
Rethinking Task and Metrics of Instance Segmentation on 3D Point Clouds

Kosuke Arase1, Yusuke Mukuta1,2, Tatsuya Harada1,2

1The University of Tokyo 2RIKEN AIP

{arase,mukuta,harada}@mi.t.u-tokyo.ac.jp

Abstract

Instance segmentation on 3D point clouds is one of the

most extensively researched areas toward the realization of

autonomous cars and robots. Certain existing studies have

split input point clouds into small regions such as 1m×1m;

one reason for this is that models in the studies cannot con-

sume a large number of points because of the large space

complexity. However, because such small regions occasion-

ally include a very small number of instances belonging to

the same class, an evaluation using existing metrics such

as mAP is largely affected by the category recognition per-

formance. To address these problems, we propose a new

method with space complexity O(Np) such that large re-

gions can be consumed, as well as novel metrics for tasks

that are independent of the categories or size of the inputs.

Our method learns a mapping from input point clouds to an

embedding space, where the embeddings form clusters for

each instance and distinguish instances using these clus-

ters during testing. Our method achieves state-of-the-art

performance using both existing and the proposed metrics.

Moreover, we show that our new metric can evaluate the

performance of a task without being affected by any other

condition.

1. Introduction

3D environment recognition has been extensively re-

searched toward the realization of autonomous cars and

robots. In particular, instance segmentation, the task of

not only labeling each point but also distinguishing each in-

stance belonging to the same class, is one of the key tasks to

such realization. Instance segmentation is challenging be-

cause the number of instances is not fixed, and thus, meth-

ods for categorical classification cannot be directly applied.

Although there are several typical 3D data representations

such as voxels, meshes, and point clouds, in this study, we

focus on point clouds, which can be obtained directly from

depth sensors such as Light Detection and Ranging (Li-

DAR).

The instance segmentation model learns the mapping

from each input point to the semantics of the corresponding

point. When evaluating the instance segmentation model,

the pairing of a prediction and a ground truth is consid-

ered true positive when the intersection over union (IoU)

between them is higher than the threshold. In many cases,

semantic segmentation can be solved simultaneously, and

thus, the important issue is distinguishing objects in the

same category.

There have been many studies on instance segmentation,

where the input point clouds have been split into small re-

gions such as 1m square [21,22]; however, conducting eval-

uations on such small regions is somewhat complicated.

One solution is first merging small regions into one entire

scene prediction and then evaluating the entire scene [22].

However, the final result is largely affected by the merging

algorithm, and it is difficult to evaluate the pure instance

segmentation performance.

Another way is evaluating the instance segmentation in

small regions [21]; however, this is not desirable owing to

the following reason. As shown in Figure 1, small regions

often contain only one instance for a certain category, and

in such cases, the resulting semantic segmentation is suffi-

cient for instance segmentation because it is not necessary

to distinguish objects belonging to the same class. When

the input regions are too small and there is only one object

in each region, it is unnecessary to distinguish the object,

and thus, instance segmentation does not have to be con-

ducted. Conversely, when there are many objects belonging

to the same class, it is necessary to consume larger regions

in order to evaluate an instance segmentation. Consuming

large regions is also challenging because it is necessary to

consume a large number of points to avoid a sparse input,

which decreases the performance of certain models includ-

ing PointNet [15, 16]. Handling dense point clouds is also

helpful in the application of instance segmentation. How-

ever, as an example, the Similarity Group Proposal Net-

work (SGPN) [22] calculates the similarities for each pair

of points and its space complexity is O(N2
p ) for Np number

of points, which makes it difficult to consume large point

clouds. Thus, a memory efficient method is required.

Moreover, there are certain problems in existing metrics.



