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Abstract

Instance segmentation on 3D point clouds is one of the
most extensively researched areas toward the realization of
autonomous cars and robots. Certain existing studies have
split input point clouds into small regions such as 1 mx1m;
one reason for this is that models in the studies cannot con-
sume a large number of points because of the large space
complexity. However, because such small regions occasion-
ally include a very small number of instances belonging to
the same class, an evaluation using existing metrics such
as mAP is largely affected by the category recognition per-
formance. To address these problems, we propose a new
method with space complexity O(N,) such that large re-
gions can be consumed, as well as novel metrics for tasks
that are independent of the categories or size of the inputs.
Our method learns a mapping from input point clouds to an
embedding space, where the embeddings form clusters for
each instance and distinguish instances using these clus-
ters during testing. Our method achieves state-of-the-art
performance using both existing and the proposed metrics.
Moreover, we show that our new metric can evaluate the
performance of a task without being affected by any other
condition.

1. Introduction

3D environment recognition has been extensively re-
searched toward the realization of autonomous cars and
robots. In particular, instance segmentation, the task of
not only labeling each point but also distinguishing each in-
stance belonging to the same class, is one of the key tasks to
such realization. Instance segmentation is challenging be-
cause the number of instances is not fixed, and thus, meth-
ods for categorical classification cannot be directly applied.
Although there are several typical 3D data representations
such as voxels, meshes, and point clouds, in this study, we
focus on point clouds, which can be obtained directly from
depth sensors such as Light Detection and Ranging (Li-
DAR).

The instance segmentation model learns the mapping

from each input point to the semantics of the corresponding
point. When evaluating the instance segmentation model,
the pairing of a prediction and a ground truth is consid-
ered true positive when the intersection over union (IoU)
between them is higher than the threshold. In many cases,
semantic segmentation can be solved simultaneously, and
thus, the important issue is distinguishing objects in the
same category.

There have been many studies on instance segmentation,
where the input point clouds have been split into small re-
gions such as 1 m square [21,22]; however, conducting eval-
uations on such small regions is somewhat complicated.

One solution is first merging small regions into one entire
scene prediction and then evaluating the entire scene [22].
However, the final result is largely affected by the merging
algorithm, and it is difficult to evaluate the pure instance
segmentation performance.

Another way is evaluating the instance segmentation in
small regions [21]; however, this is not desirable owing to
the following reason. As shown in Figure 1, small regions
often contain only one instance for a certain category, and
in such cases, the resulting semantic segmentation is suffi-
cient for instance segmentation because it is not necessary
to distinguish objects belonging to the same class. When
the input regions are too small and there is only one object
in each region, it is unnecessary to distinguish the object,
and thus, instance segmentation does not have to be con-
ducted. Conversely, when there are many objects belonging
to the same class, it is necessary to consume larger regions
in order to evaluate an instance segmentation. Consuming
large regions is also challenging because it is necessary to
consume a large number of points to avoid a sparse input,
which decreases the performance of certain models includ-
ing PointNet [15, 16]. Handling dense point clouds is also
helpful in the application of instance segmentation. How-
ever, as an example, the Similarity Group Proposal Net-
work (SGPN) [22] calculates the similarities for each pair
of points and its space complexity is O(N7) for N, number
of points, which makes it difficult to consume large point
clouds. Thus, a memory efficient method is required.

Moreover, there are certain problems in existing metrics.
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Figure 1. Objects within grids for various grid sizes (S3DIS [1], Area 6, Office 29)

The method in [22] was evaluated using the mean average
precision (mAP), which has a characteristic in that the effect
of false positives with low confidence scores is small. Al-
though this property is appropriate for tasks such as object
detection where multiple candidates with overlaps are al-
lowed, or retrieval where the rank of the output is important,
this property is not suitable for instance segmentation. Be-
cause outputs are objects without an overlap for each point,
we need to equally evaluate the outputs of each point re-
gardless of the confidence score. In addition, when evaluat-
ing instance segmentation, we focus on whether two objects
are properly distinguished, and whether one object is incor-
rectly split. However, these failures cannot be distinguished
from a misclassification when performing evaluations using
existing metrics, and a misclassification is often the main
factor of decreasing mAP.

