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Abstract

Deep learning has met key applications in image com-

puting, but still lacks processing paradigms for meshes, i.e.

collections of elementary geometrical parts such as points,

segments or triangles. Meshes are both a powerful repre-

sentation for geometrical objects, and a challenge for net-

work architectures because of their inherent irregular struc-

ture. This work contributes to adapt classical deep learn-

ing paradigms to this particular type of data in three ways.

First, we introduce the current-splatting layer which em-

beds meshes in a metric space, allowing the downstream

network to process them without any assumption on their

topology: they may be composed of varied numbers of ele-

ments or connected components, contain holes, or bear high

levels of geometrical noise. Second, we adapt to meshes the

exponentiation layer which, from an upstream image array,

generates shapes with a diffeomorphic control over their

topology. Third, we take advantage of those layers to de-

vise a variational auto-encoding architecture, which we in-

terpret as a generative statistical model that learns adapted

low-dimensional representations for mesh data sets. An ex-

plicit norm-control layer ensures the correspondence be-

tween the latent-space Euclidean metric and the shape-

space log-Euclidean one. We illustrate this method on sim-

ulated and real data sets, and show the practical relevance

of the learned representation for visualization, classifica-

tion and mesh synthesis.

1. Introduction

Deep learning has met key applications in image com-

puting, but still lacks processing paradigms for mesh data.

Understood as collections of elementary geometrical parts

such as lines in 2D or triangles in 3D, meshes are a compact

and natural representation for geometrical data. The inher-

ent difficulty with meshes is that they do not have regular

structure: two meshes might be similar in their 3D geometry

yet very different in their parametrization – e.g. composed

of varying numbers of elementary triangles or connected

components of such triangles, contain holes breaking their

topology, or bear high levels of geometrical noise. Practical

tasks (such as regression or classification) remain however

ultimately the same regardless of the data type, which leads

to the question: is it possible to simply adapt image deep

learning paradigms to work with meshes?

A first challenge lies in building an “embedding” layer,

able to represent input meshes with irregular structure into

vectors of fixed dimension, that can then be processed by

any classical network architecture. Focusing on the case

of point clouds, [15, 24] introduce specific architecture for

object classification, part segmentation, and semantic seg-

mentation. In the case of connected meshes, intrinsic oper-

ators are defined in [21], as well as in the geometric deep

learning papers [2, 17, 18] surveyed by [3]. Considering

mesh points as graph nodes, they introduce convolution-like

operators able to compute feature vectors from sub-graphs

extracted at a fixed number of seed vertices. Those tech-

niques are well-suited to process model-based graphs such

as molecular structures or computer-aided designs because

local topologies carry information, but large receptive fields

(and high computational power) would be required to pro-

cess noisy data-driven graphs such as connectomes or seg-

mented organs. Global graph representations are extracted

in [26], but only after convergence of a costly iterative pro-

cedure. An opposed trend in the literature advocates for

transforming input 3-dimensional shapes into either binary

volumetric images [25, 32] or series of textured 2D images

obtained by selecting a set of viewpoints [28]. If those ap-

proaches might be computationally intensive, the opportu-

nity to seamlessly use well-understood deep network ar-

chitectures is a particularly appealing asset, which helped

them achieving top performance for object recognition. To

the best of our knowledge, those image-transform methods

however either ignore the information offered by the nor-

mals of the meshes, or take them indirectly into account

through some arbitrary and fixed illumination. If this is not



the case of signed distance functions used in [4, 5, 27] to

represent the environment from depth sensor signals [20],

the computational complexity to estimate such maps from

fully-determined shapes seems too elevated to be used as a

feature extraction layer – which should typically rather con-

sist in a forward operation.