(a) 1m×1m (b) 3m×3m (c) 6m×6m

Figure 1. Objects within grids for various grid sizes (S3DIS [1], Area 6, Office 29)

The method in [22] was evaluated using the mean average

precision (mAP), which has a characteristic in that the effect

of false positives with low confidence scores is small. Al-

though this property is appropriate for tasks such as object

detection where multiple candidates with overlaps are al-

lowed, or retrieval where the rank of the output is important,

this property is not suitable for instance segmentation. Be-

cause outputs are objects without an overlap for each point,

we need to equally evaluate the outputs of each point re-

gardless of the confidence score. In addition, when evaluat-

ing instance segmentation, we focus on whether two objects

are properly distinguished, and whether one object is incor-

rectly split. However, these failures cannot be distinguished

from a misclassification when performing evaluations using

existing metrics, and a misclassification is often the main

factor of decreasing mAP.

In this study, we first experimentally show our claim that

evaluating instance segmentation in small regions with ex-

isting metrics is inappropriate and reveal the problem using

metrics that has not been investigated in previous studies.

Then, we propose a novel instance segmentation method

with small space complexity that enables the consumption

of large regions.Our loss function learns a one-to-one map-

ping from an input feature space to an embedding space,

where embeddings from the same instance form a cluster,

and we can distinguish instances by clustering at the test

time. Because our method does not have to handle point

pairs, the space complexity is O(N) and is scalable to the

number of points. We show that the proposed memory effi-

cient method outperforms other state-of-the-art methods.

In addition, we demonstrate that consuming small re-

gions and evaluating them by using existing metrics is not

appropriate. This fact has been overlooked by previous re-

search, so we propose a novel metric that can evaluate it

correctly for the first time. Our metric is based on inclu-

sion, which is the relationship of one set being a subset of

another. Using the proposed metric, we can evaluate the

pure performance regardless of the size of the regions, cate-

gories, or confidence scores. We can also analyze the types

of errors quantitatively.

We conducted extensive experiments to reveal the effect

of the size of the regions and the density of the points on the

instance segmentation performance and showed that con-

suming a large number of points increases the performance

for large regions.

The key contributions of this study are as follows:

• We propose a new loss function that learns to push em-

beddings for each instance to be clustered and is scal-

able to the number of points; we also experimentally

demonstrated that the proposed method outperforms

existing methods.

• We reveal the problems associated with existing met-

rics, including the fact that they are affected by the size

of inputs or categories, which have been overlooked in

previous research.

• We propose a novel metric that is not affected by these

factors and can evaluate instance segmentation perfor-

mance correctly.

2. Related Work

2.1. Feature Extraction on 3D Point Clouds

The effective handling of point clouds is challenging be-

cause they are unordered, non-uniformly distributed data.

Methods to extract features from point clouds can be

roughly classified into two approaches, namely, describing

local features [18, 19] and describing relationships among

multiple points [2, 6].

PointNet [15], which addresses the problem of un-

ordered data by using symmetric functions, and PointNet++

[16], which stacks PointNets and is able to handle local fea-

tures, have made recent breakthroughs in deep learning on

point clouds. We use PointNet and PointNet++ as feature

extractors in this study.

2.2. Instance Segmentation

Segmentation is a task of labeling each minimum ele-

ment in the data such as a pixel or point. In particular, label-

ing the category of each element and distinguishing objects



belonging to the same category are called instance segmen-

tation against semantic segmentation.

2D Images Many studies on instance segmentation on

images have been recently published [4, 5, 8, 12–14], and

Novotny et al. [14] classified instance segmentation into

two approaches, propose & verify (P&V) and instance col-

oring (IC). P&V is an approach that first proposes candi-

dates of objects based on their objectness and then verifies

whether an object is a candidate. This is currently a popular

approach in the field of object detection [17] and instance

segmentation [8] on images. Although P&V approaches

have achieved significant success in image segmentation,

they have weaknesses in that object candidates are approx-

imations of the object shapes, and a second-stage to refine

the candidates is necessary for segmentation, such as Mask

R-CNN [8], and thus, the network architecture tends to be

complex.

Approaches labeling an object identifier directly to each

pixel are called IC, and some studies have been conducted

in this area for image segmentation [5, 12, 14]. Brabandere

et al. [5] proposed a discriminative loss function that learns

a mapping to an embedding space where the embeddings

form clusters for each object. The loss function is simple

and efficient but has some shortcomings, as described in

Section 2.3.

We choose an IC-based approach because the architec-

ture tends to be simpler, and it is thus expected to be com-

putationally efficient.