In this study, we first experimentally show our claim that
evaluating instance segmentation in small regions with ex-
isting metrics is inappropriate and reveal the problem using
metrics that has not been investigated in previous studies.
Then, we propose a novel instance segmentation method
with small space complexity that enables the consumption
of large regions.Our loss function learns a one-to-one map-
ping from an input feature space to an embedding space,
where embeddings from the same instance form a cluster,
and we can distinguish instances by clustering at the test
time. Because our method does not have to handle point
pairs, the space complexity is O(N) and is scalable to the
number of points. We show that the proposed memory effi-
cient method outperforms other state-of-the-art methods.

In addition, we demonstrate that consuming small re-
gions and evaluating them by using existing metrics is not
appropriate. This fact has been overlooked by previous re-
search, so we propose a novel metric that can evaluate it
correctly for the first time. Our metric is based on inclu-
sion, which is the relationship of one set being a subset of
another. Using the proposed metric, we can evaluate the
pure performance regardless of the size of the regions, cate-
gories, or confidence scores. We can also analyze the types
of errors quantitatively.

We conducted extensive experiments to reveal the effect
of the size of the regions and the density of the points on the
instance segmentation performance and showed that con-
suming a large number of points increases the performance
for large regions.

The key contributions of this study are as follows:

e We propose a new loss function that learns to push em-
beddings for each instance to be clustered and is scal-
able to the number of points; we also experimentally
demonstrated that the proposed method outperforms
existing methods.

e We reveal the problems associated with existing met-
rics, including the fact that they are affected by the size
of inputs or categories, which have been overlooked in
previous research.

e We propose a novel metric that is not affected by these
factors and can evaluate instance segmentation perfor-
mance correctly.

2. Related Work
2.1. Feature Extraction on 3D Point Clouds

The effective handling of point clouds is challenging be-
cause they are unordered, non-uniformly distributed data.

Methods to extract features from point clouds can be
roughly classified into two approaches, namely, describing
local features [18, 19] and describing relationships among
multiple points [2, 6].

PointNet [15], which addresses the problem of un-
ordered data by using symmetric functions, and PointNet++
[16], which stacks PointNets and is able to handle local fea-
tures, have made recent breakthroughs in deep learning on
point clouds. We use PointNet and PointNet++ as feature
extractors in this study.

2.2. Instance Segmentation

Segmentation is a task of labeling each minimum ele-
ment in the data such as a pixel or point. In particular, label-
ing the category of each element and distinguishing objects



belonging to the same category are called instance segmen-
tation against semantic segmentation.

2D Images Many studies on instance segmentation on
images have been recently published [4, 5, 8, ], and
Novotny et al. [14] classified instance segmentation into
two approaches, propose & verify (P&V) and instance col-
oring (IC). P&V is an approach that first proposes candi-
dates of objects based on their objectness and then verifies
whether an object is a candidate. This is currently a popular
approach in the field of object detection [17] and instance
segmentation [8] on images. Although P&V approaches
have achieved significant success in image segmentation,
they have weaknesses in that object candidates are approx-
imations of the object shapes, and a second-stage to refine
the candidates is necessary for segmentation, such as Mask
R-CNN [8], and thus, the network architecture tends to be
complex.

Approaches labeling an object identifier directly to each
pixel are called IC, and some studies have been conducted
in this area for image segmentation [5, 12, 14]. Brabandere
et al. [5] proposed a discriminative loss function that learns
a mapping to an embedding space where the embeddings
form clusters for each object. The loss function is simple
and efficient but has some shortcomings, as described in
Section 2.3.

We choose an IC-based approach because the architec-
ture tends to be simpler, and it is thus expected to be com-
putationally efficient.

3D Point Clouds SGPN [22] and deep functional dictio-
naries (DFD) [21] have tackled instance segmentation on
3D point clouds. SGPN first predicts similarities for every
pair of points that describes whether two points belong to
the same object and then merges points to instance propos-
als by considering a pair of points with a similarity higher
than a certain threshold as being contained in the same ob-
ject. Although it is a pioneering work of instance segmenta-
tion on points clouds, the space complexity of the similarity
matrix is proportional to the square of the number of points
and cannot handle too many points. We discuss this prob-
lem in Section 3.2. Thus, input scenes are split into 1 m
square regions, and the results are then aggregated for each
region using a heuristic algorithm. However, the final per-
formance depends on the merging algorithm, as described
in Section 1, and applying the method for every small re-
gion is computationally inefficient.