A second challenge, reciprocal to the first, is to build an

output layer able to generate meshes. Going beyond the

generation of “shapes” as image-like structures, [7] synthe-

sizes point clouds. For higher-level shape primitives like

surfaces, a shared paradigm in [9, 11, 12, 13, 23, 29, 31]

consist in linearly deforming the vertices of a template

mesh, while keeping its connectivity unchanged. In [13,

31], the template is fixed to a generic ellipsoid. In [9], it is

assembled from a bank of parts, when in [23] several tem-

plates from a large bank are linearly combined. A specific

face template and its allowed linear deformation modes are

fixed a priori in [29], when those are learned in [11, 12].

A shared assumption is that the deformation should not

modify the template mesh topology: those papers either

assume all shapes isomorphic to the sphere [13, 31], rely

on an upstream classifier [9, 23], or restrict to a single

class [11, 12, 29]. This central topological hypothesis is

systematically enforced in an extrinsic manner through ded-

icated regularity terms, and is only verified at convergence.

Based on the theory of currents [30], we introduce in

Section 2 the current-splatting layer, which embeds meshes

in a metric space without any assumption on their topology.

The normals are directly and compactly taken into account

in this transformation, capturing maximal information for

the downstream network to process. The introduced metric

space naturally offers a loss function that measures the simi-

larity between any two meshes. In [6, 16], the authors define

the so-called exponentiation layer for imaging data, which

smoothly deforms a template image to generate a new one

with an intrinsic diffeomorphic control on its topology. We

adapt this layer to meshes in Section 3, enabling the syn-

thesis of smooth and regular objects from the upstream net-

work. In Section 4, we take advantage of those input and

output layers to devise a variational auto-encoding archi-

tecture, which we interpret as a generative statistical model

for meshes. An explicit norm-control layer ensures the cor-

respondence between the latent-space Euclidean metric and

the shape-space log-Euclidean one. Experimental results on

varied data sets are reported in Section 5.

2. Meshes seen as splatted currents

A mesh y is understood in this paper as a homogeneous

collection of elementary geometrical parts such as points,

segments, or triangles. A standard description is therefore

to write y as a list of points, along with a list of segments or

triangles that we call connectivity, point clouds being seen

as degenerated meshes with no connectivity. We focus in

the rest of the article on non-degenerated meshes, and more

specifically on surfaces of R3 in the next sub-section to in-

troduce the current theory. All notations and concepts can

however be adapted to collections of segments or points.

2.1. Continuous theory

The pragmatic description of a surface mesh as a finite

collection of triangles can be understood as the dicretization

of an infinite set of points x ∈ R
3 with infinitesimal normal

vectors n ∈ R
3 attached to them. The geometric measure

theory [19] studies those objects called rectifiable sets under

loose piece-wise smoothness hypotheses: the strategy is to

embed them in a functional Hilbert space, where desirable

basic operators such as addition, subtraction, averaging or

scalar product will be naturally defined. Given a space Ω of

square-integrable vector fields ω : R3 → R
3, we associate

to the rectifiable surface y the mapping defined by:

C∗(y)(ω) =

∫

y

ω(x)⊤ · n(x) · dσ(x) (1)

where x denotes a parametrization of y, dσ(x) an infinites-

imal surface element and (.)⊤ the transposition operator.

Equation (1) is invariant under parametrization change,

hence the mapping C∗(y) is a linear form on Ω. We call

currents such linear forms, which are elements of Ω∗, the

dual space of test fields. Following [30], we further assume

that Ω is a reproducing kernel Hilbert space with kernel

KΩ : R
3 × R

3 → R and scalar product denoted 〈.|.〉Ω.

