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Abstract

Personal variations severely limit the performance of

appearance-based gaze tracking. Adapting to these varia-

tions using standard neural network model-adaption meth-

ods is difficult. The problems range from overfitting, due

to small amounts of training data, to underfitting, due to

restrictive model architectures. We tackle these problems by

introducing SPatial Adaptive GaZe Estimator (SPAZE). By

modeling personal variations as a low-dimensional latent

parameter space, SPAZE provides just enough adaptability

to capture the range of personal variations without being

prone to overfitting. Calibrating SPAZE for a new person

reduces to solving a small and simple optimization problem.

SPAZE achieves an error of 2.70° degrees on the MPIIGaze

dataset, improving on the state-of-the-art by 14 %.

We contribute to gaze tracking research by empirically

showing that personal variations are well-modeled as a

3-dimensional latent parameter space for each eye. We show

that this low-dimensionality is expected by examining model-

based approaches to gaze tracking.

1. Introduction

Video-based gaze tracking deals with the problem of de-

termining the gaze of a person’s eye given images of the eyes.

By “gaze” one usually means the point on a two-dimensional

screen where the person is looking (2D gaze), but sometimes

one wishes to determine the complete gaze ray in 3D space,

originating from the eye and directed towards the screen

gaze point. We refer to this (five-dimensional) quantity as

3D gaze. Gaze tracking has numerous applications: It is used

as a communication aid for people with medical disorders.

Experimental psychologists use it to study human behav-

ior. In the consumer market, it is used for human-computer

interaction and when used in virtual reality, it can reduce

the computational requirements through foveated rendering,

that is, rendering in high resolution only where the person is

looking.

Gaze tracking techniques can be categorized into model-

based and appearance-based methods [8]. Model-based

methods use image features such as the pupil center and the

iris edge, combined with a geometric eye model to estimate

the gaze direction. Some model-based methods also use the

corneal reflections from one or more light sources. These re-

flections are known as glints and the light sources are known

as illuminators, typically light-emitting diodes. Model-based

methods can be implemented with small amounts of training

data, since they make simplifying assumptions. For exam-

ple, they might model the pupil as a dark ellipse. However,

the same assumptions make them unsuited to handle large

variations in appearance.

Appearance-based methods, on the other hand, do not

rely on hand-crafted features. Instead, they estimate the

gaze direction directly from the eye images. This requires

a larger amount of training data, but makes it possible to

track gazes despite appearance variations. Since appearance-

based methods do not require an explicit feature-extraction

step, they are believed to work better than model-based

methods on low-resolution images [23]. Recent research on

appearance-based methods using convolutional neural net-

works [2, 18, 11, 25, 24, 21, 3] has focused on challenging

in-the-wild scenarios with person-independent models using

low-resolution web camera images, and provided promising

results.

In this paper, we propose a new approach to personal

calibration in appearance-based gaze tracking: SPAZE (SPa-

tial Adaptive GaZe Estimator). We analyze the performance

of SPAZE on both low-resolution webcam images and on

high-resolution images from near-infrared (NIR) cameras

with active illumination. SPAZE consists of three steps:

1) From an image of the face, we extract three normalized

images, two high-resolution images of the eyes and one low-

resolution image of the face. 2) The three images are fed

into separate convolutional neural networks. 3) The outputs

of the networks are combined with person-specific calibra-

tion parameters in a fully connected layer. The calibration

parameters are tuned by having the person look at known

gaze targets. Previous methods for personal calibration have

trained person-specific models [23, 25] or seen calibration



as a post-processing step [11]. This contrasts with SPAZE

where we include calibration in the learning process, as a set

of latent parameters for each person.

We aim to estimate gaze rays in 3D space. To make data

collection simpler, we aim to learn this without ground truth

for the 3D eye positions. We only require ground truth for

the 3D gaze targets. By estimating 3D gaze and having a

geometry-agnostic personal calibration, we hope to learn a

single model that can be used with different camera/screen

geometries.

SPAZE is evaluated on three datasets: 1) a large Tobii

dataset from high-resolution, near-infrared cameras with

active illumination, 2) GazeCapture [11] from iPhones and

iPads and 3) MPIIGaze [25] from laptop webcams.

Our experiments demonstrate that:

• SPAZE is as accurate as model-based gaze tracking

methods on high-resolution, near-infrared images.