3D Point Clouds SGPN [22] and deep functional dictio-

naries (DFD) [21] have tackled instance segmentation on

3D point clouds. SGPN first predicts similarities for every

pair of points that describes whether two points belong to

the same object and then merges points to instance propos-

als by considering a pair of points with a similarity higher

than a certain threshold as being contained in the same ob-

ject. Although it is a pioneering work of instance segmenta-

tion on points clouds, the space complexity of the similarity

matrix is proportional to the square of the number of points

and cannot handle too many points. We discuss this prob-

lem in Section 3.2. Thus, input scenes are split into 1m
square regions, and the results are then aggregated for each

region using a heuristic algorithm. However, the final per-

formance depends on the merging algorithm, as described

in Section 1, and applying the method for every small re-

gion is computationally inefficient.

Recently, Sung et al. [21] proposed a general method

called DFD that produces a dictionary of the probe func-

tions. The authors proposed a general framework that learns

a mapping from the shape to the dictionary. Each atom of

the dictionary can be associated with semantics, instances,

or something else based on the task and constraint. A per-

formance comparable to that of state-of-the-art techniques

was achieved on S3DIS, but the authors evaluated its per-

formance for each small region. Thus, this evaluation has

certain problems, as discussed in Section 1.

2.3. Embedding Learning

Our method performs instance segmentation by first

learning the feature embeddings for each point such that

the diameter of the embedding cluster corresponding to the

same object is small compared to the distance among clus-

ters from different objects; then, clustering is conducted in

the embedding space. Such a feature learning method that

trains the embedding to minimize the distance between em-

beddings with the same semantics while maximizing the

distance between embeddings with different semantics is

widely used in category classification [3, 23] and similar-

ity learning [11, 20]. This concept has been used for recent

instance segmentation studies on images such as those on

discriminative loss [5], [12]. Inspired by this, we propose

a novel instance segmentation method that overcomes the

discriminative loss problem.

Discriminative loss L consists of Lvar, which makes the

distance between points and centroids of the correspond-

ing cluster smaller than δv; Ldist, which makes the dis-

tance between cluster centroids larger than δd; and a regu-

larizer Lreg, which prevents the feature norms from diverg-

ing. Here, L is written as follows:

Lvar =
1

C

C
∑

c=1

1

Nc

Nc
∑

i=1

[‖µc − xi‖ − δv]
2
+ (1)

Ldist =
1

C(C − 1)

∑

cA �=cB

[2δd − ‖µcA
− µcB

‖]2+ (2)

Lreg =
1

C

C
∑

c=1

‖µc‖ (3)

L = Lsem + αLvar + βLdist + γLreg, (4)

where C denotes the number of clusters, and µc and Nc

are the centroid and number of points of cluster c, respec-

tively, xi is the embedding, Lsem is the softmax cross en-

tropy loss of the category classification, ‖·‖is the Euclidean

norm in the feature space, and [x]+ = max(0, x). When we

conduct instance segmentation, we apply clustering on the

learned embedding space. When we set δd ≥ δv and the

learned embedding space satisfies Lvar = Ldist = 0, we

can guarantee that all points whose distances from a point

are smaller than δv belong to the same object.

However, there are some drawbacks in this original for-

mulation of discriminative loss. First, it is difficult to select

the hyperparameter β, γ that balances the weights of Lreg

and Ldist. The optimization is hyperparameter-sensitive be-

cause Lreg attempts to reduce the distances between points



×

r

Ldist

×

2θ

ϕ

Lvar

Lvar

×

Figure 2. Overview of the proposed feature learning method. Each

point (•) represents one feature embedding, and the points with the

same color belong to the same object. The crosses (×) are cluster

centroids. As the training progresses, points with the same colors

move to a nearby spot and clusters move away from each other.

(i.e., make them closer), whereas Ldist attempts to increase

the distance between points (i.e., make them more distant).

