as CNNs and RNNs benefit from large datasets with

many annotated blink samples.

Many previous datasets such as the Talking Face2 and

ZJU [36] datasets are not suitable to train deep networks

as they contain fewer than 500 eye blinks. The dataset by

Kim et al. [26] contains approximately 5,000 samples of

closed eye images, but captures the subjects facing the cam-

era frontally. Furthermore, the dataset by Kim et al. [26]

2Dataset available from http://www-prima.inrialpes.fr/

FGnet/data/01-TalkingFace/talking_face.html, we use

blink annotations kindly provided by [14].

and several other datasets [14, 36] are not readily available

to the community or require the submission of licensing

agreements. Notable exceptions are the Closed Eyes in the

Wild (CEW) dataset [42], which contains 1192 samples of

subjects where both eyes are closed, and Eyeblink8 [11]

with 804 blinks. We were also able to obtain the challenging

Researcher’s Night dataset [15].

In summary, the majority of existing datasets is either

not easily obtainable by the computer vision community [14,

26, 36], relatively small to train deep networks [36] or not

captured in in-the-wild settings [26, 36]. The RT-BENE

dataset aims to overcome these limitations and provide a new

benchmark for blink estimation in the wild with sufficient

samples to train deep networks.

Joint blink and gaze estimation There have been sev-

eral preliminary works to integrate gaze estimation and blink

detection in unified frameworks. Schillingmann and Na-

gai [40] use HOG features for both pupil location estimation

and blink detection. Similarly, Chen et al. [7] employ a

heuristic based on the shape of the iris area. Lu et al. [32]

propose an elegant method where blinks are equivalent to

samples that live outside a low-dimensional manifold con-

sisting of the training data. Another interesting approach

was presented by Gou et al. [18], where the eye position and

openness are jointly used to iteratively converge towards the

true eye position and openness. To the best of our knowledge,

there are no deep learning based methods that jointly con-

sider blink estimation and gaze estimation. However, note

that Siegfried et al. [41] recently proposed a deep learning

based method to classify gaze streams into fixation, saccade,

and blink classes.

Semantic labelling of the eye area An interesting ap-

proach to combine blink estimation and gaze estimation is in

semantically segmenting the eye region, whereby the regions



right

eye

left

eye

pre-trained model

12
80

average

pool-

ing

51
2

fc*ReLU

1

closed

prob-

abil-

ity

2

12
80 51

2 1

×

2

1

blink

prob-

abil-

ity

Figure 3: Network architecture. The inputs are the left and right eye images. A pre-trained backbone network is used to extract

features for each eye individually. Each backbone network is followed by a fully connected layer of size 512 followed by batch

normalization and ReLU6 activation with a dropout of 0.6. The two separate streams share weights and are then concatenated

and connected to a single neuron with sigmoid activation, which outputs the probability of the eye openness.

considered can include the skin region surrounding the eye,

the sclera (white of the eye), iris (coloured region of the eye)

and pupil (black hole in the centre of the iris). Then, a blink

can be detected as an absence of the sclera and iris region.

Such a semantic segmentation approach was taken in [46]

using traditional image processing methods. Moriyama et

al. [35] propose a detailed generative model consisting of 7

regions separated by 8 curves. Mora and Odobez [34] also

take a generative approach and use variational Bayes to find

person-specific parameters. Wood et al. [45] present a highly

realistic 3D morphable model of the eye. The gaze is then

estimated by finding a synthesised image that most closely

resembles an observed image.

We argue that recent advances in transfer learning applied

to instance segmentation methods such as Mask R-CNN [20]

can be used to segment the eye area. Mask R-CNN is typi-

cally used to identify objects within an image and provide a

detailed mask for each recognised image, rather than just a

bounding box. In this paper, we adapt pre-trained networks

that are trained on large datasets to semantic labelling of the

eye area using just a few hundred annotated images.

3. Methodology

In Section 3.1, we describe the annotation strategy for

blinks on the RT-GENE dataset; in Section 3.2 we intro-

duce a CNN for blink estimation, and in Section 3.3 we

make first steps towards unified blink and gaze estimation

by introducing a semantic labelling approach based on Mask

R-CNN. Finally, in Section 3.4, we present an extension of

the RT-GENE framework to multiple subjects.