Recently, Sung et al. [21] proposed a general method
called DFD that produces a dictionary of the probe func-
tions. The authors proposed a general framework that learns
a mapping from the shape to the dictionary. Each atom of
the dictionary can be associated with semantics, instances,
or something else based on the task and constraint. A per-

formance comparable to that of state-of-the-art techniques
was achieved on S3DIS, but the authors evaluated its per-
formance for each small region. Thus, this evaluation has
certain problems, as discussed in Section 1.

2.3. Embedding Learning

Our method performs instance segmentation by first
learning the feature embeddings for each point such that
the diameter of the embedding cluster corresponding to the
same object is small compared to the distance among clus-
ters from different objects; then, clustering is conducted in
the embedding space. Such a feature learning method that
trains the embedding to minimize the distance between em-
beddings with the same semantics while maximizing the
distance between embeddings with different semantics is
widely used in category classification [3, 23] and similar-
ity learning [11,20]. This concept has been used for recent
instance segmentation studies on images such as those on
discriminative loss [5], [12]. Inspired by this, we propose
a novel instance segmentation method that overcomes the
discriminative loss problem.

Discriminative loss L consists of L., which makes the
distance between points and centroids of the correspond-
ing cluster smaller than §,; Lgis, which makes the dis-
tance between cluster centroids larger than d4; and a regu-
larizer Ly¢g, which prevents the feature norms from diverg-
ing. Here, L is written as follows:

C N,

var - Z Z HIJ’C - wz” - ] (1)
1 2
Ldlbt = C(C 1) Z [2611 - ||I'I’CA - IJ’CBH]Jr (2)
caF#ce
1
Lreg = 6 Z H/Jtc” (3)
c=1

L= Lsem + aLvar + BLdist + ryLrega (4)

where C' denotes the number of clusters, and p. and N,
are the centroid and number of points of cluster ¢, respec-
tively, x; is the embedding, Lgep, is the softmax cross en-
tropy loss of the category classification, || - ||is the Euclidean
norm in the feature space, and [z]; = max(0, z). When we
conduct instance segmentation, we apply clustering on the
learned embedding space. When we set ; > §, and the
learned embedding space satisfies L., = Lgist = 0, we
can guarantee that all points whose distances from a point
are smaller than 4, belong to the same object.

However, there are some drawbacks in this original for-
mulation of discriminative loss. First, it is difficult to select
the hyperparameter 3, that balances the weights of L,g
and Lgjs¢. The optimization is hyperparameter-sensitive be-
cause L., attempts to reduce the distances between points



Figure 2. Overview of the proposed feature learning method. Each
point (e) represents one feature embedding, and the points with the
same color belong to the same object. The crosses () are cluster
centroids. As the training progresses, points with the same colors
move to a nearby spot and clusters move away from each other.

(i.e., make them closer), whereas Lg;s¢ attempts to increase
the distance between points (i.e., make them more distant).
Empirically, it turns out that v should be about 100-times
smaller than «, 5, and seeking such balance is an cumber-
some task. Moreover, when we concatenate the learned fea-
ture to other features such as the raw coordinates of a point,
we need to arrange the scale of the features such that both
features are effective for clustering. However, it is diffi-
cult to arrange the scale because the norms of the feature
are different among feature spaces. In contrast, when we
normalize each feature after we learn the feature space, we
cannot distinguish between points with the same unit vector
and a different norm.

In the following sections, we propose a novel embedding
method that solves these problems.

3. Method
3.1. Proposed Feature Embedding

In this section, we describe the proposed feature learning
method. As described in a previous section, Equation (2)
in L attempts to increase the distances between different
clusters while minimizing the norms of the feature using
Equation (3). Thus, L is sensitive to the hyperparameters /3
and -y that balance these conflicting losses. Moreover, it is
difficult to combine a learned feature with other features for
clustering.

In this study, we overcome these difficulties by restrict-
ing the features to a unit hypersphere and the learning of the
feature space based on a cosine similarity instead of the Eu-
clidean loss. We present an overview of our method in Fig-
ure 2, where each point (e) represents one feature embed-
ding, points with the same color belong to the same object,
and the cross (x) indicates the cluster centroid. Moreover,
6 and ¢ satisfy §,, = cos(6) and 64 < cos(¢), respectively.

Using the cosine similarity between two embeddings
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x;, x;, which is calculated as s(z;,x;) = m, the
proposed loss function is written as follows:
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where 64 and §, satisfy d; < 6, =~ 1 so that (., x;)
becomes larger than s(pi.,, ttes ). In addition, we use the
absolute error of the [-]; terms instead of the squared error
adopted in [5] because the norm of the [-] ;. terms is smaller
than 1 and the squared errors become considerably smaller
when these terms are near zero.