Empirically, it turns out that γ should be about 100-times

smaller than α, β, and seeking such balance is an cumber-

some task. Moreover, when we concatenate the learned fea-

ture to other features such as the raw coordinates of a point,

we need to arrange the scale of the features such that both

features are effective for clustering. However, it is diffi-

cult to arrange the scale because the norms of the feature

are different among feature spaces. In contrast, when we

normalize each feature after we learn the feature space, we

cannot distinguish between points with the same unit vector

and a different norm.

In the following sections, we propose a novel embedding

method that solves these problems.

3. Method

3.1. Proposed Feature Embedding

In this section, we describe the proposed feature learning

method. As described in a previous section, Equation (2)

in L attempts to increase the distances between different

clusters while minimizing the norms of the feature using

Equation (3). Thus, L is sensitive to the hyperparameters β

and γ that balance these conflicting losses. Moreover, it is

difficult to combine a learned feature with other features for

clustering.

In this study, we overcome these difficulties by restrict-

ing the features to a unit hypersphere and the learning of the

feature space based on a cosine similarity instead of the Eu-

clidean loss. We present an overview of our method in Fig-

ure 2, where each point (•) represents one feature embed-

ding, points with the same color belong to the same object,

and the cross (×) indicates the cluster centroid. Moreover,

θ and φ satisfy δv = cos(θ) and δd < cos(φ), respectively.

Using the cosine similarity between two embeddings

xi,xj , which is calculated as s(xi,xj) =
xT

i xj

‖xi‖‖xj‖
, the

proposed loss function is written as follows:

Lvar =
1

C

C
∑

c=1

1

Nc

Nc
∑

i=1

[δv − s(µc,xi)]+ (5)

Ldist =
1

C(C − 1)

∑

cA �=cB

[s(µcA ,µcB )− δd]+ (6)

L = Lsem + αLvar + βLdist, (7)

where δd and δv satisfy δd ≪ δv ≈ 1 so that s(µc,xi)
becomes larger than s(µcA ,µcB ). In addition, we use the

absolute error of the [·]+ terms instead of the squared error

adopted in [5] because the norm of the [·]+ terms is smaller

than 1 and the squared errors become considerably smaller

when these terms are near zero.

When the angle between an embedding and its cluster

centroid is larger than θ, Lvar attempts to reduce the dis-

tance between the embedding and the centroid. In addi-

tion, Ldist attempts to increase distance between cluster

centroids when the cosine similarity is larger than δd. In an

image recognition study ( [12]), the feature was also learned

using the cosine similarity using a unit hypersphere. How-

ever, in that study, similarities between all pairs of points

were calculated, whereas our method only considers the

similarities between points and the corresponding cluster

centroids. Thus, our method is considerably more compu-

tationally effective.

Compared to [5], the advantages of our method are as

follows:

• We do not need to consider the scale of the feature

space and thus, we can omit Lreg and do not need to

consider the balance between β and γ.

• Because the embeddings are guaranteed to have a unit

norm, it is easy to combine the learned embeddings to

other features.

We learn the mapping from the feature space to the em-

bedding space by adding one fully connected layer.

3.2. Computational Complexity

In Section 2.2, we discussed the fact that one of the prob-

lems of the existing IC-based instance segmentation method

SGPN [22] is that it requires a large space complexity. Be-

cause our method and SGPN require only a few extra layers

in the feature extractor, and thus, the number of iterations

for training is nearly the same, we focus on analyzing the

detailed computation complexity of the loss functions of

SGPN and our method. In the following section, we de-

note the batch size as B, the number of points as Np, the

number of points in a cluster c as Nc, and the dimensions of

the input feature space and embedding space as df and de,



respectively. We also write the input and embedded features

of the i-th point as fi ∈ R
df and hi ∈ R

de , respectively.

In SGPN, the similarity Sij between the i-th and j-th

points is calculated as

Sij = ‖fi − fj‖ =
√

‖fi‖2 − 2fifj + ‖fj‖2. (8)

Because the method calculates Sij for all pairs of points, the

space complexity of the similarity matrix is O(BN2
pdf ). As

for the time complexity, because we need to evaluate ‖fi‖
2

for each i and fifj for each pair (i, j) to calculate Sij , the

time complexity is O(BN2
pdf ).