3.1. Dataset generation

As reviewed in Section 2, there is currently little overlap

between the datasets being employed for gaze estimation and

blink estimation. As we aim for a joint framework for blink

and gaze estimation, we annotate the RT-GENE dataset [13],

which was recently proposed for gaze estimation, with blink

labels. Our proposed RT-BENE dataset has further benefits:

it contains sufficient samples to train a deep network, and it

is openly available for use by the research community.

In particular, we annotate the ‘natural’ subset of the

dataset, which is the subset where no eyetracking glasses are

worn. This subset is subsequently split into three categories:

1) open eyes, 2) closed eyes, and 3) uncertain.

We define open eyes as images where at least some part

of the sclera (white part of the eye) or pupil is visible. Closed

eyes are those where the eyelids are fully closed. The un-

certain category is used when the image cannot be clearly

grouped into one of the other categories due to e.g. extreme

head poses, or when the two annotators labelled the image

differently. Figure 2 (top three rows) shows example images

contained in the three categories.

Using this approach, we labelled in total 243,714 images,

218,548 of them where the eyes are open, 10,444 where the

eyes are closed and 14,722 uncertain images. These images

are used to train the convolutional neural networks in Section

3.2. Note that these numbers are for one eye only, for pairs

the numbers have to be halved.

To train the semantic labelling method in Section 3.3, we

additionally provide detailed semantic labels for 480 images

randomly sampled from the RT-GENE dataset (400 training

images and 80 images for evaluation)3. We annotate the

following segments using the VGG Image Annotator [12]:

eyelid, sclera, and iris+pupil (combined). For closed eyes,

the sclera and iris+pupil areas are empty. For open eyes, the

3Note that labelling these images is a very time-consuming task, hence

not the whole dataset has been labelled.



eyelid is not labelled. Figure 2 (bottom row) shows example

annotations.

3.2. Convolutional neural networks for blink esti-
mation

We provide a set of baseline CNNs for blink estimation.

As input, the eye images of the left and right eyes are pro-

vided. Rather than using complex architectures, we use

standard backbones, namely MobileNetV2 [39], ResNet50

[21] and DenseNet121 [22], to extract features.

The feature extraction step is followed by fully connected

layers that output the probabilities of the openness of each

eye. The last step consists in fusing the individual proba-

bilities to an overall probability. Note that the last step can

be skipped if required. We use the binary cross-entropy

loss function. To further improve the performance, we

make use of ensemble models where we average the pre-

dictions of multiple models, similarly to RT-GENE [13].

Also note that the dataset is highly imbalanced, i.e., there

are many more images with open eyes compared to those

with blinks (Nopen � Nclosed). Therefore, we make use of

oversampling [24, 27], where the weights of open eye sam-

ples is Ntotal/(2Nopen) and accordingly for blink samples

Ntotal/(2Nclosed).
In the experimental results (Section 4), we evaluate the

speed-accuracy trade-off of the different backbones. The

detailed network architecture is shown in Figure 3. Please

refer to our code release for further details on the training of

our method.

3.3. Semantic labelling of the eye region

In this section, we use Mask R-CNN to make a step

towards joint gaze and blink estimation. Typically, Mask

R-CNN is used to identify objects within an image and

provide a pixel-by-pixel mask for each of the objects. In our

work, we propose to treat the various eye areas as different

“objects”.

We use Mask R-CNN as implemented by Matterport [1]

to train ResNet101 backbone networks. We adjust the net-

work architecture to cope with the small image sizes of just

36x60. The anchors (“bounding box” equivalents) are of

sizes 8, 16, 32, and 64. We use the semantically labelled

images described in Section 3.1 to fine-tune the networks.

At inference time, for each label, we consider the mask

that has the highest corresponding confidence value. If the

“eyelid” segment is dominant, the eye is considered to be

closed. To find the centre of the pupil, we compute the centre

of mass of the iris+pupil segment. Note that there are some

cases where the sclera segment is detected, but no iris+pupil

segment. In this case, we currently do not compute the pupil

centre but consider the eye to be open.

In future work, we plan to provide the pupil position as

an additional input to appearance-based gaze estimators to

improve their gaze estimation performance.

Figure 4: Multi-person gaze estimation. Two subjects are

detected, and their head poses are estimated (top images).

The bottom images depict the estimated gaze for both sub-

jects. On the right, we show the relative transforms between

the camera and each of the subjects. For each subject, two

transforms are shown: one for the head pose and another for

the eye gaze.