When the angle between an embedding and its cluster
centroid is larger than 60, L., attempts to reduce the dis-
tance between the embedding and the centroid. In addi-
tion, Lgjs¢ attempts to increase distance between cluster
centroids when the cosine similarity is larger than 4. In an
image recognition study ( [12]), the feature was also learned
using the cosine similarity using a unit hypersphere. How-
ever, in that study, similarities between all pairs of points
were calculated, whereas our method only considers the
similarities between points and the corresponding cluster
centroids. Thus, our method is considerably more compu-
tationally effective.

Compared to [5], the advantages of our method are as
follows:

e We do not need to consider the scale of the feature
space and thus, we can omit L,.; and do not need to
consider the balance between 3 and ~.

e Because the embeddings are guaranteed to have a unit
norm, it is easy to combine the learned embeddings to
other features.

We learn the mapping from the feature space to the em-
bedding space by adding one fully connected layer.

3.2. Computational Complexity

In Section 2.2, we discussed the fact that one of the prob-
lems of the existing IC-based instance segmentation method
SGPN [22] is that it requires a large space complexity. Be-
cause our method and SGPN require only a few extra layers
in the feature extractor, and thus, the number of iterations
for training is nearly the same, we focus on analyzing the
detailed computation complexity of the loss functions of
SGPN and our method. In the following section, we de-
note the batch size as B, the number of points as N, the
number of points in a cluster c as N, and the dimensions of
the input feature space and embedding space as dy and d.,



respectively. We also write the input and embedded features
of the i-th point as f; € R% and h; € R%, respectively.

In SGPN, the similarity S;; between the i-th and j-th
points is calculated as

Sy = 1F: = £5l = JIfall2 = 2085 + 18512 ®

Because the method calculates S;; for all pairs of points, the
space complexity of the similarity matrix is O(B Ng dyf). As
for the time complexity, because we need to evaluate || f; ||?
for each 4 and f; f; for each pair (i, j) to calculate S;;, the
time complexity is O(BNZd).

In contrast, the proposed loss function obtains d-
dimensional embedded features and calculates the cosine
similarity between each point and its cluster centroid, and
between each pair of cluster centroids. Therefore, the space
complexity for the embeddings of each point is O(BN,d, ),
and the computation complexity is O(B(N, + C?)d.);
however, this order is equivalent to O(BN,d,.) because
C < N, in most cases. Both complexities are linear in
N,,. Because we use N, = 2"(n = 12,13,14),d, = 2° in
the experiment, the proposed method can calculate the loss
function with a smaller space/time complexity than SGPN.

3.3. Clustering

We describe our feature learning method in Section 3.1.
In this section, we explain the clustering method applied to
the learned feature space to conduct instance segmentation.

The requirements for the clustering method are as fol-
lows:

e The number of clusters is variable.
o The clustering result is robust to outliers.

e The clustering does not fail even when the number of
points in each cluster has a large variety.

In this study, we adopt the density-based spatial cluster-
ing of applications with noise (DBSCAN) [7], which satis-
fies these requirements. DBSCAN is a density-based clus-
tering method that first calculates the densities of points
based on the number of neighboring points and then con-
structs clusters by considering a continuous region with a
density of above a certain threshold as a single cluster. The
number of clusters of the output of DBSCAN can vary, and
DBSCAN is robust to outliers because it accepts the noise
points that do not belong to any clusters.

We apply this clustering to the embeddings, which are
predicted as the same category. We concatenate the learned
embeddings using the normalized coordinates of the point
as the input for the clustering method. In addition, some
clusters consist of a very small number of points. Because
such clusters are false positive in most cases, we handle
such clusters as points in that they do not belong to any
cluster in the evaluation.
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Figure 3. Error patterns for instance segmentation

4. Evaluation Metrics

As described in Section 1, existing metrics of instance
segmentation are affected by the misclassification, the con-
fidence of prediction, and the size of the regions. Therefore,
we propose a novel evaluation metric that focuses on the
distinct ability of the objects regardless of the confidence or
semantics, and which can be used for any sized input region.