The Riesz representation theorem gives the existence of

some C(y) ∈ Ω such that C∗(y)(.) =
〈

., C(y)
〉

Ω
. Com-

bining equation (1) and the reproducing property ω(x) =
〈

ω, KΩ(x, .)
〉

Ω
, this representant can be identified:

C(y)(.) =

∫

y

KΩ(x, .) · n(x) · dσ(x). (2)

Since
〈

C∗(y), C∗(y′)
〉

Ω∗
=

〈

C(y), C(y′)
〉

Ω
, this inner-

product on currents finally writes:

∫

y

∫

y′

n′(x′)⊤ ·KΩ(x, x
′) · n(x) · dσ(x) · dσ′(x′) (3)

which induces the distance metric:

dΩ(C, C
′)2 = 〈C, C〉Ω + 〈C′, C′〉Ω − 2 · 〈C, C′〉Ω. (4)

2.2. Practical discrete case

In practice, we propose to choose the simple radial Gaus-

sian kernel of radius σΩ > 0 for KΩ. Moreover, meshes are

represented as finite collections of T elements. Under those

hypotheses, equation (2) becomes:

C(y)(x) =
T
∑

k=1

exp
−
∥

∥x− ck
∥

∥

2

ℓ2

σ2
Ω

· nk (5)



Figure 1. Current-splatting mechanics. The input mesh is first

transformed in a vector field, which is then discretized on a fixed

grid to form a d-dimensional image. If a topologically simple ob-

ject was selected for the sake of clarity, note that any other topol-

ogy could be similarly treated.

where x is a point of Rd, the ck and nk respectively are the

centers and normals of the triangles composing y. In the

case of a collection of segments, the (nk)k are the tangent

vectors. In the same manner, equation (3) becomes:

〈

C(y), C(y′)
〉

Ω
=

T
∑

k=1

T ′

∑

l=1

exp
−
∥

∥c′l − ck
∥

∥

2

ℓ2

σ2
Ω

· n⊤

k n
′

l. (6)

Given a discrete grid gΩ of Rd, we finally define the splat-

ted current C(y) as the d-channel image resulting from the

discretization of C(y) on the grid gΩ.

Note the following properties of the current-splatting

transform: (i) it does not assume any particular topology of

the meshes, (ii) it is invariant under parametrization change,

(iii) it captures the proximity relationships between ele-

ments, (iv) it captures the orientation information encoded

by the normals of the triangles (or tangents of the segments).

All those properties are achieved at the cost of smoothing

out all geometrical features of characteristic radius inferior

to σΩ, which can on the other hand be useful to filter out

geometrical noise.

Architecture. The architecture of the current-splatting

layer is presented by Figure 1. The input mesh y is first

transformed in the function C(y), before being splatted into

a d-channel image C(y).

Hyper-parameters (σΩ, gΩ). The characteristic length σΩ

should ideally be larger than the noise to eliminate, and

smaller than the signal to capture. In practice, the grid gΩ is

obtained by uniformly dividing a bounding box containing

all the considered meshes. A good heuristic is to choose a

spacing between each node approximately equal to σΩ/2.

3. Meshes seen as deformations of a template

A mesh-generating layer is by essence an output layer,

and is therefore strongly linked to the loss function used to

train the network. In this work, we take advantage of the

current framework and use the distance metric defined by

equation (4), which is advantageously free of any topologi-

cal assumption. However, because of the low-pass filtering

behavior of the current transform, a naive output layer syn-

thesizing a mesh by directly predicting the position of its

points would be free to generate very noisy geometries.

3.1. Continuous theory

To control the regularity of the generated meshes, we im-

pose that they are diffeomorphic to a reference mesh y0.

This constraint suggests a method: instead of predicting

a mesh y directly, we want the network to generate a dif-

feomorphism φ, before computing the deformed template

y = φ ⋆ y0. As in [1], we construct diffeomorphisms

by following the streamlines of static smooth vector fields

v ∈ V ⊂ C∞
0 (Rd,Rd) during the time segment [0, 1]:

Φ(v) = φ1 where ∂tφt = v ◦ φt, φ0 = IdRd . (7)