3.4. Multi-person gaze estimation

As an additional contribution, we allow for multi-person

gaze estimation within the RT-GENE framework [13]. Multi-

person gaze estimation is beneficial for a range of scenarios,

including the detection of attention in group scenarios [6].

The RT-GENE framework has been restructured so that

the messages exchanged between the face detection, land-

mark extraction and gaze estimation nodes contain a list of

subjects (with corresponding images) rather than a single

subject. We use the Hungarian method to keep track of sub-

jects over time. An example of two subjects who interact

with each other is shown in Figure 4.

4. Experimental results

We first evaluate our proposed RT-BENE framework for

blink estimation within Section 4.1. The evaluation is per-

formed on the following datasets: our proposed RT-BENE,

Eyeblink8 [11], and Researcher’s Night [15] (see Suppl.

Material for example images). We compare to Google’s

ML-Kit4 and the method by Anas et al. [3].

We treat the blink detection as a binary problem: either

the eyes are closed or open. As the main performance metric,

we use the F1-score (closed eyes are treated as positive

class for all evaluations). We also report precision, recall,

average precision (AP , a score to summarise the precision-

recall curve5) as well as the computational speed (frames per

second).

In Section 4.2, we show that our method generalises well

to different scenarios. We train our method on RT-BENE

and apply the trained model to the Talking Face dataset

(cross-dataset evaluation). In Section 4.3, we investigate

4https://developers.google.com/ml-kit/
5Details in https://scikit-learn.org/stable/auto_

examples/model_selection/plot_precision_recall.

html and [38].
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Figure 5: Precision-recall curves for the RT-BENE dataset (left; 3-fold evaluation) and Eyeblink8 dataset (right; 3-fold

evaluation).

the performance depending on the number of training im-

ages. This investigation shows whether the acquisition of

additional images will further improve our method’s perfor-

mance. In Section 4.4, we then show preliminary results

for the use of Mask R-CNN to semantically label the eye

region. This currently allows for blink detection, and we

show promising results for gaze estimation using the same

method.

The network training and evaluation is performed on a

machine with 3 Nvidia GeForce 1080 GPUs, an Intel i9-

7960X CPU with 16 cores and 96GB RAM.

4.1. Blink detection using CNNs

Evaluations on the RT-BENE dataset follow the same

training, test and validation split as in the RT-GENE

dataset [13], i.e. a 3-fold evaluation is used. We also use a

3-fold evaluation on the Eyeblink8 dataset. Our networks

are trained for 15 epochs with the batch size being 64.

Figure 5 shows the precision-recall curves of various

methods, and detailed quantitative results for all metrics are

contained in Tables 2 and 3 (RT-BENE dataset and Eyeblink8

dataset respectively).

In experiments on RT-BENE, we observe the follow-

ing: Our Ensemble performs best (F1 = 0.721 ± 0.044).

DenseNet (F1 = 0.658± 0.028) outperforms ResNet (F1 =
0.598 ± 0.107), which in turn outperforms MobileNet v2

(F1 = 0.588±0.064). This ranking remains relatively stable

regardless of which performance metric (precision, recall,

AP or F1) is used. However, increased performance comes

with an increase in computational cost (27.5± 4.8FPS for

DenseNet compared to 42.2± 3.6FPS for MobileNet v2).

Note that our best performing model outperforms ML-Kit

(F1 = 0.290 ± 0.036) and Anas et al. [3] (F1 = 0.529 ±
0.075; 36.3% performance increase). Note that ML-Kit is

closed-source and was hence not fine-tuned to RT-BENE.

The performance on Eyeblink8 is similar. Specifically,

our Ensemble (F1 = 0.976±0.018) outperforms the method

by Anas et al. [3] (F1 = 0.834± 0.077; 17% better perfor-

mance) and ML-Kit (37.8% better performance). Detailed

evaluations are contained in Table 3.

Finally, we evaluate on Researcher’s Night (given their

train, test and validation split). There, our Ensemble also

performs very accurately (F1 = 0.913) and outperforms all

other models (see Supplementary Material).

Table 1 shows the confusion matrices of our best perform-

ing model on the RT-BENE, Eyeblink8 and Researcher’s

Night datasets.