When we neglect semantic errors, we can observe four
patterns for each prediction output:

e There is a corresponding ground truth (GT) for the pre-
diction output (true positive (TP)).

e The prediction output covers some part of a GT (partial
detection (PD)).

e The prediction output contains more than one GT
(false merging (FM)).

e There is no corresponding GT (false positive (FP)).

Figure 3 shows a diagram of these four error patterns.

Note that one prediction output can fulfill more than one
of the patterns even though each point corresponds to ex-
actly one GT and one prediction. For example, one predic-
tion output, 90% of which is contained in a GT, can cover
other small GTs with the remaining 10%. In particular, PD
and FM are characteristics of instance segmentation.

To formulate these patterns, we define intersection over
a set (IoS)”, which describes the part of an object A that is
contained in an object B as follows:

N(ANB)

IoS(A,B) = NA)

9)
where N (X) denotes the number of points in X, and ob-
ject A is considered to be contained in object B when
IoS(A, B) exceeds a certain threshold ¢. Note that I0S() is
an asymmetric function and A cannot be contained in more
than one object when we set ¢ > 0.5.

Using this IoS, we can establish the proposed metrics as
follows. We first calculate a map from the GTs to the pre-
diction outputs (gt2pred) that describes which prediction



outputs are contained in each GT, and conversely calculate
a map from the prediction outputs to the GTs (pred2gt) that
describes which GTs are contained in each prediction. Note
that gt2pred and pred2gt are not exclusive. Then, we la-
bel each prediction for at least one of the patterns. As for
gt2pred, for each GT g, we can obtain a list of prediction
outputs corresponding to g (¢2p). If a prediction p is on the
list that also contains g itself, p is considered as TP; other-
wise, p is considered as PD because p is a subset of g.

In contrast, for pred2gt, with each prediction output p,
we can obtain a list of GTs corresponding to p (p2g). If
a GT g on the list does not contain any data and p is not
labeled as PD in the last process, p is considered as FP. Oth-
erwise, if g also contains p itself, it must be labeled as TP in
the last process owing to its symmetry. Here, g, which does
not contain p, is considered as FM because g is a subset of
g in this case. We define the ratio of TP to the number of
predictions as precision and the ratio of TP to the number
of GTs as recall; we define the F-score as their harmonic
mean. We also evaluate the error patterns based on the ratio
of PD, FM, and FP to the number of predictions. Because
we ignore the semantic segmentation in the calculation, one
prediction output can be TP even if its predicted semantics
are incorrect. This proposed metric does not depend on the
semantics, confidence, or size of the input regions. There-
fore, we can evaluate the pure performance of the instance
segmentation. The procedure explained above can be writ-
ten as Algorithm 1.

Algorithm 1 Criteria for instance segmentation

1: procedure AggregateResults(GT), prediction P)

2 arr gt2pred[len(G)][] > map from GT to preds
3 arr pred2gt(len(P)][] > map from pred to GTs
4 for each g in G do

5: for each p in P do

6 if s(gNp)/s(g) > tthen > gisincludedinp
7 pred2gt.append(g)

8 if s(gNp)/s(p) > t then > p is included in g
9 gt2pred.append(p)

10: Summarize(gt2pred, pred2gt)

11: procedure Summarize(gt2pred, pred2gt)

12: results[len(P)][] > 2D array to store predictions
13: for each g2p in gt2pred do

14: for each p in g2p do

15: if g in pred2gt[p] then

16: results[p].append("TP”) > true positive
17: else

18: results[p].append("PD”) > partial detection
19: for each p2g in pred2gt do

20: if len(p2g) == 0 and results[p] == [] then

21: results|p].append(”FP”) > false positive
22: for each g in p2g do

23: if p not in gt2pred|g] then

24: results[p].append("’FM”) > false merging

5. Experiments

In this section, we conduct experiments to compare our
method with existing methods in order to demonstrate its
effectiveness and to show that existing evaluation metrics
of instance segmentation in small regions are inappropriate.
We then clearly distinguish errors of misclassification and
splitting instances by using our proposed evaluation metric,
which cannot be achieved using existing evaluation metrics
such as mAP. Moreover, we evaluate the relationships be-
tween the size of the split regions and the instance segmen-
tation performance to validate our assumption that evaluat-
ing instance segmentation methods using existing evalua-
tion metrics for small regions is inappropriate.

5.1. Datasets and Setup

We use the Stanford large-scale 3D Indoor Spaces
Dataset (S3DIS) [1]. S3DIS consists of 270 indoor scenes
scanned from six areas and 13 objects. We use 203 scenes
for training and the remaining 67 scenes for evaluation.