The mapping Φ : V → GV = {Φ(v) | v ∈ V } is locally

invertible around the identity: similarly to [34], we define

on this neighbourhood of GV the “log-Euclidean” distance:

dV (φ, φ
′) =

∥

∥Φ−1(φ′)− Φ−1(φ)
∥

∥

V
(8)

which induces a distance on the corresponding neighbour-

hood of the orbit shape space GV ⋆ y0. We further assume

that V is a reproducing kernel Hilbert space with kernel

KV . The Riesz representation theorem gives the existence

of the “momenta” dual vector field m ∈ V ∗:

v(.) =

∫

Rd

KV (x, .) ·m(x) · dν(x) (9)

where dν(x) is an infinitesimal element of Rd. The inner

product 〈v, v′〉V on V can now be derived:

∫

Rd

∫

Rd

m′(x′)⊤ ·KV (x, x
′) ·m(x) ·dν(x) ·dν′(x′) (10)

which defines the norm operator ‖v‖V = 〈v|v〉
1/2.

3.2. Practical discrete case

In practice, we propose to choose the simple radial Gaus-

sian kernel of radius σV > 0 for KV . Moreover, the am-

bient space R
d is discretized into a grid gV . Under those

hypothesis, equations (9) and (10) write, in matrix forms:

v = KV ·m and 〈v|v′〉V = m⊤ ·KV ·m′ (11)



Figure 2. Exponentiation mechanics. The input d-dimensional ar-

ray m is first filtered by a Gaussian convolution layer. Interpreted

as a discretized velocity field, the resulting v is interpolated on

the successive positions of the moving mesh yt, which is finally

updated accordingly.

where the notations v and m refer to the gV -discretized

vector fields v and m respectively. The notation KV de-

notes the kernel tensor defined by, for any triplet of indices

(i0, j0, k0) of the grid gV :

[

KV

]

(i0,j0,k0)
=

∑

i,j,k

exp
−
∥

∥gi,j,k − gi0,j0,k0

∥

∥

2

ℓ2

σ2
V

(12)

in the case d = 3, easily adaptable to lower dimensions.

The time segment [0, 1] is uniformly discretized into T sub-

segments of length dt = 1/T . The differential equation (7)

becomes, for any time index 0≤ t≤T−1 and point x0∈R
d:

xt+1 = xt + dt · v(xt) ≈ xt + dt · I(v, xt) (13)

where I(v, xt) simply denotes the bi- or tri-linear interpo-

lation of the discretized velocity field v at location xt.

Architecture. The architecture of the exponentiation layer

is depicted by Figure 2. It takes as input a d-channel image,

interpreted as a d-dimensional momentum vector field m
discretized over a spatial grid gV . This upstream stimulus

m is filtered into the discrete velocity field v by a Gaussian

convolution layer with kernel width σV , according to equa-

tions (11, 12). A recurrent residual network of length T
then implements equation (13) for the template mesh (yt)t:
the interpolated velocity field I(v, yt) is computed, scaled

by dt, and added to the current mesh positions. The final

mesh yT forms the output of the exponentiation layer.

Hyper-parameters (σV , gV , T ). The notation y0 encom-

passes both: (i) the positions of the points forming the mesh,

which are parameters of the exponentiation layer (i.e. esti-

mated), (ii) the mesh connectivity, which is fixed a priori.

All synthesized meshes will therefore have this same topol-

ogy. The characteristic length hyper-parameter σV should

ideally be of the order of the smallest geometrical features

to generate. In practice, the grid gV hyper-parameter is ob-

tained by uniformly dividing a bounding box containing the

initial y0. A good heuristic is to choose a spacing between

each node approximately equal to σV /2. The number of in-

tegration steps T forms a last hyper-parameter. We chose

T = 5 in all our experiments.