In contrast, the proposed loss function obtains de-

dimensional embedded features and calculates the cosine

similarity between each point and its cluster centroid, and

between each pair of cluster centroids. Therefore, the space

complexity for the embeddings of each point is O(BNpde),
and the computation complexity is O(B(Np + C2)de);
however, this order is equivalent to O(BNpde) because

C ≪ Np in most cases. Both complexities are linear in

Np. Because we use Np = 2n(n = 12, 13, 14), de = 25 in

the experiment, the proposed method can calculate the loss

function with a smaller space/time complexity than SGPN.

3.3. Clustering

We describe our feature learning method in Section 3.1.

In this section, we explain the clustering method applied to

the learned feature space to conduct instance segmentation.

The requirements for the clustering method are as fol-

lows:

• The number of clusters is variable.

• The clustering result is robust to outliers.

• The clustering does not fail even when the number of

points in each cluster has a large variety.

In this study, we adopt the density-based spatial cluster-

ing of applications with noise (DBSCAN) [7], which satis-

fies these requirements. DBSCAN is a density-based clus-

tering method that first calculates the densities of points

based on the number of neighboring points and then con-

structs clusters by considering a continuous region with a

density of above a certain threshold as a single cluster. The

number of clusters of the output of DBSCAN can vary, and

DBSCAN is robust to outliers because it accepts the noise

points that do not belong to any clusters.

We apply this clustering to the embeddings, which are

predicted as the same category. We concatenate the learned

embeddings using the normalized coordinates of the point

as the input for the clustering method. In addition, some

clusters consist of a very small number of points. Because

such clusters are false positive in most cases, we handle

such clusters as points in that they do not belong to any

cluster in the evaluation.
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Figure 3. Error patterns for instance segmentation

4. Evaluation Metrics

As described in Section 1, existing metrics of instance

segmentation are affected by the misclassification, the con-

fidence of prediction, and the size of the regions. Therefore,

we propose a novel evaluation metric that focuses on the

distinct ability of the objects regardless of the confidence or

semantics, and which can be used for any sized input region.

When we neglect semantic errors, we can observe four

patterns for each prediction output:

• There is a corresponding ground truth (GT) for the pre-

diction output (true positive (TP)).

• The prediction output covers some part of a GT (partial

detection (PD)).

• The prediction output contains more than one GT

(false merging (FM)).

• There is no corresponding GT (false positive (FP)).

Figure 3 shows a diagram of these four error patterns.

Note that one prediction output can fulfill more than one

of the patterns even though each point corresponds to ex-

actly one GT and one prediction. For example, one predic-

tion output, 90% of which is contained in a GT, can cover

other small GTs with the remaining 10%. In particular, PD

and FM are characteristics of instance segmentation.

To formulate these patterns, we define ”intersection over

a set (IoS)”, which describes the part of an object A that is

contained in an object B as follows:

IoS(A,B) =
N(A ∩B)

N(A)
(9)

where N(X) denotes the number of points in X , and ob-

ject A is considered to be contained in object B when

IoS(A,B) exceeds a certain threshold t. Note that IoS() is

an asymmetric function and A cannot be contained in more

than one object when we set t > 0.5.

Using this IoS, we can establish the proposed metrics as

follows. We first calculate a map from the GTs to the pre-

diction outputs (gt2pred) that describes which prediction



outputs are contained in each GT, and conversely calculate

a map from the prediction outputs to the GTs (pred2gt) that

describes which GTs are contained in each prediction. Note

that gt2pred and pred2gt are not exclusive. Then, we la-

bel each prediction for at least one of the patterns. As for

gt2pred, for each GT g, we can obtain a list of prediction

outputs corresponding to g (g2p). If a prediction p is on the

list that also contains g itself, p is considered as TP; other-

wise, p is considered as PD because p is a subset of g.