• Our calibration achieves state-of-the-art performance

on both within-MPIIGaze evaluations and on cross-

dataset evaluations, transferring from GazeCapture to

MPIIGaze.

• SPAZE works without the help of a head pose estimator,

using only a tight crop around the eyes.

• Personal variations are well-modeled as a

3-dimensional latent parameter space for each

eye.

The contributions and outline of the paper are as follows:

In Section 2, we review related work on appearance-based

gaze tracking and approaches to personal calibration. In

Sections 3 and 4, we describe SPAZE and the datasets we

used. In Section 5, we present experimental results. We find

that personal variations can be modeled as a 3-dimensional

latent parameter space for each eye. In Section 6, we argue

why this is expected, reviewing typical model-based methods

for gaze tracking. In Section 7, we discuss the implications

of our results for appearance-based gaze tracking.

2. Related work

Appearance-based gaze tracking has received much atten-

tion recently. Sugano et al. [17] used random forest regres-

sion to estimate gaze angles from eye images. They intro-

duced the normalization technique we adopt in this paper,

where the eye images are warped into a normalized camera

view. This effectively reduced the appearance variations their

regressor had to handle. For training, they augmented their

dataset by rendering eye images from point clouds. Zhang

et al. [23] introduced MPIIGaze, a dataset with 38 k images

from 15 persons. The dataset includes camera calibration

parameters and 3D gaze targets. They trained a light-weight

convolutional neural network to estimate gaze angles from

eye images. Krafka et al. [11] collected a dataset of 2.5 M im-

ages taken with smartphones in uncontrolled environments.

They trained a convolutional neural network and without

personal calibration they obtained an accuracy of about 3°

(2 cm) on a phone or tablet. While the dataset is large, it

lacks camera calibration parameters and 3D ground truth for

the gaze targets. Wood et al. [19] introduced UnityEyes, a

framework for generating synthetic eye images which look

realistic. With a k-nearest neighbor regressor, they achieved

an accuracy of 10° on MPIIGaze. Park et al. [15] used

a novel heat map approach to improve the regression per-

formance, achieving 4.5° on MPIIGaze. Fischer et al. [5]

trained an ensemble of 4 VGG networks, achieving 4.3° on

MPIIGaze.

2.1. Approaches to personal calibration

In model-based gaze tracking there is often some kind of

personal calibration involved [8]. The calibration parameters

typically include the fovea offset for each eye, as discussed

in Section 6. In appearance-based methods there is no ex-

plicit model of the eye, so it is not clear how to incorporate

personal calibration. Most works ignore calibration, though

some authors have shown that person-specific estimators

greatly outperform generic estimators.

For example, Sugano et al. [17] compared random forest

regression with person-specific training and cross-person

training, finding errors of 3.9° and 6.5°. Zhang et al. [23]

made the same comparison using a convolutional neural

network on a different dataset, finding 3.3° and 6.3°. The

comparison on MPIIGaze found 2.5° and 5.4° [25]. Building

on the idea of training person-specific estimators, Zhang et

al. [21] devised a method which helped to collect more

training data for a specific person.

A neural network trained for a specific person will of

course always outperform a generic network, assuming equal

amounts of training data. However, it is unpractical to collect

the vast amount of data needed to train a modern neural

network from a single person.

One approach to this problem is to fine-tune some part of

a generic network, typically the final layer. We adopt this

approach as in iTracker by Krafka et al. [11], but with a crit-

ical difference. In iTracker, the network is initially trained to

learn an average model for all persons present in the dataset.

The calibration is just a post-processing step where the last

fully connected layer with input size 128 and output size 2 is

replaced by an SVR-model trained with calibration samples

for a specific person (while the weights of the rest of the

network are kept fixed). With 13 calibration points, the ac-

curacy was improved with up to 20 %, whereas with only 4

calibration points, the accuracy was actually worse than with-

out personal calibration, probably due to overfitting of the

SVR-model. In iTracker, personal calibration is learnt from

scratch for each person. This requires a large calibration

parameter space, to support a sufficiently rich set of cali-

bration mappings, and hence a large number of calibration

samples. This contrasts with our method: We parameterize
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Figure 1: Network pre- and post-processing for image nor-

malization and 3D gaze projection.

the set of possible calibration mappings by a neural network,

and during the initial training, the network learns a suitable

mapping from a small calibration parameter space. The high

expressiveness of the neural network means it can potentially

model many different calibration mappings, and the training

must find a suitable one. This necessitates a large training

set, to prevent overfitting. We have this large dataset, since

we learn the calibration mapping from the whole training set,

not just from one person.