4. Meshes seen as low-dimensional codes

We take advantage of the current-splatting and exponen-

tiation layers to devise an auto-encoding architecture, which

aims at learning a low-dimensional representation of a data

set of meshes (yi)
n
i=1. Given some user-defined latent-

space dimension q ∈ N
∗, any shape yi will be represented

in the network by a corresponding code zi ∈ R
q . Note

that meshes represented by a varying number of points, seg-

ments or triangles are then homogeneously represented by

simple low-dimensional vectors of the Euclidean space R
q ,

where simple operations such as computing averages are

naturally defined. We choose to work with a variational

auto-encoder: the latent codes (zi)i are seen as probability

distributions. This allows to capture the uncertainty associ-

ated with such low-dimensional representations, and offers

a statistical interpretation of the resulting architecture.

4.1. Continuous theory

Statistical model. We note Dδ a δ-parametric mapping that

associates a velocity vector field v ∈ V to any code vec-

tor z ∈ R
q . We further require Dδ to be isometric, i.e.

‖z‖ℓ2 = ‖v‖V . Given a data set of meshes (yi)
n
i , we model

the observations as random deformations of a template y0:

yi
iid
∼NΩ

(

Φ
[

Dδ(zi)
]

⋆ y0, ǫ
2
)

with zi
iid
∼N

(

0, λ2
)

(14)

where ǫ > 0 and λ > 0. The normal distribution NΩ

is defined in the space of the Ω-currents, equipped with

the distance metric dΩ defined by equation (4). Equa-

tion (14) defines a mixed-effects model with fixed effects

θ = (y0, δ, ǫ, λ) and random effects (zi)i. We note respec-

tively pθ(yi|zi) and pθ(zi) the density functions of the two

normal distributions involved in equation (14).

Variational inference. We estimate the parameters θ with a

variational Bayes approach [10], which consist in minimiz-

ing the loss
∑n

i=1 Lθ,η(yi) given by:

Lθ,η(yi) = −

∫

log pθ(yi|zi) · qη(zi|yi) · dzi

+ KL
[

qη(zi|yi)
∥

∥ pθ(zi)
]

(15)



Figure 3. Architecture of the mesh auto-encoder. The current-splatting layer transforms the input mesh into a d-dimensional array, which

is encoded by four convolution layers (in green) followed by a fully-connected layer (in yellow). Sampled codes are then decoded by three

fully connected layers followed by three deconvolution layers (in red). After filtering by Gaussian convolution, a scaling layer (in red)

explicitly enforces the isometry of the decoding mapping. The exponentiation layer finally synthesize the output mesh.

where KL(.‖.) denotes the Kullback-Leibler divergence op-

erator, and where zi → qη(zi|yi) is a η-parametric recog-

nition model that approximates the true posterior zi →
pθ(zi|yi). Minimizing the loss function defined by equa-

tion (15) actually consists in maximizing a lower bound of

the model likelihood, with equivalence in the perfect ap-

proximation case. We choose the recognition distribution

qη(.|yi) to be an uncorrelated Gaussian N (µi, ςi), whose

parameters are predicted from the current transform C(yi)
by the parametric mapping Eη : C(yi) → µi, ςi. The

Kullback-Leibler term in equation (15) can be seen as a

regularizing loss Rθ,η(yi), easily derivable for the chosen

recognition model:

Rθ,η(yi) =
1

2

q
∑

k=1

[

µ2
i,k + ς2i,k
λ2

− log
ς2i,k
λ2

]

+ cst. (16)

The remaining term, called attachment, is approximated by

drawing L samples zi,l
iid
∼ qη(.|yi):

Aθ,η(yi) =
1

2

L
∑

l=1

[

ǫ2i,l
ǫ2

+ |Ω| · log ǫ2

]

+ cst (17)

with ǫ2i,l = dΩ
(

C(yi), C(Φ
[

Dδ(zi,l)
]

⋆ y0)
)2

(18)

and where |Ω| is the normalization parameter for NΩ. These

losses are given modulo an additive constant with respect to

θ and η which are jointly estimated. The high-dimensional

parameters y0, δ and η are optimized by mini-batch stochas-

tic gradient descent. After each mini-batch, the remaining

scalar parameters λ, ǫ are updated according to the closed-

form solutions:

λ2 ←
n
∑

i=1

q
∑

k=1

µ2
i,k + ς2i,k
n · q

, ǫ2 ←
n
∑

i=1

L
∑

l=1

ǫ2i,l
n · L · |Ω|

.