In contrast, for pred2gt, with each prediction output p,

we can obtain a list of GTs corresponding to p (p2g). If

a GT g on the list does not contain any data and p is not

labeled as PD in the last process, p is considered as FP. Oth-

erwise, if g also contains p itself, it must be labeled as TP in

the last process owing to its symmetry. Here, g, which does

not contain p, is considered as FM because g is a subset of

g in this case. We define the ratio of TP to the number of

predictions as precision and the ratio of TP to the number

of GTs as recall; we define the F-score as their harmonic

mean. We also evaluate the error patterns based on the ratio

of PD, FM, and FP to the number of predictions. Because

we ignore the semantic segmentation in the calculation, one

prediction output can be TP even if its predicted semantics

are incorrect. This proposed metric does not depend on the

semantics, confidence, or size of the input regions. There-

fore, we can evaluate the pure performance of the instance

segmentation. The procedure explained above can be writ-

ten as Algorithm 1.

Algorithm 1 Criteria for instance segmentation

1: procedure AggregateResults(GT , prediction P )

2: arr gt2pred[len(G)][] ⊲ map from GT to preds

3: arr pred2gt[len(P )][] ⊲ map from pred to GTs

4: for each g in G do

5: for each p in P do

6: if s(g ∩ p)/s(g) > t then ⊲ g is included in p
7: pred2gt.append(g)

8: if s(g ∩ p)/s(p) > t then ⊲ p is included in g
9: gt2pred.append(p)

10: Summarize(gt2pred, pred2gt)

11: procedure Summarize(gt2pred, pred2gt)
12: results[len(P )][] ⊲ 2D array to store predictions

13: for each g2p in gt2pred do

14: for each p in g2p do

15: if g in pred2gt[p] then

16: results[p].append(”TP”) ⊲ true positive

17: else

18: results[p].append(”PD”) ⊲ partial detection

19: for each p2g in pred2gt do

20: if len(p2g) == 0 and results[p] == [] then

21: results[p].append(”FP”) ⊲ false positive

22: for each g in p2g do

23: if p not in gt2pred[g] then

24: results[p].append(”FM”) ⊲ false merging

5. Experiments

In this section, we conduct experiments to compare our

method with existing methods in order to demonstrate its

effectiveness and to show that existing evaluation metrics

of instance segmentation in small regions are inappropriate.

We then clearly distinguish errors of misclassification and

splitting instances by using our proposed evaluation metric,

which cannot be achieved using existing evaluation metrics

such as mAP. Moreover, we evaluate the relationships be-

tween the size of the split regions and the instance segmen-

tation performance to validate our assumption that evaluat-

ing instance segmentation methods using existing evalua-

tion metrics for small regions is inappropriate.

5.1. Datasets and Setup

We use the Stanford large-scale 3D Indoor Spaces

Dataset (S3DIS) [1]. S3DIS consists of 270 indoor scenes

scanned from six areas and 13 objects. We use 203 scenes

for training and the remaining 67 scenes for evaluation.

Although PointNet++ [16] and SGPN [22] have been

used to evaluate methods by splitting the input scene hor-

izontally into small regions, such as 1m square regions, we

conducted additional experiments using larger regions as in-

put. This is because one of our aims is to construct a method

that can be applied to wide regions with a greater number of

points. During each training iteration, we randomly sample

subregions with a fixed size from each scene, and then ran-

domly sample a fixed number of points from the sampled

subregion as the input. In the following experiments, the

region size is 1m square, and the number of points is 4,096

unless otherwise noted. Each point has a nine-dimensional

normalized feature consisting of RGB values, relative co-

ordinates in the subregion, and absolute coordinates in the

room. For data augmentation, we apply random noise to

some of the input features.

The number of objects in the dataset differs significantly

among categories. For example, the number of objects of

the category with the largest number of objects is 55 times

as large as the number for the category with the smallest

number of objects. To eliminate the effect of this imbalance,

we weight the miscategorization cross-entropy loss as the

weight corresponding to the category with a small number

of points weighted as a large value.

Although we can apply our embedding learning method

to any feature extractors, we use PointNet (PN) [15] and

PointNet++ (PN++) [16] as feature extractors for our ex-

periments. We use 131-dimensional features consisting of

128-dimensional features extracted using the feature extrac-

tor and three-dimensional RGB features as the input for

feature embedding. The 131-dimensional features are then

passed through a fully connected layer, which produces 32-

dimensional embeddings.