Park et al. [16] adapted the method of iTracker by ex-

tracting 32 landmarks (corresponding to iris edges, pupils,

eyelids). These features are then used to train a personal

SVR as in iTracker.

Liu et al. [12] implemented personal calibration by train-

ing a differential neural network to estimate the difference

in gaze direction between two images. When estimating

the gaze direction in a novel image, they used a set of cal-

ibration images as anchors, estimating the gaze direction

in the novel image relative the calibration images. This

achieved 4.67° with 9 calibration samples on MPIIGaze. In

an inversion of this approach, Yu et al. [20] used gaze redirec-

tion to synthesize additional person-specific training images.

This extended calibration set was then used to fine-tune

their network, achieving 4.01° with 9 calibration samples on

MPIIGaze.

The state-of-the-art method for calibrated gaze tracking

is FAZE (Few-shot Adaptive GaZE Estimation) by Park et

al. [14]. FAZE uses an encoder/decoder structure to learn a

compact and consistent gaze representation. This gaze repre-

sentation is sent to a small multi-layer perceptron (64 hidden

units). The perceptron is trained using model-agnostic meta-

learning (MAML) to allow fast person-specific fine-tuning

with minimal overfitting. FAZE achieved 3.14° with 9 cali-

bration samples on MPIIGaze, when trained on GazeCapture.

The performance was reduced when FAZE was trained on

the much smaller MPIIGaze.

3. The SPAZE method

In this section, we describe the three main components of

SPAZE: 1) image normalization, 2) the neural network and

3) 3D gaze projection. See Figure 1 for an overview of the

data flow. We also describe our personal calibration method.

3.1. Image normalization

To improve generalization, we normalize the images as

described by [22]. Unlike most other methods, we do not use

a separate head pose estimator for image normalization and

3D gaze estimation. We have found head pose estimators to

be fragile and they require pose-annotated training data. Our

NIR datasets is also so tightly cropped to the eyes that most

of the head is not visible. Instead we adopt a structure where

eye detections are used for a rough pose estimation, for

image normalization. The network is then asked to correct

any errors (affecting gaze accuracy) in the rough estimate.

The idea of head pose free methods has previously been

investigated by [13, 3].

The input to the image normalization component is an

image of a person’s face and two points in the image defining

where the eyes are. Those points are provided by an external

eye detector. The output is three images: two high-resolution

eye images centered at the eye detection points and one low-

resolution face image centered at the midpoint between the

eyes.

By assuming that depth variations in the face are small

compared to the distance between the face and the camera,

we can compensate for arbitrary scaling and camera rotation

by a perspective image warp. This reduces the complexity

of the gaze tracking problem, as the estimator does not need

to handle arbitrary face rotations or scalings. However, due

to imperfections in the normalization method, some rotation

and scaling errors will remain.

Figure 2a illustrates the normalization. Given an input

image I and a reference point (either an eye detection point

or the midpoint between the eyes), we compute a conversion

matrix R. Its inverse R−1 is the matrix that rotates the

camera so that it looks at the reference point and so that

the interocular vector in the image becomes parallel to the

camera x-axis. To make the eye appearance consistent, for

the left-eye image we also let R−1 mirror the camera in the

interocular direction after the rotation.

The conversion matrix R will map any 3D point in the

real camera coordinate system into the normalized camera

coordinate system. The same transform is applied to the

image I using an image transformation matrix CnRC−1
r ,

where Cr is the projection matrix of the real camera and Cn

is the projection matrix of the normalized camera. Cn is

selected as a scaling such that the interocular distance in the

normalized image becomes 320 pixels for the eye images and

84 pixels for the face image. We use bilinear interpolation

to implement the warping and crop out a W ×H region in

the normalized image, 224 × 112 pixels for the eye images

and 224 × 56 pixels for the face image.

A gaze ray ĝ(t) = o+ td is estimated in the normalized

camera coordinate system and transformed back to the real
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camera coordinate system by g(t) = R−1ĝ(t).