(19)

Remark. Assuming Dδ isometric is sufficient to achieve

equality between the log-Euclidean metric defined in Sec-

tion 3 and the natural ℓ2 metric of Rq . In other words, the

Euclidean distance between the latent-space representations

(zi)i can be seen as a convenient proxy to visualize and

measure the relative similarity between the corresponding

data points (yi)i. In addition, the estimated template y0 can

be seen as a Fréchet average of those data points [1, 22].

4.2. Practical discrete case

As suggested in [14], in practice the encoding Eη and

decoding Dδ mappings are neural networks, noted Eη and

Dδ . The “discrete” encoder Eη takes gΩ-splatted currents

C as inputs. In those discrete settings, the normalizer |Ω|
equals the number of nodes of the grid gΩ [8]. The de-

coding counterpart Dδ outputs gV -discretized momentum

vector fields m. A Gaussian convolution layer then com-

putes the associated discrete velocity field, which is finally

explicitly scaled into v, enforcing the isometric assumption.

Architecture. The proposed architecture is illustrated by

Figure 3. The current-splatting layer first transforms the in-

put meshes into d-channel square or cube images of length

2r along each axis. Four convolution layers with kernel size

and stride of 2 then reduce the spatial dimension, when the

number of channels successively increases from d to 4, 8, 16

and 32. A fully-connected layer of output size 2q completes

the encoder architecture. Its output is interpreted as mean

and variance parameters of the probabilistic code distribu-

tion: during training, a single realization z is sampled with

the so-called reparametrization trick to ensure the backprop-

agation of gradients [14]. The decoder involves four decon-

volution layers symmetric to their encoding counterparts,

preceded by three fully connected layers. All decoding lay-

ers are chosen without bias. The filtering and scaling layers

finally generate the velocity field v, which is then exponen-

tiated. All convolution and linear layers are equipped with

tanh activation functions, at the exception of the last layer

of the encoder.



Hyper-parameters (σΩ, σV , g, T , q). In our auto-encoding

context, a good heuristic is to choose σΩ of the order of

the geometrical noise to eliminate (or slightly larger), and

σV of the order of the geometrical signal to synthesize (or

slightly smaller), while preserving σΩ≤σV . For the sake of

simplicity, we choose the two grids gΩ and gV equal (which

can always be achieved by union). We further assume this

grid g to be composed of |g|= 2rd nodes, with r≥ 4. The

number of time-steps is fixed to T = 5 in our experiments,

when the latent-space dimension q is task-dependent.

5. Experiments

5.1. Simulated rectangles

We simulate two-dimensional rectangle meshes by inde-

pendently scaling the two axes of a baseline unit square.

A train data set of n = 212 = 441 rectangles is created

with scaling factors uniformly distributed between 50% and

150%. A test data set composed of n = 322 = 1024 ele-

ments is also generated with factors ranging from 22.5%

to 177.5%. The splatting and deformation kernel widths

σΩ, σV are respectively fixed to a fifth and a half of the

baseline square width. Finally, the latent-space dimension is

q = 2 and we train the networks with ten thousands epochs.