4.2. Cross-dataset evaluation

To show that our trained models perform well in other sce-

narios, we conduct the following cross-dataset evaluations.

We train a model on all subjects of the RT-BENE dataset

(13 subjects of the three folds combined, however, note that

there are four subjects that are used for model validation).

The trained model is then applied to the Talking Face dataset.

IWe achieve F1 = 0.966, compared to F1 = 0.695 using

ML-Kit (39.0% performance increase).

This shows that our proposed model performs still very

well in scenarios that were not seen at training time. In

the next section, we evaluate whether more training sam-

ples to train our model would lead to a further increase in

performance.

4.3. Performance with increasing dataset size

Increases in the number of training samples have the po-

tential to significantly improve machine learning algorithms,

in particular so with deep neural networks [43].

For the blink estimation tasks, the datasets are relatively

small, with many of them containing fewer than 500 blinks

(see Section 2). While RT-BENE contains considerably more



RT-BENE Ground truth

dataset Open Closed Total

Predicted
Open 2236 1293 3529

Closed 625 71153 71778

Total 2861 72446 75307

Eyeblink8 Ground truth

dataset Closed Open Total

Predicted
Closed 1673 12 1685

Open 54 69172 69226

Total 1727 69184 70911

Researcher’s Ground truth

night dataset Closed Open Total

Predicted
Closed 986 4 990

Open 184 104547 104731

Total 1170 104551 105721

Table 1: Confusion matrices of our proposed method

(DenseNet 121) on the RT-BENE (top) and Eyeblink8 (mid-

dle) and Researcher’s Night (bottom) datasets; 3-fold evalu-

ations combined.

images (10,444 closed eye images and 218,548 open eye

images), the dataset size is still several orders of magnitude

smaller compared to other tasks such as object recognition.

In this section, we evaluate the performance depending

on the number of training images. We follow a similar 3-fold

evaluation as in Section 4.1, but rather than using all images

from the subjects in the training set, we randomly sample

X = {25, 50, 75, 100}% of each subject’s image set. Also,

we use only one of the three folds for this study.

Our hypothesis is that increased training sample size leads

to an increase in performance. Indeed, the performance

increases from F1 = 0.581 when using 25% of the training

set to F1 = 0.614 (50% of the dataset), F1 = 0.693 (75%

of the dataset) and finally F1 = 0.706 (full training set).

These results, further detailed in Table 4, indicate that even

larger datasets could further improve the blink detection

performance of CNNs. A similar trend can be observed in

Table 5 that investigates the impact of the dataset size on

the Eyeblink8 dataset. In future work, we think it would be

beneficial to jointly train on multiple datasets to mitigate this

issue.

4.4. Semantic labelling of the eye region

Here, we show preliminary results on the use of Mask R-

CNN to semantically label the eye region. Note that only 400

images are used to fine-tune Mask R-CNN as annotating each

image requires a significant amount of time (see Section 3.1).

In quantitative evaluations, our proposed method does

not currently perform as well as the CNN baselines that

Figure 6: Mask R-CNN results exemplified on several eye

images. Turquoise masks indicate the sclera and pink masks

indicate the iris+pupil. The yellow dots indicate the centres

of the iris+pupil masks and could be used for gaze estimation.

The red mask in the fourth row indicates a closed eye. The

last row indicates a failure case.

were evaluated in Section 4.1: In the 3-fold evaluation on

RT-BENE, we achieve F1 = 0.222.

Despite the low performance in blink detection, we be-

lieve that semantic labelling is a fruitful endeavour for future

research. In Figure 6, we show sample segmentation masks

predicted by our model.

Interestingly, Mask R-CNN also predicts the pupil po-

sition. The pupil is visible in 54 out of the 80 evaluation

images. We manually annotated the ground truth pupil po-

sition in these images. We then compare the ground truth

position with that estimated by Mask R-CNN. The Euclidean

distance is 1.7± 1.6px in the 51 images where the pupil was

detected by Mask R-CNN, which is a promising result.

The results demonstrate that our proposed method can

be used to simultaneously detect whether an eye is open or

closed, and if it is open, the pupil location can be reliably

estimated.

5. Conclusions, Limitations and Future Works

In this work, we introduced a highly accurate frame-

work for blink estimation, which we called “RT-BENE”.