3.2. 3D gaze projection

Here we describe how the output from the network is

translated into a pair of gaze rays. The network has five

outputs. For each eye, it predicts a 2D gaze origin o2D and a

2D gaze direction d2D. It also generates a distance correction

term, c, which is common to both eyes. We assume that the

distance from eye to camera is approximately the same for

both eyes, and our estimate of that distance will be called

ρ. First, given the input image and the eye detections, we

find a rough distance ρrough such that the separation between

the eyes becomes 63 mm at that distance, approximately the

average human interocular distance [6]. This distance is then

corrected by the network by setting ρ = c ρrough. The rough

distance will be unreliable, since it is based on only the eye

detections, which are noisy. Further, it makes no allowance

for head yaw. But since the same eye detections are used to

normalize the images fed to the network, the network has an

opportunity to spot misaligned eye detections and correct for

them. Likewise, it can measure the head yaw and correct for

it.

We will now describe how a gaze ray is computed for a

single eye, see Figure 2b for an overview of the procedure.

The 3D origin of the gaze ray, o, is computed by back-

projecting the 2D gaze origin o2D through the normalized

camera to the distance ρ. To compute the 3D direction

of the gaze ray, d, we first construct a set of orthonormal

basis vectors {x,y, z}, where z points from the 3D gaze

origin to the camera and x is orthogonal to the y-axis of

the normalized camera coordinate system. The 3D gaze

direction d is then computed from the 2D gaze direction d2D

as d = [xy]d2D + z.
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Figure 3: Network architecture.

3.3. Network architecture

Here we describe the input to the network and how the

output is generated. See Figure 3 for an overview of the

network architecture. We feed three images to the network:

both eyes at high resolution and the face at low resolution.

One convolutional network is applied separately to each eye.

Another convolutional network is applied to the face. Both

networks are the convolutional part of ResNet-18 [9].

The three outputs are concatenated and fed to a fully

connected module. The fully connected module outputs the

distance correction c. The rationale for using both the eyes

and the face for the distance estimation is that the eyes could

provide accurate interocular distance measurements, while

the face could improve head pose estimation.

The convolutional network output for each eye is then

concatenated with a set of N personal calibration parameters

and the distance correction. This combined feature vector is



fed to a fully connected module. The fully connected module

outputs the 2D gaze origin o2D and the 2D gaze direction

d2D. The same module is used for both eyes.

The fully connected modules can both be described

as: FC(3072)→BN→ReLU→DO→FC(3072)→BN→
ReLU→DO→FC(1 or 4) where FC is fully connected, BN
is batch normalization and DO is dropout.

Initially we generated both gaze rays using information

from both eyes. That gave better performance, but made the

gaze rays for the two eyes highly correlated, as all training

data have both eyes looking at the same point. As we want

to support medical applications, where it is important to

observe differences between the eyes, we choose this segre-

gated approach. In a consumer application, it would be more

appropriate to modify the network architectures to estimate

a joint gaze direction, originating from between the eyes, as

suggested by Zhang et al. [24].

The rationale for providing the distance correction c when

estimating the gaze direction is to allow the use of features

that require accurate distance information. This is the case

with pupil-center/corneal-reflection gaze mapping [8, 7]. We

do not input personal calibration parameters into the distance-

estimation module, since it is typically impossible to detect

distance errors from calibration data collected at a single

distance, which is what we have.

3.4. Training and calibration

Personal variations are modeled by assigning 2N cali-

bration parameters to each person, N for each eye. Dur-

ing training, the training set D consists of triples (X, t,m),
where X is a triple of images (face, right eye, left eye), t is

the 3D gaze target and m is the index of the person in the

images. With M persons in the training set, we solve the

optimization problem1

(θopt, Popt) = argmin
θ,P

∑

(X,t,m)∈D

loss(gθ(X,Pm,·), t)

over all weights θ of the neural network g and, simultane-

ously, over all M -by-2N matrices P of calibration param-

eters. After training, Popt is discarded. The optimization

method and the loss function will be described in a moment.

To calibrate for a new person, we collect a small cali-

bration set Dcal of (image triple, gaze target) pairs. The

calibration procedure then finds the person’s 2N calibration

parameter vector defined as

argmin
p∈R2N

∑

(X,t)∈Dcal

loss(gθopt
(X, p), t).