We learn two models: the original mesh auto-encoder

presented in this article, and an unconstrained variation

where the isometry between the latent codes and the ve-

locity fields is not enforced (see Figure 3). For identifia-

bility reasons, the parameter λ is not estimated in the latter

case, and is fixed to 1. Table 1 gives the mean ℓ2 distances

between the original and the reconstructed rectangles, both

for the train and test rectangles. The fit is almost perfect on

training data points, and satisfying for test ones. The iso-

metric architecture outperforms the unconstrained one. Fig-

ure 4 plots some examples of such reconstructions for the

test data set (outer part), as well as the learned latent codes

Train (n=441) Test (n=1024)

Isometric 0.0022± 0.0004 0.014± 0.018

Unconstrained 0.0024± 0.0009 0.020± 0.024

Table 1. Averages and associated standard deviations of the mean

point-to-point �2 distance between the original and reconstructed

rectangles in several configurations. Values are percentages of the

average rectangle width.
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Figure 4. [Inner]. Latent spaces learned by the proposed mesh auto-encoder (left), and a modified architecture without norm scaling

(right). For both, the black grid marks the encoded train rectangles, when the lighter grey grid marks the encoded test rectangles.

[Outer]. Examples of 16 test rectangles (black lines), superimposed with the reconstructions obtained either with the isometric (red lines)

or unconstrained (blue lines) decoders. A color code allows to identify the corresponding latent representations.



(inner part). The fit is visually perfect for the test rectangles

which belong to the training distribution, i.e. of width and

length between 0.5 and 1.5. The fit quality slightly deterio-

rates otherwise. The latent-space learned with the isometric

decoder is more regular than its unconstrained counterpart:

the training samples are evenly spaced along two orthogo-

nal components, which is in line with the way data has been

generated. In other words, the learned representation better

preserves the true distances between meshes.

5.2. Emotive faces

The Birmingham University 3D dynamic facial expres-

sion database [33] provides short video sequences from 101

subjects (58 females, 43 males) mimicking emotions, such

as surprise. Focusing on this case, we uniformly collect 8

frames for each subject from the first 1.4 seconds of video.

Each frame comes with 73 segments delimiting facial fea-

tures, on which we base the following analysis. For each

subject, we consider every other frame as train (respec-

tively test), which defines two data sets composed n=404
meshes each. In a preprocessing step, meshes are aligned

together with the Procrustes method, and projected on a 2-

dimensional plane. We choose σΩ=15% and σV =30% in

percentage of the average distance between the eyes. The

auto-encoder is learned with a latent space of dimension

q=5, and ten thousands epochs.

Evaluated with the mean point-to-point ℓ2 distance, the

average residuals amount to 9.2%± 1.0 and 9.4%± 1.2 on the

train and test data sets respectively (values in percentage of

the average distance between eyes). Figure 5 gives two rep-

resentations of the learned latent-space, along with the re-

construction of two sequences. Reminding that every other

face in each sequence was considered as a train or test data

point, we see that meshes are tightly reconstructed in all

cases, showing a good generalization of the auto-encoder.

Those sequences correspond to smooth and progressive tra-

jectories in the latent space, as it can be seen for 10 ran-

domly selected sequences. A principal component analy-

sis (PCA) was learned on train codes and used to visualize

the 5-dimensional latent space. Those trajectories are glob-

ally following the first axis, which nicely corresponds to the

dynamics of a surprised face: the mouth enlarges and the

eyebrows move up. The second axis seems to encode more

static information, such as the distance between eyes and

eyebrows, or more subtly the total width of the faces. This

axis visually seems to correlate with the gender, as it can be
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Figure 5. [Outer]. Two particular sequences of faces mimicking being surprised (times goes from left to right). In black are plotted the

original meshes, and in blue or red color the reconstructions. The first, third, fifth and seventh frames are train data points.

[Center left]. Principal component projection of the latent-space codes. Ten randomly-chosen sequences are represented with colored

lines. Square markers (respectively circle) indicate train data points (respectively test). All remaining codes are plotted in the background.

[Center right]. Principal component projection of the latent-space codes. The pink color (respectively blue) indicates female subjects

(respectively male). Are superimposed in bold black the decoded meshes corresponding to the code at the center of the grid cell.



noticed from the background pink or blue points.