We use the Adam [10] optimizer with an initial learning



rate of 0.001 and a batch size of 32. We train our network

for 6,000 steps, and the learning rate is divided by 10 at the

4,500th step. We set the hyperparameters for our method as

δv = 0.9, δd = 0.4, α = β = 0.5.

5.2. Evaluation on Existing Evaluation Metrics

In this section, we evaluate the proposed embedding

learning method using existing instance segmentation met-

rics. We compare our method with SGPN [22] and DFD

[21], which have been found to exhibit the highest accuracy

for this task. The scores for these two methods are reported

in [21].

Following [21], we chose the proposal recall [9] as the

evaluation metric and used PointNet as a feature extractor

for a fair comparison. The proposal recall is calculated as

follows: first, for each GT object, we select the predicted

object with the highest intersection over union (IoU) regard-

less of the category of the object and consider the output as

a true positive when the IoU is higher than a certain thresh-

old (we chose a value of 0.5). The ratio of the number of

true positives is then calculated with respect to the number

of GTs. Because the number of objects for each category is

unbalanced, we evaluated both the mean of the proposal re-

call of 12 categories, except the ’clutter’ class (mean), and

the overall proposal recall regardless of the categories (to-

tal). Note that the overall proposal recall (total) can be high

even if the model overfits some of the categories with many

instances and ignores the categories with fewer instances,

and thus, it may not be reliable. However, DFD, which

does not use category information for training, cannot solve

the imbalance problem between categories, and thus, it was

necessary to add the total proposal recall.

Moreover, to validate our argument that instance seg-

mentation on small regions is a substantially semantic seg-

mentation because there is often only one instance in the re-

gion, we also evaluated the result obtained using semantic

segmentation model (SemSeg), which never splits objects

belonging to the same category. We also report the score

obtained when using PointNet++ (PN++) instead of PN as

the feature extractor; however, we do not compare PN++

with PN as it would not make for a fair comparison.

Table 1 shows a comparison of our methods with exist-

ing methods as well as the obtained semantic segmentation

results. We can see that our method with PointNet (PN)

outperforms existing methods in terms of the mean pro-

posal recall by a large margin, and the use of PointNet++

leads to a considerably better score. As described earlier,

DFD achieves a high total score; however, its mean score

is low, which means that the model ignores categories with

fewer instances. In addition, for some categories such as a

ceiling, floor, and beam, a mere semantic segmentation re-

sult achieves a very high score because there is essentially

only one instance of such categories. This result supports
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Figure 4. Comparison of our method and [21] using the proposed

evaluation metrics

our argument that semantic segmentation results affect the

instance segmentation performance, and an evaluation in

small regions using existing metrics is inappropriate.

5.3. Evaluation of the Proposed Evaluation Metrics

We then evaluated our method with DFD, which outper-

forms SGPN, using the proposed evaluation metrics. Some

predicted objects consist of a very small number of points.

Because such predicted objects are often false positives, we

set a threshold and use the predicted objects with a number

of points larger than the threshold as the targets for eval-

uation. There is a trade-off between precision and recall,

which we introduced in Section 4. As the threshold de-

creases, precision decreases while recall increases. We fix

t = 0.75 for the IoS defined by Equation 9 and search for

the threshold that can obtain the highest F-score. As a re-

sult, we use a threshold of 150 for the DFD and 35 for our

method. The DFD shows a larger threshold, which implies

that it outputs noisy small predicted objects that are false

positives.

Furthermore, as discussed in Section 5.2, the output of

the semantic segmentation model (SemSeg), which never

splits objects belonging to the same category, achieves high

scores using the existing metrics for instance segmentation.

This occurs in some categories in which multiple objects

seldom exist in a single subregion. We evaluated the results

of semantic segmentation using our evaluation metrics to

demonstrate whether this problem was solved.