1Note that our objective function includes person-specific parameters

Pm, which contrasts with existing methods [11] whose objective function

does not account for personal variations (with our notations, it would be
∑

(X,t)∈D
loss(gθ(X), t)).

Note that the network weights are fixed. We used BFGS to

solve this optimization problem, and as an initial guess we

find a single calibration parameter vector that minimizes the

error over the whole training set. This parameter vector is

also used for the uncalibrated case.

In the experiments, we vary N and find that 3 parameters

per eye are enough to provide an efficient person-specific

gaze tracking. Modeling personal variations using such

a low-dimensional latent parameter space contrasts with

existing calibration approaches (e.g. in iTracker, a much

higher number of parameters is used), but can be motivated

and justified by existing model-based methods; see Section 6

for a complete discussion.

Finally, let us describe the loss function and the optimiza-

tion method during training. The loss is the miss distance

between the gaze ray and the 3D gaze target, see Figure 2b.

We train using Adam [10] with a learning rate of 10−3 and

a weight decay of 10−5. We train for 30 epochs, decaying

the learning rate by 10 every 10th epoch. The eye detections

are jittered for data augmentation in training: We randomly

offset the detections in a disk with a radius equal to 4 % of

the interocular distance.

With this setup, we found that the generated gaze rays

would pass close to the gaze target, but the 3D gaze origin

would be highly incorrect. The reason is that current datasets

are collected with a geometry that makes the 3D gaze origin

underdetermined. In the supplementary material, we use a

synthetic dataset to investigate whether this limitation can

be overcome by a different data collection strategy.

To prevent unphysical solutions when training on current

datasets, we introduced two regularizing terms: 1) a hinge

loss on the 2D gaze origin o2D, penalizing if it moves outside

the eye image and 2) a hinge loss on the distance correction

c, penalizing changes in distance by more than 40 % in either

direction.

4. Datasets

We use three datasets in our experiments: 1) a Tobii

dataset from high-resolution, near-infrared (NIR) cameras,

2) GazeCapture and 3) MPIIGaze. In the supplementary

material we investigate the effect of gaze target placement

and glints using synthetic UnityEyes images.

4.1. NIR dataset

We use a large Tobii dataset for our calibration experi-

ments. The dataset was collected with a near-infrared (NIR)

eye tracker platform, with an infrared illuminator mounted

very close to the camera. This produces a bright-pupil ef-

fect [8], the same effect that makes the eyes red in flash

photography. Since the illuminator position coincides with

the camera position, we can scale and rotate the normalized

camera without changing the position of the illuminator in

the camera coordinate system. The training set was collected



over a period of several years and contains 427 k images

from 1824 persons. The majority of the training data have

gaze targets on a regular lattice on the screen.

For testing, we have a set of 200 persons. This set was

collected on 19 inch, 16:10 aspect ratio screens, with the

camera placed at the bottom edge of the screen and tilted

up 20°. The camera focal length was 3679 pixels and it

captured a region of interest of 1150 × 300 pixels. The

region of interest was kept aligned on the eyes using an eye

detector. The persons sat at 65 ± 10 cm from the camera.

See Figure 2a for an example image. Half of the recordings

were made in Sweden, the other half in China.

There are three recordings for each person, one for cali-

bration and two for test. From each recording, we extract 45

images, evenly distributed over gaze targets. The calibration

recordings have gaze targets on a regular 3 × 3 lattice. For

the test recordings, the screen was divided into a 3 × 4 grid

and a gaze target was placed randomly in each grid cell.

The screen brightness was also randomized. For testing, we

first calibrate on the calibration recording and then report

the error on the two test recordings. As the setup was quite

controlled, we believe head yaw angles were on the order of

10°.

4.2. RGB datasets

GazeCapture [11] contains 1.5 M images from 1471 per-

sons, collected on iPhones and iPads. It does not provide

camera calibrations. To apply SPAZE, we assume that all

cameras have a horizontal field-of-view of 54.4° [1] and that

the principal point is always in the middle of the image. As

the eye detections are poor, we increase the area viewed

by our eye images by 50 %. For testing, we use those 105

persons in the test set having at least 756 images. We report

the same error metric as Krafka et al., the on-screen miss

distance, since GazeCapture does not provide the 3D data

needed to compute angles.