Although PointNet++ [16] and SGPN [22] have been
used to evaluate methods by splitting the input scene hor-
izontally into small regions, such as 1 m square regions, we
conducted additional experiments using larger regions as in-
put. This is because one of our aims is to construct a method
that can be applied to wide regions with a greater number of
points. During each training iteration, we randomly sample
subregions with a fixed size from each scene, and then ran-
domly sample a fixed number of points from the sampled
subregion as the input. In the following experiments, the
region size is 1 m square, and the number of points is 4,096
unless otherwise noted. Each point has a nine-dimensional
normalized feature consisting of RGB values, relative co-
ordinates in the subregion, and absolute coordinates in the
room. For data augmentation, we apply random noise to
some of the input features.

The number of objects in the dataset differs significantly
among categories. For example, the number of objects of
the category with the largest number of objects is 55 times
as large as the number for the category with the smallest
number of objects. To eliminate the effect of this imbalance,
we weight the miscategorization cross-entropy loss as the
weight corresponding to the category with a small number
of points weighted as a large value.

Although we can apply our embedding learning method
to any feature extractors, we use PointNet (PN) [15] and
PointNet++ (PN++) [16] as feature extractors for our ex-
periments. We use 131-dimensional features consisting of
128-dimensional features extracted using the feature extrac-
tor and three-dimensional RGB features as the input for
feature embedding. The 131-dimensional features are then
passed through a fully connected layer, which produces 32-
dimensional embeddings.

We use the Adam [10] optimizer with an initial learning



rate of 0.001 and a batch size of 32. We train our network
for 6,000 steps, and the learning rate is divided by 10 at the
4,500th step. We set the hyperparameters for our method as
0, =0.9,0;5 =04, =0=0.5.

5.2. Evaluation on Existing Evaluation Metrics

In this section, we evaluate the proposed embedding
learning method using existing instance segmentation met-
rics. We compare our method with SGPN [22] and DFD
[21], which have been found to exhibit the highest accuracy
for this task. The scores for these two methods are reported
in [21].

Following [21], we chose the proposal recall [9] as the
evaluation metric and used PointNet as a feature extractor
for a fair comparison. The proposal recall is calculated as
follows: first, for each GT object, we select the predicted
object with the highest intersection over union (IoU) regard-
less of the category of the object and consider the output as
a true positive when the IoU is higher than a certain thresh-
old (we chose a value of 0.5). The ratio of the number of
true positives is then calculated with respect to the number
of GTs. Because the number of objects for each category is
unbalanced, we evaluated both the mean of the proposal re-
call of 12 categories, except the ’clutter’ class (mean), and
the overall proposal recall regardless of the categories (to-
tal). Note that the overall proposal recall (total) can be high
even if the model overfits some of the categories with many
instances and ignores the categories with fewer instances,
and thus, it may not be reliable. However, DFD, which
does not use category information for training, cannot solve
the imbalance problem between categories, and thus, it was
necessary to add the total proposal recall.

Moreover, to validate our argument that instance seg-
mentation on small regions is a substantially semantic seg-
mentation because there is often only one instance in the re-
gion, we also evaluated the result obtained using semantic
segmentation model (SemSeg), which never splits objects
belonging to the same category. We also report the score
obtained when using PointNet++ (PN++) instead of PN as
the feature extractor; however, we do not compare PN++
with PN as it would not make for a fair comparison.

Table 1 shows a comparison of our methods with exist-
ing methods as well as the obtained semantic segmentation
results. We can see that our method with PointNet (PN)
outperforms existing methods in terms of the mean pro-
posal recall by a large margin, and the use of PointNet++
leads to a considerably better score. As described earlier,
DFD achieves a high total score; however, its mean score
is low, which means that the model ignores categories with
fewer instances. In addition, for some categories such as a
ceiling, floor, and beam, a mere semantic segmentation re-
sult achieves a very high score because there is essentially
only one instance of such categories. This result supports
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our argument that semantic segmentation results affect the
instance segmentation performance, and an evaluation in
small regions using existing metrics is inappropriate.