5.3. Hippocampus sub-cortical structures

The Alzheimer’s disease neuroimaging initiative gathers

longitudinal clinical measurements about normal controls

(CN), subjects with mild cognitive impairments (MCI) or

patients diagnosed with Alzheimer’s disease (AD). We se-

lect a balanced set of n = 225 T1-weighted magnetic reso-

nance images providing from as many subjects. After stan-

dard alignment preprocessing, the right hippocampus corti-

cal sub-structures are segmented into triangular meshes of

varied topology. We choose σΩ = 5mm and σV = 10mm.

For reference, the right hippocampus of an healthy subject

typically measures around 50mm in length. We learn the

autoencoder for ten thousands epochs in three different con-

figurations q ∈ {5, 10, 20}.

In the absence of point-to-point correspondence, we

measure the fitting residuals with the current distance

(see equations 4 and 6): they amount to 47.0 mm2
(± 9.6),

53.5 mm2
(± 10.3) and 43.4 mm2

(± 10.0) for configurations

q = 5, 10 and 20 respectively, which is satisfyingly small.

For reference, the rightmost image of Figure 6 plots a re-

construction with a current residual of 60.1mm2. This fig-

ure provides as well an illustration of the exponentiation

mechanism, which deforms the estimated template y0 in

a natural way as close as possible to the target. Note the

satisfying refinement of the initial prototype template into

a realistic real hippocampus mesh. We finally learn linear

discriminant classifiers in each latent space. Table 2 gives

the results obtained with a stratified 10-fold approach, for

two tasks of increasing difficulty: (i) discriminate CN from

AD, (ii) jointly discriminate CN, MCI and AD. Good per-

formance is obtained for the first task, especially since only

the geometry of a single hippocampus is considered (and

not a full T1 image). The second task proves harder, but

classification scores remain well above the chance threshold

of 33.3%. Figure 7 gives some intuition about those scores:

in the proposed PCA projection of the learned latent space

(q = 10), the three classes are nicely organized from left to

right into CN, MCI and AD subjects. We show that this axis

also correlates with the volume of the hippocampus, which

is in line with current medical knowledge.

q = 5 q = 10 q = 20

2-class 86.0± 8.4 % 92.0± 7.6 % 92.8± 6.5 %

3-class 64.9± 4.8 % 62.2± 9.4 % 68.1± 8.5 %

Table 2. Average linear discriminant analysis classification scores,

obtained with a stratified 10-fold method. The 2-class task consist

in discriminating CN subjects from AD ones (chance level 50%),

when the 3-class task adds the MCI subjects (chance level 33%).

Figure 6. The leftmost image plots the initial template mesh y0.

The remaining of the figure displays the exponentiation mecha-

nism that warps the estimated template into some target, displayed

in red. The current residual distance amounts to 60.1mm2.
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Figure 7. PCA projection of the learned latent space in the con-

figuration q = 10. The codes are represented with blue points if

they correspond to CN subjects, green points to MCI and red to

AD. Two particular latent points are decoded and displayed. The

third central code correspond to the template y0 (see Figure 6).

6. Conclusion

We introduced the current-splatting layer which allows

neural networks to process meshes without any assump-

tion on their topology. Conversely, we adapted to meshes

the exponentiation layer in order to synthesize shapes with

a diffeomorphic control on their topology. Taking advan-

tage of those input and output layers, we proposed an

auto-encoding architecture that learns a generative statisti-

cal model from a distribution of meshes. A norm-control

layer explicitly enforces the correspondence between the

Euclidean latent-space metric and the shape-space log-

Euclidean one. An experiment with a simulated data set

showed that this layer fosters the learning of latent spaces

more representative of the data distribution. Experiments

with real data sets demonstrated the ability of our auto-

encoder to handle varied types of geometrical data, and to

learn relevant low-dimensional representations. The pro-

posed method requires the manual choice of two important

characteristic length hyper-parameters. As a perspective

however, both the current-splatting and the exponentiation

layers could easily be generalized to handle multiple char-

acteristic scales, at the cost of linearly increasing number of

channels and therefore of computational pressure.
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