MPIIGaze [21] is a widely used benchmark for gaze esti-

mation. It consists of webcam images from 15 persons. We

used the MPIIFaceGaze [24] subset, which has around 2500

images per person.

We adopt the experimental protocol of FAZE [14] where

the last 500 images for each person are used for evaluation

and k calibration samples are drawn randomly from the

remaining images. For each k, we adaptively control the

total number of trials to keep the uncertainty in the final

error below 0.01°.2 For cross-dataset evaluation, we train on

the training set of GazeCapture and test on MPIIGaze. For

within-dataset evaluation, we perform leave-one-out training

on MPIIGaze.

2The mean error is based on about 13 k individual calibrations for k=1,

down to 150 calibrations for k=256.

5. Experiments

While we minimize the gaze ray miss distance, we report

the error as an angle for easier comparison with previous

works. Since we estimate a 3D gaze ray, we compute the

angle as follows: Let ET be the line through the true (an-

notated) 3D eye center and the 3D gaze target. Then we

find the point G on the gaze ray g(t) where the line GT

is orthogonal to ET. We measure the error as the angle

between ET and EG.

In some figures, we show shaded bands around the mean

value. These show the consistency of the calibration, how

much a user can expect the mean error to vary between

repeated calibrations.3

5.1. Number of calibration parameters

We vary the number of calibration parameters (N ), see

Figure 4. In all cases, there is little improvement beyond

3 parameters. In (b) and (d), we see that fewer parameters

are generally better for few calibration samples, which is ex-

pected since the low dimensionality provides regularization.

We use N=3 in all subsequent experiments.

For the NIR dataset, (a), we found that calibration shifts

the whole error distribution downwards. Specifically, any

error quantile is reduced by a factor of 2.5. This suggests that

personal variations are a dominating factor throughout the er-

ror distribution. Our calibrated mean error on the NIR dataset

is 0.79° degrees (uncalibrated 1.85°), which compares well

with multi-camera, multi-illuminator systems [8, 4].

The improvement from N=2 to N=3 is much larger

for GazeCapture-to-MPIIGaze, (c), than for within-dataset

testing, (b) and (d). Looking closer at the GazeCapture re-

sults, we found that changing N=2 to N=3 mostly affected

the error for tablets (21.0mm → 17.0mm), while phones

remained similar (12.5mm → 12.3mm). Tablets generate

larger gaze angles than phones, but tablets are a minority in

GazeCapture. We suspect that with N=2, the network is

forced to choose between offset and scaling (see Section 6).

For small gaze angles, like on phones, offset might be more

important than scaling. But for MPIIGaze, which has larger

gaze angles, scaling might be more important than offset.

5.2. Comparison with state­of­the­art

We compare SPAZE with FAZE [14], a state-of-the-art

method for calibrated appearance-based gaze tracking. To

closer match the FAZE experimental protocol, we form a

single gaze ray by averaging the origins and directions of the

two individual gaze rays generated by our network.

See Figure 5 for the comparison with FAZE. Within-

MPIIGaze training does not work well with FAZE, while

3The one-sided band width is

√

1
M

∑M
m=1 Var(µm) where

{µm}Mm=1 is the random variable of the mean error for each person. The

randomness comes from the random selection of calibration samples.
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(c) GazeCapture-to-MPIIGaze
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Figure 4: Comparison of different numbers of calibration parameters (N ).
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Figure 5: MPIIGaze. Comparison with FAZE.

SPAZE performs equally well within MPIIGaze and trans-

ferred from GazeCapture to MPIIGaze. Looking at only the

FAZE GazeCapture-to-MPIIGaze results, the two methods

have similar uncalibrated performance, but SPAZE has a bet-

ter mean error for k > 3. For k=9, we improve from 3.14°

to 2.70°. FAZE has better consistency throughout, especially

for small k. This consistency seems to come at the cost of

underfitting. SPAZE does not consider the a priori likelihood

Method Samples (k) Their (°) Our (°)

Diff-NN [12] 9 4.67 2.94 ± 0.22

GazeML [16] 20 4.6 2.82 ± 0.09

RedFTAdap [20]

1 4.97 4.12 ± 1.48

5 4.20 3.16 ± 0.42

9 4.01 2.94 ± 0.22

GazeNet+ [25] 2500 2.5 2.76 ± 0.00

Table 1: Comparison of SPAZE with other calibrated meth-

ods on MPIIGaze. SPAZE is evaluated using the experimen-

tal protocol of the compared method.

of the calibration parameters, it just drives the empirical

calibration error as low as possible. This results in large

variations for small k.