We plot the results when varying t of IoS from 0.5 to 0.95

in Figure 4. Note that precision, recall, and f1-score eval-

uate performance, whereas partial detection, false merging,

and false positive represent types of mistakes. We can see

that, although the semantic segmentation model shows a

high score for the existing metrics, specifically for recall,

the false merging score is quite high. This is because se-

mantic segmentation outputs one prediction per category

at most; this is why the partial detection of the semantic

segmentation model is low. To the best of our knowledge,



Table 1. Comparison with existing methods ( [21, 22]) by proposal recall [%]

method
ceil-

floor wall beam
col- win-

door table chair sofa
book-

board mean total
ing umn dow case

SGPN [22] 67.0 71.4 66.8 54.5 45.4 51.2 69.9 63.1 67.6 64.0 54.4 60.5 61.3 64.7

DFD [21] 95.4 99.2 77.3 48.0 39.2 68.2 49.2 56.0 53.2 35.3 31.6 42.2 57.9 69.1

SemSeg 95.8 95.2 61.7 89.3 50.0 76.6 65.7 60.2 44.1 16.6 40.6 45.6 61.8 59.4

Ours (PN) 95.9 94.6 64.5 89.3 61.3 83.3 75.0 64.0 55.0 70.8 55.6 50.8 71.7 68.8

Ours (PN++) 96.2 94.1 65.6 87.8 71.4 81.0 82.6 68.8 60.9 68.4 63.2 67.2 75.6 72.7
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Figure 5. Effect of region size and number of points

this fact is revealed by the proposed metrics for the first

time. We can also observe fine patterns and the property

of instance segmentation errors when eliminating semantic

errors, which cannot be obtained using existing evaluation

metrics. For example, for DFD, most errors arise from par-

tial detection whereas false merging is the dominant cause

in our method. Such information is useful not only for an-

alyzing and improving the model but also for applying an

ensemble of models when considering the characteristics of

each model.

5.4. Effect of Region Size and Number of Points

In this section, we analyze the effects of the input re-

gion size and the number of points.We varied the number

of points from 4,096 to 16,384 and the size of the regions

from 1m square from 4m square. Note that the instance

segmentation results can be also affected by the density of

the points. The settings with 1,024 points and 1m square,

4,096 points and 2m square, and 16,384 points with 4m
square have the same density.

Figure 5 shows the proposal recall and the F-score values

for each setting. Even if the density is the same, the score

of the instance segmentation decreases with the size of the

region. As discussed in Section 1, when the input region is

small, we do not need to distinguish the objects because the

number of different objects of the same category is small.

Therefore, the task becomes difficult as the input region in-

creases and the apparent score decreases. In particular, the

F1 score of DFD is significantly decreased compared with

the proposal recall; one reason for this is that the proposal

recall does not penalize false positives and cannot reveal the

weakness of the DFD model that the instance segmentation

results are quite noisy. Moreover, the figure shows that the

density of points does not considerably affect the instance

segmentation performance.

Although we can apply instance segmentation on en-

tire scenes by first applying instance segmentation on each

subregion and then integrating the results through a post-

processing technique, this approach has a significantly high

computational complexity because we need to repeat in-

stance segmentation on each subregion, making it unsuit-

able for practical use. Moreover, choosing an appropriate

subregion size is difficult, and an integration procedure can

add noise to the final result. Therefore, it is desirable to

use as large a region as possible for the input. However,

this figure implies that the instance segmentation task be-

comes significantly difficult when the input size is large,

this difficulty has not been adequately investigated in exist-

ing works. Handling large regions, such as an entire scene,

is a challenging task; however, it is of great importance in

the application of instance segmentation.

6. Conclusion

We proposed a new method for instance segmentation on

3D point clouds. Our memory efficient loss function learns

mapping to the embedding space, where the embeddings

form clusters for each object. We experimentally showed

that our method outperforms existing methods. Our method

can handle a large number of points and performs well even

when consuming large regions. Moreover, we claimed and

experimentally demonstrated that existing metrics are not

suitable for evaluating instance segmentation because they

are considerably affected by the input size of the misclassi-

fication. We proposed novel metrics that are unaffected by

such external conditions and can aid in evaluating instance

segmentation performances correctly. Using the proposed

metrics, we not only evaluated the instance segmentation

task without being affected by external conditions but also

analyzed the types of errors in an instance segmentation task

for each method.
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