5.3. Evaluation of the Proposed Evaluation Metrics

We then evaluated our method with DFD, which outper-
forms SGPN, using the proposed evaluation metrics. Some
predicted objects consist of a very small number of points.
Because such predicted objects are often false positives, we
set a threshold and use the predicted objects with a number
of points larger than the threshold as the targets for eval-
uation. There is a trade-off between precision and recall,
which we introduced in Section 4. As the threshold de-
creases, precision decreases while recall increases. We fix
t = 0.75 for the IoS defined by Equation 9 and search for
the threshold that can obtain the highest F-score. As a re-
sult, we use a threshold of 150 for the DFD and 35 for our
method. The DFD shows a larger threshold, which implies
that it outputs noisy small predicted objects that are false
positives.

Furthermore, as discussed in Section 5.2, the output of
the semantic segmentation model (SemSeg), which never
splits objects belonging to the same category, achieves high
scores using the existing metrics for instance segmentation.
This occurs in some categories in which multiple objects
seldom exist in a single subregion. We evaluated the results
of semantic segmentation using our evaluation metrics to
demonstrate whether this problem was solved.

We plot the results when varying ¢ of IoS from 0.5 to 0.95
in Figure 4. Note that precision, recall, and f1-score eval-
uate performance, whereas partial detection, false merging,
and false positive represent types of mistakes. We can see
that, although the semantic segmentation model shows a
high score for the existing metrics, specifically for recall,
the false merging score is quite high. This is because se-
mantic segmentation outputs one prediction per category
at most; this is why the partial detection of the semantic
segmentation model is low. To the best of our knowledge,
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DFD [21] 954 992 773 480 392 682 492 560 532 353 316 422 579 | 69.1
SemSeg 958 952 617 893 500 766 657 602 441 16.6 406 45.6 61.8 | 59.4
Ours (PN) 959 946 o645 893 613 833 750 640 550 70.8 55.6 50.8 71.7 | 68.8
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Figure 5. Effect of region size and number of points

this fact is revealed by the proposed metrics for the first
time. We can also observe fine patterns and the property
of instance segmentation errors when eliminating semantic
errors, which cannot be obtained using existing evaluation
metrics. For example, for DFD, most errors arise from par-
tial detection whereas false merging is the dominant cause
in our method. Such information is useful not only for an-
alyzing and improving the model but also for applying an
ensemble of models when considering the characteristics of
each model.

5.4. Effect of Region Size and Number of Points

In this section, we analyze the effects of the input re-
gion size and the number of points.We varied the number
of points from 4,096 to 16,384 and the size of the regions
from 1 m square from 4 m square. Note that the instance
segmentation results can be also affected by the density of
the points. The settings with 1,024 points and 1 m square,
4,096 points and 2m square, and 16,384 points with 4 m
square have the same density.

Figure 5 shows the proposal recall and the F-score values
for each setting. Even if the density is the same, the score
of the instance segmentation decreases with the size of the
region. As discussed in Section 1, when the input region is
small, we do not need to distinguish the objects because the
number of different objects of the same category is small.
Therefore, the task becomes difficult as the input region in-
creases and the apparent score decreases. In particular, the
F1 score of DFD is significantly decreased compared with
the proposal recall; one reason for this is that the proposal
recall does not penalize false positives and cannot reveal the
weakness of the DFD model that the instance segmentation
results are quite noisy. Moreover, the figure shows that the

processing technique, this approach has a significantly high
computational complexity because we need to repeat in-
stance segmentation on each subregion, making it unsuit-
able for practical use. Moreover, choosing an appropriate
subregion size is difficult, and an integration procedure can
add noise to the final result. Therefore, it is desirable to
use as large a region as possible for the input. However,
this figure implies that the instance segmentation task be-
comes significantly difficult when the input size is large,
this difficulty has not been adequately investigated in exist-
ing works. Handling large regions, such as an entire scene,
is a challenging task; however, it is of great importance in
the application of instance segmentation.

6. Conclusion

We proposed a new method for instance segmentation on
3D point clouds. Our memory efficient loss function learns
mapping to the embedding space, where the embeddings
form clusters for each object. We experimentally showed
that our method outperforms existing methods. Our method
can handle a large number of points and performs well even
when consuming large regions. Moreover, we claimed and
experimentally demonstrated that existing metrics are not
suitable for evaluating instance segmentation because they
are considerably affected by the input size of the misclassi-
fication. We proposed novel metrics that are unaffected by
such external conditions and can aid in evaluating instance
segmentation performances correctly. Using the proposed
metrics, we not only evaluated the instance segmentation
task without being affected by external conditions but also
analyzed the types of errors in an instance segmentation task
for each method.
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