We also compare SPAZE with some other calibrated meth-

ods, see Table 1. SPAZE outperforms the other methods,

approaching the performance of GazeNet+, which trains a

person-specific network on 2500 images. Another advan-
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tage of SPAZE over most other methods is the absence of

hyper-parameters; there is no learning rate or early stop-

ping to tune. The calibration optimization uses the standard

BFGS optimizer, operating on 2 × 3 parameters, and drives

the calibration error to a local minima. Since only the fully

connected layers depend on the calibration parameter, the

calibration optimization does not need to evaluate the expen-

sive convolutional layers, resulting in a fast calibration.

5.3. Distance correction

To validate our use of a distance correction derived from

the two eye images and the face image, we perform an ab-

lation study where we: 1) completely disable the distance

correction and only use the rough distance from the eye de-

tections, 2) estimate a per-eye distance correction, using only

the image of that eye and 3) remove the face image input.

The results in Figure 6 show that our method is superior to

the alternatives. Note that we do not want to feed the image

of one eye to the network that is estimating the gaze direction

of the other eye, to ensure separate estimates for the two

eyes. The difference in performance with and without the

distance correction is much smaller with calibration (0.59°)

than without calibration (1.43°). This can be explained as

follows: Even if the network cannot explicitly change the

distance estimate, it can compensate for a flawed distance

estimate by changing the gaze angle (see the supplementary

material). This is why a per-eye distance correction performs

similarly to no distance correction. Estimating the distance

from a single eye image is more difficult than estimating

the distance from both eye images (and the face image).

Calibration can alleviate this difficulty by providing person-

specific information on how to estimate the distance from

the single eye image.

6. Low-dimensional parameter space for cali-

bration: the case of model-based methods

To understand why it is reasonable to model personal vari-

ations as a low-dimensional latent parameter space, it helps

to look at a typical model-based method for gaze tracking.

Here we will review the eye model described by Guestrin and

Eizenman [7]. For a comprehensive review of model-based

methods, we refer to [8].

We will describe a gaze mapping model called pupil-

center/corneal-reflection (PCCR). Assume a system with

one camera and a collocated illuminator. Further assume we

know the distance to the eye, from head pose estimation, a

second stereo camera or some other method.

Image processing methods detect the corneal reflection,

the glint, from the illuminator. The center of the pupil is also

detected. The difference between these two points forms

the pupil-center/corneal-reflection vector. If the cornea is

assumed to be spherical, the cornea center lies directly be-

hind the glint. The optical axis, a line passing through the

cornea center and the pupil center, can then be computed if

the distance between the person’s cornea center and pupil

center is known. This distance is one calibration parameter.

However, the optical axis is not the visual axis, the per-

son’s line of gaze. The fovea, the most sensitive part of the

retina, is offset from the optical axis, and this offset, in two

dimensions, differs from person to person.

Taken together, we have three parameters per eye for

each person. The foveal offset roughly corresponds to shift-

ing the gaze up-and-down and side-to-side, and the cornea-

center/pupil-center distance scales the gaze around the opti-

cal axis.

Over the three datasets, NIR, GazeCapture and MPIIGaze,

GazeCapture sees the least improvement from calibration,

and the NIR dataset sees the greatest. The former also has

the worst images, while the latter has the best. We do not

believe that this is a coincidence. As measurement errors

in the images decrease, the mismatch between a generic

gaze tracking model and a specific person’s eye geometry

becomes the dominant source of errors.

7. Conclusions

We have presented SPAZE, a method for calibrated

appearance-based gaze tracking. SPAZE achieves state-of-

the-art results on MPIIGaze and is as accurate as model-

based gaze tracking on high-resolution, near-infrared image.

Our results show that accurate gaze tracking is possible with-

out a separate head pose estimator. Our results also show

that personal variations are well-modeled as a 3-dimensional

latent parameter space for each eye.
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