The framework consists of two main parts: a new dataset

and a set of convolutional neural networks trained on this

dataset. Different backbone networks were evaluated, and it

was shown that “deeper” networks perform better but come



Method Precision Recall AP F1 FPS

Google ML-Kit 0.172± 0.025 0.946± 0.033 0.439± 0.091 0.290± 0.036 –a

Anas et al. [3] 0.533± 0.127 0.537± 0.033 0.486± 0.114 0.529± 0.075 408.3± 10.7
Proposed MobileNetV2 0.579± 0.099 0.604± 0.026 0.642± 0.072 0.588± 0.064 42.2± 3.6
Proposed ResNet 0.595± 0.148 0.610± 0.060 0.649± 0.096 0.598± 0.107 41.8± 3.9
Proposed DenseNet 0.613± 0.055 0.717± 0.048 0.728± 0.066 0.658± 0.028 27.5± 4.8
Proposed Ensemble 0.664± 0.064 0.791± 0.017 0.774± 0.016 0.721± 0.044 20.5± 3.7

Table 2: Performance on the RT-BENE dataset

aThere is no fair speed comparison for ML-Kit, as ML-Kit cannot run on desktop machines. On modern tablets, ML-Kit runs between 15-20 FPS.

Method Precision Recall AP F1

Google ML-Kit 0.584± 0.184 0.965± 0.020 0.838± 0.100 0.708± 0.155
Anas et al. [3] 0.754± 0.108 0.941± 0.022 0.883± 0.060 0.834± 0.077
Proposed MobileNet v2 0.884± 0.008 0.919± 0.036 0.955± 0.024 0.901± 0.021
Proposed ResNet 0.842± 0.065 0.939± 0.037 0.950± 0.042 0.887± 0.051
Proposed DenseNet 0.883± 0.038 0.954± 0.026 0.969± 0.021 0.916± 0.019

Proposed Ensemble 0.995± 0.004 0.958± 0.035 0.997± 0.002 0.976± 0.018

Table 3: Performance on the Eyeblink8 dataset

% of train set Prec. Rec. AP F1

25 0.662 0.517 0.723 0.581
50 0.703 0.546 0.782 0.614
75 0.747 0.646 0.774 0.693
100 0.700 0.712 0.796 0.706

Table 4: Performance depending on dataset size (DenseNet

model; RT-BENE dataset; one fold only)

% of train set Prec. Rec. AP F1

25 0.908 0.804 0.893 0.853
50 0.968 0.797 0.940 0.874
75 0.889 0.904 0.970 0.897
100 0.928 0.895 0.965 0.911

Table 5: Performance depending on dataset size (DenseNet

model; Eyeblink8 dataset; one fold only)

with an additional computational cost. Furthermore, a signifi-

cant performance improvement over previous state-of-the-art

has been achieved.

We also introduced a preliminary method for semantic eye

labelling based on Mask R-CNN and demonstrated promis-

ing results in this direction. We hope that by using crowd-

sourcing, we can obtain more semantic annotations to train

the Mask R-CNN and improve its performance.

While the methods based on CNNs currently outperform

the semantic labelling approach, we believe that the semantic

labelling based on Mask R-CNN will lead to a unified blink

and gaze estimation method in the future. Rather than a

purely geometric approach, we will integrate the ellipse

denoting the sclera as well as the detected pupil location

with appearance-based gaze methods by providing additional

inputs to these methods.

Other future works include the following. Firstly, while

our current blink dataset contains images of the RT-GENE

dataset where no eyetracking glasses are worn, we will in-

corporate the inpainted images of the RT-GENE dataset. In

these images, the subject originally had worn eyetracking

glasses to obtain ground-truth gaze locations, which were

then subsequently removed using GANs. This will further

increase the size of our RT-BENE dataset.

Secondly, we aim for even finer-grained semantic segmen-

tation. We hypothesise that this will allow the estimation of

the pupil dilation, which is known to be a predictor of task

difficulty [44] amongst others.

While we provided an extension for the RT-GENE frame-

work to provide gaze estimates of multiple subjects simul-

taneously, this currently does not scale well as each addi-

tional subject linearly increases the required computational

time. While the single subject and dual subject estimates

are provided in real-time, the computational speed drops

considerably for more than three subjects.

We make the dataset and code available to the community

(www.imperial.ac.uk/Personal-Robotics/)

to foster future research on joint gaze and blink estimation.
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